1
|
Han L, Wu S, Zhang T, Peng W, Zhao M, Yue C, Wen W, Cai W, Li M, Wallny HJ, Avila DW, Mwangi W, Nair V, Ternette N, Guo Y, Zhao Y, Chai Y, Qi J, Liang H, Gao GF, Kaufman J, Liu WJ. A Wider and Deeper Peptide-Binding Groove for the Class I Molecules from B15 Compared with B19 Chickens Correlates with Relative Resistance to Marek's Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:668-680. [PMID: 36695776 PMCID: PMC7614295 DOI: 10.4049/jimmunol.2200211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
The chicken MHC is known to confer decisive resistance or susceptibility to various economically important pathogens, including the iconic oncogenic herpesvirus that causes Marek's disease (MD). Only one classical class I gene, BF2, is expressed at a high level in chickens, so it was relatively easy to discern a hierarchy from well-expressed thermostable fastidious specialist alleles to promiscuous generalist alleles that are less stable and expressed less on the cell surface. The class I molecule BF2*1901 is better expressed and more thermostable than the closely related BF2*1501, but the peptide motif was not simpler as expected. In this study, we confirm for newly developed chicken lines that the chicken MHC haplotype B15 confers resistance to MD compared with B19. Using gas phase sequencing and immunopeptidomics, we find that BF2*1901 binds a greater variety of amino acids in some anchor positions than does BF2*1501. However, by x-ray crystallography, we find that the peptide-binding groove of BF2*1901 is narrower and shallower. Although the self-peptides that bound to BF2*1901 may appear more various than those of BF2*1501, the structures show that the wider and deeper peptide-binding groove of BF2*1501 allows stronger binding and thus more peptides overall, correlating with the expected hierarchies for expression level, thermostability, and MD resistance. Our study provides a reasonable explanation for greater promiscuity for BF2*1501 compared with BF2*1901, corresponding to the difference in resistance to MD.
Collapse
Affiliation(s)
- Lingxia Han
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- National Poultry Laboratory Animal Resource Center, Harbin 150001, China
- Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin 150069, China
| | - Shaolian Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Zhang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Weiyu Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Yue
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanxin Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wenbo Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Min Li
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
| | | | - David W. Avila
- The Basel Institute for Immunology, Basel CH4001, Switzerland
| | - William Mwangi
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
| | - Venugopal Nair
- The Pirbright Institute, Pirbright GU24 0NF, United Kingdom
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Headington OX37BN, United Kingdom
| | - Yaxin Guo
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Liang
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| | - Jim Kaufman
- The Basel Institute for Immunology, Basel CH4001, Switzerland
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Science, University of Cambridge, Cambridge CB3 0ES, United Kingdom
- Institute for Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - William J. Liu
- Biosafety Level-3 Laboratory, Life Sciences Institute & Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application, Guangxi Medical University, Nanning, Guangxi 530021, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing 100052, China
| |
Collapse
|
3
|
Sfikakis PP, Verrou KM, Ampatziadis-Michailidis G, Tsitsilonis O, Paraskevis D, Kastritis E, Lianidou E, Moutsatsou P, Terpos E, Trougakos I, Chini V, Manoloukos M, Moulos P, Pavlopoulos GA, Kollias G, Hatzis P, Dimopoulos MA. Blood Transcriptomes of Anti-SARS-CoV-2 Antibody-Positive Healthy Individuals Who Experienced Asymptomatic Versus Clinical Infection. Front Immunol 2021; 12:746203. [PMID: 34675930 PMCID: PMC8523987 DOI: 10.3389/fimmu.2021.746203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
The reasons behind the clinical variability of SARS-CoV-2 infection, ranging from asymptomatic infection to lethal disease, are still unclear. We performed genome-wide transcriptional whole-blood RNA sequencing, bioinformatics analysis and PCR validation to test the hypothesis that immune response-related gene signatures reflecting baseline may differ between healthy individuals, with an equally robust antibody response, who experienced an entirely asymptomatic (n=17) versus clinical SARS-CoV-2 infection (n=15) in the past months (mean of 14 weeks). Among 12.789 protein-coding genes analysed, we identified six and nine genes with significantly decreased or increased expression, respectively, in those with prior asymptomatic infection relatively to those with clinical infection. All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, ALOX15), are involved in innate immune response while the first two are interferon-induced proteins. Among genes with increased expression six are involved in immune response (GZMH, CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by interferons. Our results suggest that subtle differences at baseline expression of innate immunity-related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. Whether a certain gene signature predicts, or not, those who will develop a more efficient immune response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, warrant further study.
