1
|
Lamb ER, Glomski IJ, Harper TA, Solga MD, Criss AK. High-dimensional spectral flow cytometry of activation and phagocytosis by peripheral human polymorphonuclear leukocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626241. [PMID: 39677791 PMCID: PMC11642744 DOI: 10.1101/2024.12.01.626241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Polymorphonuclear lymphocytes (PMNs) are terminally differentiated phagocytes with pivotal roles in infection, inflammation, tissue injury, and resolution. PMNs can display a breadth of responses to diverse endogenous and exogenous stimuli, making understanding of these innate immune responders vital yet challenging to achieve. Here, we report a 22-color spectral flow cytometry panel to profile primary human PMNs on population and single cell levels for surface marker expression of activation, degranulation, phagocytosis, migration, chemotaxis, and interaction with fluorescently labeled cargo. We demonstrate the surface protein response of PMNs to phorbol ester stimulation compared to untreated controls in an adherent PMN model with additional analysis of intra- and inter-subject variability. PMNs challenged with the Gram-negative bacterial pathogen Neisseria gonorrhoeae revealed infectious dose-dependent changes in surface marker expression in bulk, population-level analysis. Imaging flow cytometry complemented spectral cytometry, demonstrating that fluorescence signal from labeled bacteria corresponded with bacterial burden on a per-cell basis. Spectral flow cytometry subsequently identified surface markers which varied with direct PMN-bacterium association as well as those which varied in the presence of bacteria but without phagocytosis. This spectral panel protocol highlights best practices for efficient customization and is compatible with downstream approaches such as spectral cell sorting and single-cell RNA-sequencing for applicability to diverse research questions in the field of PMN biology.
Collapse
Affiliation(s)
- Evan R. Lamb
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ian J. Glomski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Taylor A. Harper
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Michael D. Solga
- Flow Cytometry Core Facility, University of Virginia, Charlottesville, VA, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
2
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
3
|
Ross JB, Myers LM, Noh JJ, Collins MM, Carmody AB, Messer RJ, Dhuey E, Hasenkrug KJ, Weissman IL. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 2024; 628:162-170. [PMID: 38538791 DOI: 10.1038/s41586-024-07238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
Ageing of the immune system is characterized by decreased lymphopoiesis and adaptive immunity, and increased inflammation and myeloid pathologies1,2. Age-related changes in populations of self-renewing haematopoietic stem cells (HSCs) are thought to underlie these phenomena3. During youth, HSCs with balanced output of lymphoid and myeloid cells (bal-HSCs) predominate over HSCs with myeloid-biased output (my-HSCs), thereby promoting the lymphopoiesis required for initiating adaptive immune responses, while limiting the production of myeloid cells, which can be pro-inflammatory4. Ageing is associated with increased proportions of my-HSCs, resulting in decreased lymphopoiesis and increased myelopoiesis3,5,6. Transfer of bal-HSCs results in abundant lymphoid and myeloid cells, a stable phenotype that is retained after secondary transfer; my-HSCs also retain their patterns of production after secondary transfer5. The origin and potential interconversion of these two subsets is still unclear. If they are separate subsets postnatally, it might be possible to reverse the ageing phenotype by eliminating my-HSCs in aged mice. Here we demonstrate that antibody-mediated depletion of my-HSCs in aged mice restores characteristic features of a more youthful immune system, including increasing common lymphocyte progenitors, naive T cells and B cells, while decreasing age-related markers of immune decline. Depletion of my-HSCs in aged mice improves primary and secondary adaptive immune responses to viral infection. These findings may have relevance to the understanding and intervention of diseases exacerbated or caused by dominance of the haematopoietic system by my-HSCs.
