1
|
Wang Q, Yang Y, Chen Z, Li B, Niu Y, Li X. Lymph Node-on-Chip Technology: Cutting-Edge Advances in Immune Microenvironment Simulation. Pharmaceutics 2024; 16:666. [PMID: 38794327 PMCID: PMC11124897 DOI: 10.3390/pharmaceutics16050666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Organ-on-a-chip technology is attracting growing interest across various domains as a crucial platform for drug screening and testing and is set to play a significant role in precision medicine research. Lymph nodes, being intricately structured organs essential for the body's adaptive immune responses to antigens and foreign particles, are pivotal in assessing the immunotoxicity of novel pharmaceuticals. Significant progress has been made in research on the structure and function of the lymphatic system. However, there is still an urgent need to develop prospective tools and techniques to delve deeper into its role in various diseases' pathological and physiological processes and to develop corresponding immunotherapeutic therapies. Organ chips can accurately reproduce the specific functional areas in lymph nodes to better simulate the complex microstructure of lymph nodes and the interactions between different immune cells, which is convenient for studying specific biological processes. This paper reviews existing lymph node chips and their design approaches. It discusses the applications of the above systems in modeling immune cell motility, cell-cell interactions, vaccine responses, drug testing, and cancer research. Finally, we summarize the challenges that current research faces in terms of structure, cell source, and extracellular matrix simulation of lymph nodes, and we provide an outlook on the future direction of integrated immune system chips.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiong Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (Q.W.); (Y.Y.); (Z.C.); (B.L.); (Y.N.)
| |
Collapse
|
2
|
Hartmann TN. Ibrutinib and the chemotactic lymph node choreography. Haematologica 2024; 109:698-700. [PMID: 37608775 PMCID: PMC10905102 DOI: 10.3324/haematol.2023.283651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Tanja N Hartmann
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg.
| |
Collapse
|
3
|
Sun G, Wang B, Wu X, Cheng J, Ye J, Wang C, Zhu H, Liu X. How do sphingosine-1-phosphate affect immune cells to resolve inflammation? Front Immunol 2024; 15:1362459. [PMID: 38482014 PMCID: PMC10932966 DOI: 10.3389/fimmu.2024.1362459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Inflammation is an important immune response of the body. It is a physiological process of self-repair and defense against pathogens taken up by biological tissues when stimulated by damage factors such as trauma and infection. Inflammation is the main cause of high morbidity and mortality in most diseases and is the physiological basis of the disease. Targeted therapeutic strategies can achieve efficient toxicity clearance at the inflammatory site, reduce complications, and reduce mortality. Sphingosine-1-phosphate (S1P), a lipid signaling molecule, is involved in immune cell transport by binding to S1P receptors (S1PRs). It plays a key role in innate and adaptive immune responses and is closely related to inflammation. In homeostasis, lymphocytes follow an S1P concentration gradient from the tissues into circulation. One widely accepted mechanism is that during the inflammatory immune response, the S1P gradient is altered, and lymphocytes are blocked from entering the circulation and are, therefore, unable to reach the inflammatory site. However, the full mechanism of its involvement in inflammation is not fully understood. This review focuses on bacterial and viral infections, autoimmune diseases, and immunological aspects of the Sphks/S1P/S1PRs signaling pathway, highlighting their role in promoting intradial-adaptive immune interactions. How S1P signaling is regulated in inflammation and how S1P shapes immune responses through immune cells are explained in detail. We teased apart the immune cell composition of S1P signaling and the critical role of S1P pathway modulators in the host inflammatory immune system. By understanding the role of S1P in the pathogenesis of inflammatory diseases, we linked the genomic studies of S1P-targeted drugs in inflammatory diseases to provide a basis for targeted drug development.