Collapse
Affiliation(s)
- Petros P. Sfikakis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Kleio-Maria Verrou
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Giannis Ampatziadis-Michailidis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Ourania Tsitsilonis
- Department of Biology, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evi Lianidou
- Department of Chemistry, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, School of Medicine, University General Hospital Attikon, NKUA, Haidari, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki Chini
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Menelaos Manoloukos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Moulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Georgios A. Pavlopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - George Kollias
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Pantelis Hatzis
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center (BSRC) Alexander Fleming, Vari, Greece
| | - Meletios A. Dimopoulos
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
de Cevins C, Luka M, Smith N, Meynier S, Magérus A, Carbone F, García-Paredes V, Barnabei L, Batignes M, Boullé A, Stolzenberg MC, Pérot BP, Charbit B, Fali T, Pirabakaran V, Sorin B, Riller Q, Abdessalem G, Beretta M, Grzelak L, Goncalves P, Di Santo JP, Mouquet H, Schwartz O, Zarhrate M, Parisot M, Bole-Feysot C, Masson C, Cagnard N, Corneau A, Brunaud C, Zhang SY, Casanova JL, Bader-Meunier B, Haroche J, Melki I, Lorrot M, Oualha M, Moulin F, Bonnet D, Belhadjer Z, Leruez M, Allali S, Gras-Leguen C, de Pontual L, Fischer A, Duffy D, Rieux-Laucat F, Toubiana J, Ménager MM. A monocyte/dendritic cell molecular signature of SARS-CoV-2-related multisystem inflammatory syndrome in children with severe myocarditis. MED 2021; 2:1072-1092.e7. [PMID: 34414385 PMCID: PMC8363470 DOI: 10.1016/j.medj.2021.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/12/2021] [Accepted: 08/09/2021] [Indexed: 12/28/2022]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis. Methods To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels. Findings The most severe forms of multisystem inflammatory syndrome in children (MIS-C) related to SARS-CoV-2 that resulted in myocarditis were characterized by elevated levels of pro-angiogenesis cytokines and several chemokines. Single-cell transcriptomics analyses identified a unique monocyte/dendritic cell gene signature that correlated with the occurrence of severe myocarditis characterized by sustained nuclear factor κB (NF-κB) activity and tumor necrosis factor alpha (TNF-α) signaling and associated with decreased gene expression of NF-κB inhibitors. We also found a weak response to type I and type II interferons, hyperinflammation, and response to oxidative stress related to increased HIF-1α and Vascular endothelial growth factor (VEGF) signaling. Conclusions These results provide potential for a better understanding of disease pathophysiology. Funding Agence National de la Recherche (Institut Hospitalo-Universitaire Imagine, grant ANR-10-IAHU-01; Recherche Hospitalo-Universitaire, grant ANR-18-RHUS-0010; Laboratoire d’Excellence ‘‘Milieu Intérieur,” grant ANR-10-LABX-69-01; ANR-flash Covid19 “AIROCovid” and “CoVarImm”), Institut National de la Santé et de la Recherche Médicale (INSERM), and the “URGENCE COVID-19” fundraising campaign of Institut Pasteur. Children with SARS-CoV-2 infection were initially thought to have only mild COVID-19 symptoms. However, several weeks into the first wave of SARS-CoV-2 infections, there was a surge of a postacute pathology called multisystem inflammatory syndrome in children (MIS-C). The authors recruited a cohort of children with suspicion of SARS-CoV-2 infection and uncovered hyperinflammation, hypoxic conditions, exacerbation of TNF-α signaling via NF-κB, and absence of responses to type I and type II IFN secretion in the most severe forms of MIS-C with severe myocarditis. This work led the authors to identify in monocytes and validate in peripheral blood mononuclear cells a molecular signature of 25 genes that allows discrimination of the most severe forms of MIS-C with myocarditis.