Collapse
Affiliation(s)
- Jason B Ross
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Lara M Myers
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Joseph J Noh
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Madison M Collins
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Ronald J Messer
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Erica Dhuey
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
4
|
Jyoti TP, Chandel S, Singh R. Flow cytometry: Aspects and application in plant and biological science. JOURNAL OF BIOPHOTONICS 2024; 17:e202300423. [PMID: 38010848 DOI: 10.1002/jbio.202300423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/28/2023] [Indexed: 11/29/2023]
Abstract
Flow cytometry is a potent method that enables the quick and concurrent investigation of several characteristics of single cells in solution. Photodiodes or photomultiplier tubes are employed to detect the dispersed and fluorescent light signals that are produced by the laser beam as it passes through the cells. Photodetectors transform the light signals produced by the laser into electrical impulses. A computer then analyses these electrical impulses to identify and measure the various cell populations depending on their fluorescence or light scattering characteristics. Based on their fluorescence or light scattering properties, cell populations can be examined and/or isolated. This review covers the basic principle, components, working and specific biological applications of flow cytometry, including studies on plant, cell and molecular biology and methods employed for data processing and interpretation as well as the potential future relevance of this methodology in light of retrospective analysis and recent advancements in flow cytometry.
Collapse
Affiliation(s)
- Thakur Prava Jyoti
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivani Chandel
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Rajveer Singh
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
5
|
Puccio S, Grillo G, Alvisi G, Scirgolea C, Galletti G, Mazza EMC, Consiglio A, De Simone G, Licciulli F, Lugli E. CRUSTY: a versatile web platform for the rapid analysis and visualization of high-dimensional flow cytometry data. Nat Commun 2023; 14:5102. [PMID: 37666818 PMCID: PMC10477295 DOI: 10.1038/s41467-023-40790-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 08/10/2023] [Indexed: 09/06/2023] Open
Abstract
Flow cytometry (FCM) can investigate dozens of parameters from millions of cells and hundreds of specimens in a short time and at a reasonable cost, but the amount of data that is generated is considerable. Computational approaches are useful to identify novel subpopulations and molecular biomarkers, but generally require deep expertize in bioinformatics and the use of different platforms. To overcome these limitations, we introduce CRUSTY, an interactive, user-friendly webtool incorporating the most popular algorithms for FCM data analysis, and capable of visualizing graphical and tabular results and automatically generating publication-quality figures within minutes. CRUSTY also hosts an interactive interface for the exploration of results in real time. Thus, CRUSTY enables a large number of users to mine complex datasets and reduce the time required for data exploration and interpretation. CRUSTY is accessible at https://crusty.humanitas.it/ .
Collapse
Affiliation(s)
- Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
- Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| | - Giorgio Grillo
- Institute for Biomedical Technologies, National Research Council, via Amendola 122/D, 70126, Bari, Italy
| | - Giorgia Alvisi
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Caterina Scirgolea
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
- School of Biological Sciences, Department of Molecular Biology, University of California San Diego, San Diego, CA, USA
| | - Emilia Maria Cristina Mazza
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Arianna Consiglio
- Institute for Biomedical Technologies, National Research Council, via Amendola 122/D, 70126, Bari, Italy
| | - Gabriele De Simone
- Flow Cytometry Core, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Flavio Licciulli
- Institute for Biomedical Technologies, National Research Council, via Amendola 122/D, 70126, Bari, Italy
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
6
|
A new hybrid algorithm for three-stage gene selection based on whale optimization. Sci Rep 2023; 13:3783. [PMID: 36882446 PMCID: PMC9992521 DOI: 10.1038/s41598-023-30862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
In biomedical data mining, the gene dimension is often much larger than the sample size. To solve this problem, we need to use a feature selection algorithm to select feature gene subsets with a strong correlation with phenotype to ensure the accuracy of subsequent analysis. This paper presents a new three-stage hybrid feature gene selection method, that combines a variance filter, extremely randomized tree, and whale optimization algorithm. First, a variance filter is used to reduce the dimension of the feature gene space, and an extremely randomized tree is used to further reduce the feature gene set. Finally, the whale optimization algorithm is used to select the optimal feature gene subset. We evaluate the proposed method with three different classifiers in seven published gene expression profile datasets and compare it with other advanced feature selection algorithms. The results show that the proposed method has significant advantages in a variety of evaluation indicators.
