1
|
Jung SB, Choi G, Kim HJ, Moon KS, Lee G, Na KH, Kwon YM, Moon J, Shin MY, Yu JY, Baek YB, Park JG, Park SI. A Noble Extract of Pseudomonas sp. M20A4R8 Efficiently Controlling the Influenza Virus-Induced Cell Death. Microorganisms 2024; 12:677. [PMID: 38674621 PMCID: PMC11051866 DOI: 10.3390/microorganisms12040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Epidemic diseases that arise from infectious RNA viruses, particularly influenza viruses, pose a constant threat to the global economy and public health. Viral evolution has undermined the efficacy of acquired immunity from vaccines and the antiviral effects of FDA-approved drugs. As such, there is an urgent need to develop new antiviral lead agents. Natural compounds, owing to their historical validation of application and safety, have become a promising solution. In this light, a novel marine bacterium, Pseudomonas sp. M20A4R8, has been found to exhibit significant antiviral activity [half maximal inhibitory concentration (IC50) = 1.3 µg/mL, selectivity index (SI) = 919.4] against influenza virus A/Puerto Rico/8/34, surpassing the activity of chloroquine. The antiviral response via M20A4R8 extract was induced during post-entry stages of the influenza virus, indicating suitability for post-application after the establishment of viral infection. Furthermore, post-treatment with M20A4R8 extract protected the host from virus-induced apoptosis, suggesting its potential use in acute respiratory disease complexes resulting from immune effectors' overstimulation and autophagy-mediated self-apoptosis. The extract demonstrated an outstanding therapeutic index against influenza virus A/Wisconsin/15/2009 (IC50 = 8.1 µg/mL, SI = 146.2) and B/Florida/78/2015 Victoria lineage (IC50 = 3.5 µg/mL, SI = 343.8), indicating a broad anti-influenza virus activity with guaranteed safety and effectiveness. This study provides a new perspective on mechanisms for preventing a broad spectrum of viral infections through antiviral agents from novel and natural origins. Future studies on a single or combined compound from the extract hold promise, encouraging its use in preclinical challenge tests with various influenza virus strains.
Collapse
Affiliation(s)
- Su-Bin Jung
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-B.J.); (K.-S.M.); (G.L.); (K.-H.N.)
| | - Grace Choi
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (G.C.); (Y.M.K.)
| | - Hyo-Jin Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (H.-J.K.); (Y.-B.B.)
| | - Kyeong-Seo Moon
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-B.J.); (K.-S.M.); (G.L.); (K.-H.N.)
| | - Gun Lee
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-B.J.); (K.-S.M.); (G.L.); (K.-H.N.)
| | - Kyeong-Hak Na
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-B.J.); (K.-S.M.); (G.L.); (K.-H.N.)
| | - Yong Min Kwon
- Department of Biological Application and Technology, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea; (G.C.); (Y.M.K.)
| | - Jimin Moon
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Mi Yeong Shin
- Department of Health Research, Jeollanam-do Institute of Health and Environment, Muan 58568, Republic of Korea; (M.Y.S.); (J.-Y.Y.)
| | - Jae-Yeong Yu
- Department of Health Research, Jeollanam-do Institute of Health and Environment, Muan 58568, Republic of Korea; (M.Y.S.); (J.-Y.Y.)
| | - Yeong-Bin Baek
- Department of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; (H.-J.K.); (Y.-B.B.)
| | - Jun-Gyu Park
- Department of Veterinary Zoonotic Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sang-Ik Park
- Department of Veterinary Pathology, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (S.-B.J.); (K.-S.M.); (G.L.); (K.-H.N.)