Collapse
Affiliation(s)
- Gehui Sun
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Bin Wang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaoyu Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jiangfeng Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junming Ye
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hongquan Zhu
- Department of Critical Care Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Liu
- Clinical College, Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
4
|
Garcia-Seyda N, Song S, Seveau de Noray V, David-Broglio L, Matti C, Artinger M, Dupuy F, Biarnes-Pelicot M, Valignat MP, Legler DF, Bajénoff M, Theodoly O. Naive T lymphocytes chemotax long distance to CCL21 but not to a source of bioactive S1P. iScience 2023; 26:107695. [PMID: 37822497 PMCID: PMC10562802 DOI: 10.1016/j.isci.2023.107695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/12/2023] [Accepted: 08/16/2023] [Indexed: 10/13/2023] Open
Abstract
Naive T lymphocytes traffic through the organism in search for antigen, alternating between blood and secondary lymphoid organs. Lymphocyte homing to lymph nodes relies on CCL21 chemokine sensing by CCR7 receptors, while exit into efferent lymphatics relies on sphingolipid S1P sensing by S1PR1 receptors. While both molecules are claimed chemotactic, a quantitative analysis of naive T lymphocyte migration along defined gradients is missing. Here, we used a reductionist approach to study the real-time single-cell response of naive T lymphocytes to CCL21 and serum rich in bioactive S1P. Using microfluidic and micropatterning ad hoc tools, we show that CCL21 triggers stable polarization and long-range chemotaxis of cells, whereas S1P-rich serum triggers a transient polarization only and no significant displacement, potentially representing a brief transmigration step through exit portals. Our in vitro data thus suggest that naive T lymphocyte chemotax long distances to CCL21 but not toward a source of bioactive S1P.
Collapse
Affiliation(s)
- Nicolas Garcia-Seyda
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
- Aix Marseille University, Inserm, CNRS, CIML, Marseille, France
| | - Solene Song
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
- Aix Marseille University, Inserm, CNRS, CIML, Marseille, France
| | | | - Luc David-Broglio
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
| | - Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
| | - Marc Artinger
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Florian Dupuy
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
| | - Martine Biarnes-Pelicot
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
| | - Marie-Pierre Valignat
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
| | - Daniel F. Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Unterseestrasse 47, 8280 Kreuzlingen, Switzerland
- Faculty of Biology, University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Marc Bajénoff
- Aix Marseille University, Inserm, CNRS, CIML, Marseille, France
| | - Olivier Theodoly
- Aix Marseille University, Inserm, CNRS, Turing Center for Living Systems, LAI, Marseille, France
| |
Collapse
|
5
|
Oyler BL, Valencia-Dávila JA, Moysi E, Molyvdas A, Ioannidou K, March K, Ambrozak D, De Leval L, Fabozzi G, Woods AS, Koup RA, Petrovas C. Multilevel human secondary lymphoid immune system compartmentalization revealed by complementary imaging approaches. iScience 2023; 26:107261. [PMID: 37520703 PMCID: PMC10371825 DOI: 10.1016/j.isci.2023.107261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/12/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Secondary human lymphoid tissue immune reactions take place in a highly coordinated environment with compartmentalization representing a fundamental feature of this organization. In situ profiling methodologies are indispensable for the understanding of this compartmentalization. Here, we propose a complementary experimental approach aiming to reveal different aspects of this process. The analysis of human tonsils, using a combination of single cell phenotypic analysis based on flow cytometry and multiplex imaging and mass spectrometry-based methodologies, revealed a compartmentalized organization at the cellular and molecular levels. More specifically, the skewed distribution of highly specialized immune cell subsets and relevant soluble mediators was accompanied by a compartmentalized localization of several lipids across different anatomical areas of the tonsillar tissue. The performance of such combinatorial experimental approaches could lead to the identification of novel in situ interactions and molecular targets for the in vivo manipulation of lymphoid organ, particularly the germinal center, immune reactions.