Collapse
|
7
|
Rocha-Hasler M, Müller L, Wagner A, Tu A, Stanek V, Campion NJ, Bartosik T, Zghaebi M, Stoshikj S, Gompelmann D, Zech A, Mei H, Kratochwill K, Spittler A, Idzko M, Schneider S, Eckl-Dorna J. Using mass cytometry for the analysis of samples of the human airways. Front Immunol 2022; 13:1004583. [PMID: 36578479 PMCID: PMC9791368 DOI: 10.3389/fimmu.2022.1004583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
Mass cytometry (MC) is a powerful method for mapping complex cellular systems at single-cell levels, based on the detection of cellular proteins. Numerous studies have been performed using human blood, but there is a lack of protocols describing the processing and labeling of bronchoalveolar lavage fluid (BALF) and nasal polyps (NP) for acquisition by MC. These specimens are essential in the investigation of immune cell characteristics in airway diseases such as asthma and chronic rhinosinusitis with NP (CRSwNP). Here we optimized a workflow for processing, labeling, and acquisition of BALF and NP cells by MC. Among three methods tested for NP digestion, combined enzymatic/mechanical processing yielded maximum cell recovery, viability and labeling patterns compared to the other methods. Treatment with DNAse improved sample acquisition by MC. In a final step, we performed a comparison of blood, BALF and NP cell composition using a 31-marker MC antibody panel, revealing expected differences between the different tissue but also heterogeneity among the BALF and NP samples. We here introduce an optimized workflow for the MC analysis of human NP and BALF, which enables comparative analysis of different samples in larger cohorts. A deeper understanding of immune cell characteristics in these samples may guide future researchers and clinicians to a better disease management.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Lena Müller
- Core Facility Flow Cytometry & Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Aldine Tu
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Victoria Stanek
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Nicholas James Campion
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Tina Bartosik
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Mohammed Zghaebi
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Slagjana Stoshikj
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Daniela Gompelmann
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Andreas Zech
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Henrik Mei
- German Rheumatism Research Center Berlin, Berlin, Germany
| | - Klaus Kratochwill
- Core Facility Proteomics, Medical University of Vienna, Vienna, Austria,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Department of Surgery, Research Lab, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Division of Pulmonology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Sven Schneider
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria,*Correspondence: Sven Schneider,
| | - Julia Eckl-Dorna
- Allergology and Sinusitis Research Lab, Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Nahar KJ, Marsh-Wakefield F, Rawson RV, Gide TN, Ferguson AL, Allen R, Quek C, da Silva IP, Tattersal S, Kiely CJ, Sandanayake N, Carlino MS, McCaughan G, Wilmott JS, Scolyer RA, Long GV, Menzies AM, Palendira U. Distinct pretreatment innate immune landscape and posttreatment T cell responses underlie immunotherapy-induced colitis. JCI Insight 2022; 7:157839. [PMID: 36173679 PMCID: PMC9675442 DOI: 10.1172/jci.insight.157839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Immune-related adverse events represent a major hurdle to the success of immunotherapy. The immunological mechanisms underlying their development and relation to antitumor responses are poorly understood. By examining both systemic and tissue-specific immune changes induced by combination anti-CTLA-4 and anti-PD-1 immunotherapy, we found distinct repertoire changes in patients who developed moderate-severe colitis, irrespective of their antitumor response to therapy. The proportion of circulating monocytes were significantly increased at baseline in patients who subsequently developed colitis compared with patients who did not develop colitis, and biopsies from patients with colitis showed monocytic infiltration of both endoscopically and histopathologically normal and inflamed regions of colon. The magnitude of systemic expansion of T cells following commencement of immunotherapy was also greater in patients who developed colitis. Importantly, we show expansion of specific T cell subsets within inflamed regions of the colon, including tissue-resident memory CD8+ T cells and Th1 CD4+ T cells in patients who developed colitis. Our data also suggest that CD8+ T cell expansion was locally induced, while Th1 cell expansion was systemic. Together, our data show that exaggerated innate and T cell responses to combination immunotherapy synergize to propel colitis in susceptible patients.