| |
Collapse
|
2
|
Mahieu L, Van Moll L, De Vooght L, Delputte P, Cos P. In vitro modelling of bacterial pneumonia: a comparative analysis of widely applied complex cell culture models. FEMS Microbiol Rev 2024; 48:fuae007. [PMID: 38409952 PMCID: PMC10913945 DOI: 10.1093/femsre/fuae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
Bacterial pneumonia greatly contributes to the disease burden and mortality of lower respiratory tract infections among all age groups and risk profiles. Therefore, laboratory modelling of bacterial pneumonia remains important for elucidating the complex host-pathogen interactions and to determine drug efficacy and toxicity. In vitro cell culture enables for the creation of high-throughput, specific disease models in a tightly controlled environment. Advanced human cell culture models specifically, can bridge the research gap between the classical two-dimensional cell models and animal models. This review provides an overview of the current status of the development of complex cellular in vitro models to study bacterial pneumonia infections, with a focus on air-liquid interface models, spheroid, organoid, and lung-on-a-chip models. For the wide scale, comparative literature search, we selected six clinically highly relevant bacteria (Pseudomonas aeruginosa, Mycoplasma pneumoniae, Haemophilus influenzae, Mycobacterium tuberculosis, Streptococcus pneumoniae, and Staphylococcus aureus). We reviewed the cell lines that are commonly used, as well as trends and discrepancies in the methodology, ranging from cell infection parameters to assay read-outs. We also highlighted the importance of model validation and data transparency in guiding the research field towards more complex infection models.
Collapse
Affiliation(s)
- Laure Mahieu
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Schofield CJ, Tirouvanziam R, Garratt LW. OMIP-100: A flow cytometry panel to investigate human neutrophil subsets. Cytometry A 2024; 105:81-87. [PMID: 38179854 DOI: 10.1002/cyto.a.24820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. For panel design, we ensured that the commonly available fluorophores FITC/AF488, PE, and APC were assigned to the intracellular subset marker Olfactomedin 4, the maturity and activation marker CD10, and whole blood subset marker CD177, respectively. These markers can be easily replaced without affecting the core identification of neutrophils, enabling antibodies to new neutrophil antigens of interest or for fluorescent substrates to assess different neutrophil functions to be easily explored. Panel optimization was performed on whole blood and purified neutrophils. We demonstrate applications on clinical samples (whole blood and saliva) and experimental endpoints (purified neutrophils stimulated through an in vitro transmigration assay). We hope that providing a uniform platform to analyze neutrophil plasticity in various sample types will facilitate the future understanding of neutrophil subsets in health and disease.
Collapse
Affiliation(s)
- Craig J Schofield
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Luke W Garratt
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Medical School, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
4
|
Savitskii MV, Moskaleva NE, Brito A, Zigangirova NA, Soloveva AV, Sheremet AB, Bondareva NE, Lubenec NL, Kuznetsov RM, Samoylov VM, Tagliaro F, Appolonova SA. Pharmacokinetics, quorum-sensing signal molecules and tryptophan-related metabolomics of the novel anti-virulence drug Fluorothiazinon in a Pseudomonas aeruginosa-induced pneumonia murine model. J Pharm Biomed Anal 2023; 236:115739. [PMID: 37778200 DOI: 10.1016/j.jpba.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa (PA) infection is commonly associated with hospital-acquired infections in patients with immune deficiency and/or severe lung diseases. Managing this bacterium is complex due to drug resistance and high adaptability. Fluorothiazinon (FT) is an anti-virulence drug developed to suppress the virulence of bacteria as opposed to bacterial death increasing host's immune response to infection and improving treatment to inhibit drug resistant bacteria. We aimed to evaluate FT pharmacokinetics, quorum sensing signal molecules profiling and tryptophan-related metabolomics in blood, liver, kidneys, and lungs of mice. Study comprised three groups: a group infected with PA that was treated with 400 mg/kg FT ("infected treated group"); a non-infected group, but also treated with the same single drug dose ("non-infected treated group"); and an infected group that received a vehicle ("infected non-treated group"). PA-mediated infection blood pharmacokinetics profiling was indicative of increased drug concentrations as shown by increased Cmax and AUCs. Tissue distribution in liver, kidneys, and lungs, showed that liver presented the most consistently higher concentrations of FT in the infected versus non-infected mice. FT showed that HHQ levels were decreased at 1 h after dosing in lungs while PQS levels were lower across time in lungs of infected treated mice in comparison to infected non-treated mice. Metabolomics profiling performed in lungs and blood of infected treated versus infected non-treated mice revealed drug-associated metabolite alterations, especially in the kynurenic and indole pathways.