Collapse
Affiliation(s)
- Benjamin L. Oyler
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | | | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Adam Molyvdas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Kylie March
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - David Ambrozak
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Laurence De Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Giulia Fabozzi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Amina S. Woods
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Richard A. Koup
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
6
|
Molostvov G, Gachechiladze M, Shaaban AM, Hayward S, Dean I, Dias IHK, Badr N, Danial I, Mohammed F, Novitskaya V, Paniushkina L, Speirs V, Hanby A, Nazarenko I, Withers DR, van Laere S, Long HM, Berditchevski F. Tspan6 stimulates the chemoattractive potential of breast cancer cells for B cells in an EV- and LXR-dependent manner. Cell Rep 2023; 42:112207. [PMID: 36867531 DOI: 10.1016/j.celrep.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/11/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
The immune microenvironment in breast cancer (BCa) is controlled by a complex network of communication between various cell types. Here, we find that recruitment of B lymphocytes to BCa tissues is controlled via mechanisms associated with cancer cell-derived extracellular vesicles (CCD-EVs). Gene expression profiling identifies the Liver X receptor (LXR)-dependent transcriptional network as a key pathway that controls both CCD-EVs-induced migration of B cells and accumulation of B cells in BCa tissues. The increased accumulation oxysterol ligands for LXR (i.e., 25-hydroxycholesterol and 27-hydroxycholesterol) in CCD-EVs is regulated by the tetraspanin 6 (Tspan6). Tspan6 stimulates the chemoattractive potential of BCa cells for B cells in an EV- and LXR-dependent manner. These results demonstrate that tetraspanins control intercellular trafficking of oxysterols via CCD-EVs. Furthermore, tetraspanin-dependent changes in the oxysterol composition of CCD-EVs and the LXR signaling axis play a key role in specific changes in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Guerman Molostvov
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mariam Gachechiladze
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Clinical and Molecular Pathology, Palacky Univerzity, 7779 00 Olomouc, Czech Republic
| | - Abeer M Shaaban
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven Hayward
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Isaac Dean
- Institute of Immunology and Immunotherapy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Irundika H K Dias
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
| | - Nahla Badr
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Irini Danial
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Fiyaz Mohammed
- Institute of Immunology and Immunotherapy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vera Novitskaya
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Liliia Paniushkina
- Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, 79106 Freiburg, Germany
| | - Valerie Speirs
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK; Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Andrew Hanby
- Leeds Institute of Medical Research, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Irina Nazarenko
- Faculty of Medicine, Institute for Infection Prevention and Hospital Epidemiology, Medical Center - University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David R Withers
- Institute of Immunology and Immunotherapy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steven van Laere
- Translational Cancer Research Unit Center for Oncological Research, University Antwerp, Antwerp 2610, Belgium
| | - Heather M Long
- Institute of Immunology and Immunotherapy, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
7
|
Baker D, Forte E, Pryce G, Kang AS, James LK, Giovannoni G, Schmierer K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult Scler Relat Disord 2023; 69:104425. [PMID: 36470168 PMCID: PMC9678390 DOI: 10.1016/j.msard.2022.104425] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-one phosphate receptor (S1PR) modulation inhibits S1PR1-mediated lymphocyte migration, lesion formation and positively-impacts on active multiple sclerosis (MS). These S1PR modulatory drugs have different: European Union use restrictions, pharmacokinetics, metabolic profiles and S1PR receptor affinities that may impact MS-management. Importantly, these confer useful properties in dealing with COVID-19, anti-viral drug responses and generating SARS-CoV-2 vaccine responses. OBJECTIVE To examine the biology and emerging data that potentially underpins immunity to the SARS-CoV-2 virus following natural infection and vaccination and determine how this impinges on the use of current sphingosine-one-phosphate modulators used in the treatment of MS. METHODS A literature review was performed, and data on infection, vaccination responses; S1PR distribution and functional activity was extracted from regulatory and academic information within the public domain. OBSERVATIONS Most COVID-19 related information relates to the use of fingolimod. This indicates that continuous S1PR1, S1PR3, S1PR4 and S1PR5 modulation is not associated with a worse prognosis following SARS-CoV-2 infection. Whilst fingolimod use is associated with blunted seroconversion and reduced peripheral T-cell vaccine responses, it appears that people on siponimod, ozanimod and ponesimod exhibit stronger vaccine-responses, which could be related notably to a limited impact on S1PR4 activity. Whilst it is thought that S1PR3 controls B cell function in addition to actions by S1PR1 and S1PR2, this may be species-related effect in rodents that is not yet substantiated in humans, as seen with