Collapse
Affiliation(s)
- Kazi J. Nahar
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Felix Marsh-Wakefield
- Faculty of Medicine and Health,,Charles Perkins Centre, and,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Robert V. Rawson
- Melanoma Institute Australia,,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Tuba N. Gide
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Angela L. Ferguson
- Faculty of Medicine and Health,,Charles Perkins Centre, and,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth Allen
- Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Camelia Quek
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Ines Pires da Silva
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | | | | | | | - Matteo S. Carlino
- Melanoma Institute Australia,,Crown Princess Mary Cancer Centre and Westmead Hospitals, New South Wales, Australia
| | - Geoff McCaughan
- Faculty of Medicine and Health,,Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - James S. Wilmott
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| | - Richard A. Scolyer
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Georgina V. Long
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Royal North Shore Hospital, Sydney, New South Wales Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Royal North Shore Hospital, Sydney, New South Wales Australia.,Mater Hospital, North Sydney, New South Wales, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia,,Faculty of Medicine and Health,,Charles Perkins Centre, and
| |
Collapse
|
9
|
Munoz-Erazo L, Shinko D, Schmidt AJ, Price KM. Implementing High Dimensional Reduction Analysis on Histocytometric Data. Curr Protoc 2022; 2:e586. [PMID: 36342306 DOI: 10.1002/cpz1.586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In a previous protocol article, we demonstrated construction of a histocytometry pipeline that is capable of both segmenting highly aggregated cell populations and retaining the original intensity data range of the input microscopy images. In the protocol presented here, using the output from the aforementioned article, we demonstrate how to phenotype the data using the high dimensional reduction analysis technique optimized t-distributed stochastic neighbor embedding (opt-t-SNE) and compare it to traditional manual gating. Additionally, we present a protocol illustrating the advantage of the inclusion of cell junction/membrane markers for accurately segmenting highly aggregated cell populations in ilastik. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Phenotyping lymph node populations using manual gating Basic Protocol 2: Phenotyping lymph node populations using t-SNE dimensional reduction Support Protocol: ilastik segmentation using a pan marker.
Collapse
Affiliation(s)
| | - Diana Shinko
- Sydney Cytometry, University of Sydney, Sydney, Australia
- Institute of Immunity and Transplantation, University College, London, London, United Kingdom
| | | | - Kylie M Price
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
10
|
Odak I, Sikora R, Riemann L, Bayir LM, Beck M, Drenker M, Xiao Y, Schneider J, Dammann E, Stadler M, Eder M, Ganser A, Förster R, Koenecke C, Schultze-Florey CR. Spectral flow cytometry cluster analysis of therapeutic donor lymphocyte infusions identifies T cell subsets associated with outcome in patients with AML relapse. Front Immunol 2022; 13:999163. [PMID: 36275657 PMCID: PMC9579313 DOI: 10.3389/fimmu.2022.999163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of immune phenotypes linked to durable graft-versus-leukemia (GVL) response following donor lymphocyte infusions (DLI) is of high clinical relevance. In this prospective observational study of 13 AML relapse patients receiving therapeutic DLI, we longitudinally investigated changes in differentiation stages and exhaustion markers of T cell subsets using cluster analysis of 30-color spectral flow cytometry during 24 months follow-up. DLI cell products and patient samples after DLI were analyzed and correlated to the clinical outcome. Analysis of DLI cell products revealed heterogeneity in the proportions of naïve and antigen experienced T cells. Cell products containing lower levels of effector memory (eff/m) cells and higher amounts of naïve CD4+ and CD8+ T cells were associated with long-term remission. Furthermore, investigation of patient blood samples early after DLI showed that patients relapsing during the study period, had higher levels of CD4+ eff/m T cells and expressed a mosaic of surface molecules implying an exhausted functional state. Of note, this observation preceded the clinical diagnosis of relapse by five months. On the other hand, patients with continuous remission retained lower levels of exhausted CD4+ eff/m T cells more than four months post DLI. Moreover, lower frequencies of exhausted CD8+ eff/m T cells as well as higher amounts of CD4+temra CD45RO+ T cells were present in this group. These results imply the formation of functional long-term memory pool of T cells. Finally, unbiased sample analysis showed that DLI cell products with low levels of eff/m cells both in CD4+ and CD8+ T cell subpopulations associate with a lower relapse incidence. Additionally, competing risk analysis of patient samples taken early after DLI revealed that patients with high amounts of exhausted CD4+ eff/m T cells in their blood exhibited significantly higher rates of relapse. In conclusion, differentially activated T cell clusters, both in the DLI product and in patients post infusion, were associated with AML relapse after DLI. Our study suggests that differences in DLI cell product composition might influence GVL. In-depth monitoring of T cell dynamics post DLI might increase safety and efficacy of this immunotherapy, while further studies are needed to assess the functionality of T cells found in the DLI.