Collapse
Affiliation(s)
- Camille de Cevins
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Molecular Biology and Genomics, Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Marine Luka
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Nikaïa Smith
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015 Paris, France
| | - Sonia Meynier
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Aude Magérus
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Francesco Carbone
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Víctor García-Paredes
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Laura Barnabei
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Maxime Batignes
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Alexandre Boullé
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Marie-Claude Stolzenberg
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Brieuc P Pérot
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Bruno Charbit
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, 75015, Paris, France
| | - Tinhinane Fali
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Vithura Pirabakaran
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Boris Sorin
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Quentin Riller
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Ghaith Abdessalem
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
| | - Maxime Beretta
- Humoral Immunology Laboratory, Department of Immunology, Institut Pasteur, 75015, Paris, France
- INSERM U1222, Institut Pasteur, 75015, Paris, France
| | - Ludivine Grzelak
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, 75015, Paris, France
| | - Pedro Goncalves
- INSERM U1223, Institut Pasteur, 75015, Paris, France
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, 75015, Paris, France
| | - James P Di Santo
- INSERM U1223, Institut Pasteur, 75015, Paris, France
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, 75015, Paris, France
| | - Hugo Mouquet
- Humoral Immunology Laboratory, Department of Immunology, Institut Pasteur, 75015, Paris, France
- INSERM U1222, Institut Pasteur, 75015, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, 75015, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Christine Bole-Feysot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 et INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | - Cécile Masson
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Nicolas Cagnard
- Bioinformatics Platform, Structure Fédérative de Recherche Necker, INSERM UMR1163, Université de Paris, Imagine Institute, Paris, France
| | - Aurélien Corneau
- Sorbonne Université, UMS037, PASS, Plateforme de Cytométrie de la Pitié-Salpêtrière CyPS, 75013 Paris, France
| | - Camille Brunaud
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Shen-Ying Zhang
- Université de Paris, Imagine Institute, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Université de Paris, Imagine Institute, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, 75015 Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Brigitte Bader-Meunier
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Julien Haroche
- Department of Immunology and Infectious Disease (CIMI-Paris), Pitié-Salpêtrière University Hospital, Sorbonne Université, AP-HP, 75013 Paris, France
| | - Isabelle Melki
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Department of Pediatrics, Robert-Debré University Hospital, AP-HP, Université de Paris, Paris, France
| | - Mathie Lorrot
- Department of Pediatrics, Armand-Trousseau University Hospital, AP-HP, 75012 Paris, France
| | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, 75015 Paris, France
| | - Florence Moulin
- Pediatric Intensive Care Unit, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, 75015 Paris, France
| | | | | | - Marianne Leruez
- Virology Laboratory, Necker-Enfants Malades University Hospital, AP-HP, Université de Paris, 75015 Paris, France
| | - Slimane Allali
- Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université de Paris, 75015 Paris, France
| | - Christèle Gras-Leguen
- Pediatric Department, Nantes University Hospital, CIC 1413, INSERM, 44000 Nantes, France
| | - Loïc de Pontual
- Department of Pediatrics, Jean Verdier Hospital, Assistance Publique-Hôpitaux de Paris, Paris 13 University, Bondy, France
| | - Alain Fischer
- Department of Paediatric Immuno-Haematology and Rheumatology, Reference Center for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Necker-Enfants Malades, Assistance Publique - Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Université de Paris, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
- Collège de France, Paris, France
| | - Darragh Duffy
- Translational Immunology Lab, Department of Immunology, Institut Pasteur, 75015 Paris, France
- Cytometry and Biomarkers UTechS, CRT, Institut Pasteur, 75015, Paris, France
| | - Fredéric Rieux-Laucat
- Université de Paris, Imagine Institute Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, 75015 Paris, France
| | - Julie Toubiana
- Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades University Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Université de Paris, 75015 Paris, France
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Mickaël M Ménager
- Université de Paris, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| |
Collapse
|