bradycardia issues. Blunted antibody responses can be related to actions on B and T-cell subsets, germinal centre function and innate-immune biology. Although S1P1R-related functions are seeming central to control of MS and the generation of a fully functional vaccination response; the relative lack of influence on S1PR4-mediated actions on dendritic cells may increase the rate of vaccine-induced seroconversion with the newer generation of S1PR modulators and improve the risk-benefit balance IMPLICATIONS: Although fingolimod is a useful asset in controlling MS, recently-approved S1PR modulators may have beneficial biology related to pharmacokinetics, metabolism and more-restricted targeting that make it easier to generate infection-control and effective anti-viral responses to SARS-COV-2 and other pathogens. Further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Eugenia Forte
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gareth Pryce
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Angray S Kang
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
8
|
Schwarzenberg FL, Schütz P, Hammel JU, Riedel M, Bartl J, Bordbari S, Frank SC, Walkenfort B, Busse M, Herzen J, Lohr C, Wülfing C, Henne S. Three-dimensional analyses of vascular network morphology in a murine lymph node by X-ray phase-contrast tomography with a 2D Talbot array. Front Immunol 2022; 13:947961. [PMID: 36524111 PMCID: PMC9745095 DOI: 10.3389/fimmu.2022.947961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
With growing molecular evidence for correlations between spatial arrangement of blood vasculature and fundamental immunological functions, carried out in distinct compartments of the subdivided lymph node, there is an urgent need for three-dimensional models that can link these aspects. We reconstructed such models at a 1.84 µm resolution by the means of X-ray phase-contrast imaging with a 2D Talbot array in a short time without any staining. In addition reconstructions are verified in immunohistochemistry staining as well as in ultrastructural analyses. While conventional illustrations of mammalian lymph nodes depict the hilus as a definite point of blood and lymphatic vessel entry and exit, our method revealed that multiple branches enter and emerge from an area that extends up to one third of the organ's surface. This could be a prerequisite for the drastic and location-dependent remodeling of vascularization, which is necessary for lymph node expansion during inflammation. Contrary to corrosion cast studies we identified B-cell follicles exhibiting a two times denser capillary network than the deep cortical units of the T-cell zone. In addition to our observation of high endothelial venules spatially surrounding the follicles, this suggests a direct connection between morphology and B-cell homing. Our findings will deepen the understanding of functional lymph node composition and lymphocyte migration on a fundamental basis.
Collapse
Affiliation(s)
- Florian L. Schwarzenberg
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Paul Schütz
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Jörg U. Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Mirko Riedel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Jasmin Bartl
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Sharareh Bordbari
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Svea-Celina Frank
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Madleen Busse
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Julia Herzen
- Department of Physics, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Clemens Wülfing
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| | - Stephan Henne
- INI-Research, Group for Interdisciplinary Neurobiology and Immunology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
La Flamme AC. Immunology & Cell Biology
Publication of the Year Awards 2021. Immunol Cell Biol 2022; 100:748-749. [DOI: 10.1111/imcb.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Anne C La Flamme
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand
| |
Collapse
|
10
|
Seervai RNH, Sinha A, Kulkarni RP. Mechanisms of dermatologic toxicities to immune checkpoint inhibitor cancer therapies. Clin Exp Dermatol 2022; 47:1928-1942. [PMID: 35844072 DOI: 10.1111/ced.15332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
The discovery of immune checkpoint inhibition (ICI) sparked a revolution in the era of targeted anticancer therapy. While monoclonal antibodies targeting the CTLA-4 and PD-1 axes have improved survival in patients with advanced cancers, these immunotherapies are associated with a wide spectrum of dermatologic immune-related adverse events (irAEs). Several publications have addressed the clinical and histopathologic classification of these skin-directed irAEs, their impact on antitumor immunity and survival, and the critical role of supportive oncologic dermatology in their management. Here, we review the current understanding of the mechanistic drivers of immune-related skin toxicities with a focus on inflammatory, immunobullous, melanocyte/pigment-related reactions. We detail the specific immune-based mechanisms that may underlie different cutaneous reactions. We also discuss potential mechanisms as they relate to non-cutaneous irAEs and potential overlap with cutaneous irAEs, techniques to study differences in immune-related versus de novo skin reactions, and how treatment of these adverse events impacts cancer treatment, patient quality of life, and overall survival. An improved understanding of the mechanistic basis of cutaneous irAEs will allow us to develop and utilize blood-based biomarkers that could help ultimately predict onset and/or severity of these irAEs and to implement rational mechanistic-based treatment strategies that are targeted to the irAEs while potentially avoiding abrogating anti-tumor effect of ICIs.