Collapse
Affiliation(s)
- Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- *Correspondence: Christian R. Schultze-Florey, ; Ivan Odak,
| | - Ruth Sikora
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Lennart Riemann
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Lâle M. Bayir
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Maleen Beck
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Melanie Drenker
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Yankai Xiao
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Jessica Schneider
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Elke Dammann
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Michael Stadler
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Matthias Eder
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Christian R. Schultze-Florey
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- *Correspondence: Christian R. Schultze-Florey, ; Ivan Odak,
| |
Collapse
|
11
|
Marsh‐Wakefield F, Juillard P, Ashhurst TM, Juillard A, Shinko D, Putri GH, Read MN, McGuire HM, Byrne SN, Hawke S, Grau GE. Peripheral B-cell dysregulation is associated with relapse after long-term quiescence in patients with multiple sclerosis. Immunol Cell Biol 2022; 100:453-467. [PMID: 35416319 PMCID: PMC9322415 DOI: 10.1111/imcb.12552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022]
Abstract
B cells play a major role in multiple sclerosis (MS), with many successful therapeutics capable of removing them from circulation. One such therapy, alemtuzumab, is thought to reset the immune system without the need for ongoing therapy in a proportion of patients. The exact cells contributing to disease pathogenesis and quiescence remain to be identified. We utilized mass cytometry to analyze B cells from the blood of patients with relapse-remitting MS (RRMS) before and after alemtuzumab treatment, and during relapse. A complementary RRMS cohort was analyzed by single-cell RNA sequencing. The R package "Spectre" was used to analyze these data, incorporating FlowSOM clustering, sparse partial least squares-discriminant analysis and permutational multivariate analysis of variance. Immunoglobulin (Ig)A+ and IgG1 + B-cell numbers were altered, including higher IgG1 + B cells during relapse. B-cell linker protein (BLNK), CD40 and CD210 expression by B cells was lower in patients with RRMS compared with non-MS controls, with similar results at the transcriptomic level. Finally, alemtuzumab restored BLNK, CD40 and CD210 expression by IgA+ and IgG1 + B cells, which was altered again during relapse. These data suggest that impairment of IgA+ and IgG1 + B cells may contribute to MS pathogenesis, which can be restored by alemtuzumab.