Collapse
Affiliation(s)
- Mark V Savitskii
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Natalia E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Nailya A Zigangirova
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Anna V Soloveva
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Anna B Sheremet
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Natalia E Bondareva
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Nadezhda L Lubenec
- National Research Center for Epidemiology and Microbiology Named after N. F. Gamaleya, Russian Health Ministry, Moscow, Russia
| | - Roman M Kuznetsov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Viktor M Samoylov
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Franco Tagliaro
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, 37129 Verona, Italy
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
5
|
Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm (Beijing) 2023; 4:e325. [PMID: 37492784 PMCID: PMC10363828 DOI: 10.1002/mco2.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 07/27/2023] Open
Abstract
Neutrophils are important immune cells act as the body's first line of defense against infection and respond to diverse inflammatory cues. Many studies have demonstrated that neutrophils display plasticity in inflammatory diseases and cancers. Clarifying the role of neutrophil heterogeneity in inflammatory diseases and cancers will contribute to the development of novel treatment strategies. In this review, we have presented a review on the development of the understanding on neutrophil heterogeneity from the traditional perspective and a high-resolution viewpoint. A growing body of evidence has confirmed the double-edged role of neutrophils in inflammatory diseases and tumors. This may be due to a lack of precise understanding of the role of specific neutrophil subsets in the disease. Thus, elucidating specific neutrophil subsets involved in diseases would benefit the development of precision medicine. Thusly, we have summarized the relevance and actions of neutrophil heterogeneity in inflammatory diseases and cancers comprehensively. Meanwhile, we also discussed the potential intervention strategy for neutrophils. This review is intended to deepen our understanding of neutrophil heterogeneity in inflammatory diseases and cancers, while hold promise for precise treatment of neutrophil-related diseases.
Collapse
Affiliation(s)
- Wencheng Zhou
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| | - Yang Sun
- State Key Laboratory of Pharmaceutical BiotechnologyDepartment of Biotechnology and Pharmaceutical SciencesSchool of Life ScienceNanjing UniversityNanjingChina
| |
Collapse
|
6
|
Rustetska N, Szczepaniak M, Goryca K, Bakuła-Zalewska E, Figat M, Kowalik A, Góźdź S, Kowalewska M. The intratumour microbiota and neutrophilic inflammation in squamous cell vulvar carcinoma microenvironment. J Transl Med 2023; 21:285. [PMID: 37118737 PMCID: PMC10141905 DOI: 10.1186/s12967-023-04113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/09/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND A causal link between microbiota composition (dysbiosis) and oncogenesis has been demonstrated for several types of cancer. Neutrophils play a role in both immune protection against bacterial threats and carcinogenesis. This study aimed to characterise intratumoral bacteria in vulvar squamous cell carcinoma (VSCC) and their putative effect on neutrophil recruitment and cancer progression. METHODS Clinical material was obtained from 89 patients with VSCC. Next-generation sequencing (NGS) of 16S rRNA and quantitative polymerase chain reaction (qPCR) were used to detect bacterial species in VSCC. To verify neutrophil activation, CD66b expression in tumour specimens was analysed by immunohistochemistry (IHC). Subsequently, IHC was applied to detect the main neutrophil serine proteases (NSPs), cathepsin G (CTSG), neutrophil elastase (ELANE), and proteinase 3 (PRTN3) in VSCC. RESULTS Fusobacterium nucleatum and Pseudomonas aeruginosa were identified as tumour-promoting bacteria, and their presence was found to be associated with a shorter time to progression in VSCC patients. Furthermore, high abundance of CD66b, the neutrophil activation marker, in VSCC samples, was found to relate to poor survival of patients with VSCC. The selected NSPs were shown to be expressed in vulvar tumours, also within microabscess. The increased numbers of microabscesess were correlated with poor survival in VSCC patients. CONCLUSIONS Our results show that neutrophilic inflammation seem to be permissive for tumour-promoting bacteria growth in VSCC. The findings provide new therapeutic opportunities, such as based on shifting the balance of neutrophil populations to those with antitumorigenic activity and on targeting NSPs produced by activated neutrophils at the inflammation sites.