Collapse
Affiliation(s)
- Riyad N H Seervai
- Department of Internal Medicine, Providence Portland Medical Center, Portland, Oregon, 97213.,Medical Scientist Training Program, Baylor College of Medicine, 77030, Houston, Texas, USA.,Department of Dermatology, Baylor College of Medicine, 77030, Houston, Texas, USA
| | - Avilasha Sinha
- Department of Dermatology, Baylor College of Medicine, 77030, Houston, Texas, USA.,Department of Medicine, Baylor College of Medicine, 77030, Houston, Texas, USA
| | - Rajan P Kulkarni
- Department of Dermatology, Oregon Health and Science University, Portland, Oregon 97239, USA.,Department of Biomedical Engineering, Oregon Health and Science University, 97239, Portland, OR.,Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, 97239, Portland, OR.,Operative Care Division, VA Portland Health Care System, 92739, Portland, OR
| |
Collapse
|
11
|
Ma Y, Chang N, Liu Y, Liu F, Dong C, Hou L, Qi C, Yang L, Li L. Silencing IQGAP1 alleviates hepatic fibrogenesis via blocking bone marrow mesenchymal stromal cell recruitment to fibrotic liver. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:471-483. [PMID: 35036058 PMCID: PMC8728523 DOI: 10.1016/j.omtn.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/15/2021] [Indexed: 02/06/2023]
Abstract
IQ motif-containing guanosine triphosphatase (GTPase)-activating protein 1 (IQGAP1) is a cytosolic scaffolding protein involved in cell migration. Our previous studies suggest sphingosine 1-phosphate (S1P) triggers bone marrow (BM) mesenchymal stromal cells (BMSCs) to damaged liver, thereby promoting liver fibrosis. However, the role of IQGAP1 in S1P-induced BMSC migration and liver fibrogenesis remains unclear. Chimeric mice of BM cell labeled by EGFP were used to build methionine-choline-deficient and high-fat (MCDHF)-diet-induced mouse liver fibrosis. IQGAP1 small interfering RNA (siRNA) was utilized to silence IQGAP1 in vivo. IQGAP1 expression is significantly elevated in MCDHF-diet-induced mouse fibrotic livers. Positive correlations are presented between IQGAP1 and fibrosis hallmarks expressions in human and mouse fibrotic livers. In vitro, depressing IQGAP1 expression blocks S1P-induced motility and cytoskeleton remodeling of BMSCs. S1P facilitates IQGAP1 aggregating to plasma membrane via S1P receptor 3 (S1PR3) and Cdc42/Rac1. In addition, IQGAP1 binds to Cdc42/Rac1, regulating S1P-induced activation of Cdc42/Rac1 and mediating BMSC migration in concert. In vivo, silencing IQGAP1 reduces the recruitment of BMSCs to impaired liver and effectively alleviates liver fibrosis induced by MCDHF diet. Together, silencing IQGAP1 relieves liver fibrosis by blocking BMSC migration, providing an effective therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Yuehan Ma
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuran Liu
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Chengbin Dong
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lei Hou
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Changbo Qi
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| |
Collapse
|
12
|
Carrasco A, Sjölander I, Van Acker A, Dernstedt A, Fehrm J, Forsell M, Friberg D, Mjösberg J, Rao A. The Tonsil Lymphocyte Landscape in Pediatric Tonsil Hyperplasia and Obstructive Sleep Apnea. Front Immunol 2021; 12:674080. [PMID: 34745084 PMCID: PMC8570126 DOI: 10.3389/fimmu.2021.674080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/04/2021] [Indexed: 01/15/2023] Open
Abstract