Collapse
Affiliation(s)
- Felix Marsh‐Wakefield
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Liver Injury and Cancer ProgramCentenary InstituteSydneyNSWAustralia
- Human Cancer and Viral Immunology LaboratoryThe University of SydneySydneyNSWAustralia
| | - Pierre Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Annette Juillard
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Diana Shinko
- Sydney Cytometry Core Research FacilityThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
| | - Givanna H Putri
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Mark N Read
- School of Computer ScienceThe University of SydneySydneyNSWAustralia
| | - Helen M McGuire
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology Group, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| | - Scott N Byrne
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Centre for Immunology and Allergy ResearchThe Westmead Institute for Medical ResearchWestmeadNSWAustralia
| | - Simon Hawke
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
| |
Collapse
|
12
|
Abrecht C, Hallisey M, Dennis J, Nazzaro M, Brainard M, Hathaway E, Schork AN, Hodi FS, Severgnini M, Baginska J. Simplified mass cytometry protocol for in-plate staining, barcoding, and cryopreservation of human PBMC samples in clinical trials. STAR Protoc 2022; 3:101362. [PMID: 35573480 PMCID: PMC9092992 DOI: 10.1016/j.xpro.2022.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
With the increasing use of mass cytometry in clinical research, a simplified and standardized protocol for immunophenotyping human peripheral blood mononuclear cells (PBMCs) in clinical trials is needed. We present a simplified in-plate staining protocol for up to 80 samples, for laboratories of all mass cytometry expertise levels, aimed to generate reproducible datasets for large clinical cohorts. In this protocol, we provide details on the requirements to obtain meaningful results, spanning from sample quality, barcoding, and batch-freezing of stained samples.
Collapse
Affiliation(s)
- Charlotte Abrecht
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Margaret Hallisey
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Jenna Dennis
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Matthew Nazzaro
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Martha Brainard
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Emma Hathaway
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Abigail N. Schork
- Longwood Medical Area CyTOF Core, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - F. Stephen Hodi
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Mariano Severgnini
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Joanna Baginska
- Department of Medical Oncology, Center for Immuno-Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
13
|
Ioannidis LJ, Mitchell AJ, Zheng T, Hansen DS. CyTOF mass cytometry analysis of human memory CD4+ T cells and memory B cells. STAR Protoc 2022; 3:101269. [PMID: 35378884 PMCID: PMC8976126 DOI: 10.1016/j.xpro.2022.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
High-dimensional mass cytometry provides unparalleled insight into the cellular composition of the immune system. Here, we describe a mass-cytometry-based protocol to examine memory CD4+ T cell and memory B cell (MBC) responses in human peripheral blood. This approach allows for the identification of >50 distinct memory CD4+ T cell and MBC populations from a single clinical sample. This highly reproducible protocol has been successfully applied to multiple infectious disease settings to identify correlates of susceptibility or protection from infection. For complete details on the use and execution of this protocol, please refer to Ioannidis et al. (2021). CyTOF mass-cytometry-based protocol to analyze human peripheral blood mononuclear cells Optimized protocol for clinical samples Allows in-depth analysis of human memory CD4+ T cell and memory B cell responses Applicable to multiple disease settings
Collapse
|
14
|
den Braanker H, Bongenaar M, Lubberts E. How to Prepare Spectral Flow Cytometry Datasets for High Dimensional Data Analysis: A Practical Workflow. Front Immunol 2021; 12:768113. [PMID: 34868024 PMCID: PMC8640183 DOI: 10.3389/fimmu.2021.768113] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/12/2021] [Indexed: 01/23/2023] Open
Abstract
Spectral flow cytometry is an upcoming technique that allows for extensive multicolor panels, enabling simultaneous investigation of a large number of cellular parameters in a single experiment. To fully explore the resulting high-dimensional single cell datasets, high-dimensional analysis is needed, as opposed to the common practice of manual gating in conventional flow cytometry. However, preparing spectral flow cytometry data for high-dimensional analysis can be challenging, because of several technical aspects. In this article, we will give insight into the pitfalls of handling spectral flow cytometry datasets. Moreover, we will describe a workflow to properly prepare spectral flow cytometry data for high dimensional analysis and tools for integrating new data at later time points. Using healthy control data as example, we will go through the concepts of quality control, data cleaning, transformation, correcting for batch effects, subsampling, clustering and data integration. This methods article provides an R-based pipeline based on previously published packages, that are readily available to use. Application of our workflow will aid spectral flow cytometry users to obtain valid and reproducible results.
Collapse
Affiliation(s)
- Hannah den Braanker
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Clinical Immunology and Rheumatology, Maasstad Hospital, Rotterdam, Netherlands
| | - Margot Bongenaar
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|