Collapse
Affiliation(s)
- Natalia Rustetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Magdalena Szczepaniak
- Department of Molecular Diagnostics, Holycross Cancer Centre, 25-734, Kielce, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Elwira Bakuła-Zalewska
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland
| | - Małgorzata Figat
- Department of Gynecologic Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-097, Warsaw, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, 25-734, Kielce, Poland
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, 25-406, Kielce, Poland
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holycross Cancer Centre, 25-734, Kielce, Poland
- Collegium Medicum, Jan Kochanowski University, 25-317, Kielce, Poland
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781, Warsaw, Poland.
| |
Collapse
|
7
|
Laucirica DR, Stick SM, Garratt LW, Kicic A. Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases. Front Med (Lausanne) 2022; 9:1069929. [PMID: 36590945 PMCID: PMC9794625 DOI: 10.3389/fmed.2022.1069929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease. Bacterial pathogens are a major driver of airway neutrophilic inflammation, but traditional management of infections with antibiotic therapy is becoming less effective as rates of antimicrobial resistance rise. Bacteriophages (phages) are now frequently identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway infections. Despite growing recognition of their bactericidal function, less is known about how phages influence activity of neutrophils recruited to sites of bacterial infection in the lungs. In this review, we summarize current in vitro and in vivo findings on the effects of phage therapy on neutrophils and their inflammatory mediators, as well as mechanisms of phage-neutrophil interactions. Understanding these effects provides further validation of their safe use in humans, but also identifies phages as a targeted neutrophil-modulating therapeutic for inflammatory airway conditions.
Collapse
Affiliation(s)
- Daniel R. Laucirica
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
8
|
Dobosh B, Zandi K, Giraldo DM, Goh SL, Musall K, Aldeco M, LeCher J, Giacalone VD, Yang J, Eddins DJ, Bhasin M, Ghosn E, Sukhatme V, Schinazi RF, Tirouvanziam R. Baricitinib attenuates the proinflammatory phase of COVID-19 driven by lung-infiltrating monocytes. Cell Rep 2022; 39:110945. [PMID: 35688145 PMCID: PMC9130711 DOI: 10.1016/j.celrep.2022.110945] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
SARS-CoV-2-infected subjects are generally asymptomatic during initial viral replication but may suffer severe immunopathology after the virus has receded and monocytes have infiltrated the airways. In bronchoalveolar lavage fluid from severe COVID-19 patients, monocytes express mRNA encoding inflammatory mediators and contain SARS-CoV-2 transcripts. We leverage a human small airway model of infection and inflammation, whereby primary blood monocytes transmigrate across SARS-CoV-2-infected lung epithelium to characterize viral burden, gene expression, and inflammatory mediator secretion by epithelial cells and monocytes. In this model, lung-infiltrating monocytes acquire SARS-CoV-2 from the epithelium and upregulate expression and secretion of inflammatory mediators, mirroring in vivo data. Combined use of baricitinib (Janus kinase inhibitor) and remdesivir (nucleoside analog) enhances antiviral signaling and viral clearance by SARS-CoV-2-positive monocytes while decreasing secretion of proneutrophilic mediators associated with acute respiratory distress syndrome. These findings highlight the role of lung-infiltrating monocytes in COVID-19 pathogenesis and their importance as a therapeutic target.
Collapse
Affiliation(s)
- Brian Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Keivan Zandi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Diego Moncada Giraldo
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Shu Ling Goh
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Kathryn Musall
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Milagros Aldeco
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Julia LeCher
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Vincent D Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Junkai Yang
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Devon J Eddins
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Manoj Bhasin
- Department of Pediatrics and Department of Biomedical Bioinformatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eliver Ghosn
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vikas Sukhatme
- Department of Medicine and the Morningside Center for Innovative and Affordable Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raymond F Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA; Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA, USA.
| |
Collapse
|