Tonsil hyperplasia is the most common cause of pediatric obstructive sleep apnea (OSA). Despite the growing knowledge in tissue immunology of tonsils, the immunopathology driving tonsil hyperplasia and OSA remains unknown. Here we used multi-parametric flow cytometry to analyze the composition and phenotype of tonsillar innate lymphoid cells (ILCs), T cells, and B cells from pediatric patients with OSA, who had previous polysomnography. Unbiased clustering analysis was used to delineate and compare lymphocyte heterogeneity between two patient groups: children with small tonsils and moderate OSA (n = 6) or large tonsils and very severe OSA (n = 13). We detected disturbed ILC and B cell proportions in patients with large tonsils, characterized by an increase in the frequency of naïve CD27-CD21hi B cells and a relative reduction of ILCs. The enrichment of naïve B cells was not commensurate with elevated Ki67 expression, suggesting defective differentiation and/or migration rather than cellular proliferation to be the causative mechanism. Finally, yet importantly, we provide the flow cytometry data to be used as a resource for additional translational studies aimed at investigating the immunological mechanisms of pediatric tonsil hyperplasia and OSA.
Collapse
Affiliation(s)
- Anna Carrasco
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Isabella Sjölander
- Department of Surgical Sciences, Otorhinolaryngology-Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Aline Van Acker
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Andy Dernstedt
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Johan Fehrm
- Department of Clinical Sciences, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Forsell
- Department of Clinical Microbiology, Section of Infection and Immunology, Umeå University, Umeå, Sweden
| | - Danielle Friberg
- Department of Surgical Sciences, Otorhinolaryngology-Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Rao
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Cruz-Zárate D, López-Ortega O, Girón-Pérez DA, Gonzalez-Suarez AM, García-Cordero JL, Schnoor M, Santos-Argumedo L. Myo1g is required for efficient adhesion and migration of activated B lymphocytes to inguinal lymph nodes. Sci Rep 2021; 11:7197. [PMID: 33785780 PMCID: PMC8009870 DOI: 10.1038/s41598-021-85477-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/18/2021] [Indexed: 11/15/2022] Open
Abstract
Cell migration is a dynamic process that involves adhesion molecules and the deformation of the moving cell that depends on cytoskeletal remodeling and actin-modulating proteins such as myosins. In this work, we analyzed the role of the class I Myosin-1 g (Myo1g) in migratory processes of LPS + IL-4 activated B lymphocytes in vivo and in vitro. In vivo, the absence of Myo1g reduced homing of activated B lymphocytes into the inguinal lymph node. Using microchannel chambers and morphology analysis, we found that the lack of Myo1g caused adhesion and chemotaxis defects. Additionally, deficiency in Myo1g causes flaws in adopting a migratory morphology. Our results highlight the importance of Myo1g during B cell migration.
Collapse
Affiliation(s)
- D Cruz-Zárate
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
- Departmento and Posgrado en Inmunologia, Escuela Nacional de Ciencias Biologicas del Instituto Politécnico Nacional (ENCB-IPN), Mexico City, Mexico
| | - O López-Ortega
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - D A Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - A M Gonzalez-Suarez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Monterrey, NL, Mexico
| | - J L García-Cordero
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Monterrey, NL, Mexico
| | - M Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico
| | - L Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, 07360, Mexico City, Mexico.
| |
Collapse
|