1
|
Davis K, Yap N, Clark M, Bhatia R, Johnstone L, Taghavi K, O’Brien M, Ching N, Carr J. Obstructive Bilateral Renal Fungal Bezoars in an Extremely Premature Neonate Treated With Antifungals and Urokinase Irrigation: A Case Report and Review of the Literature. Pediatr Infect Dis J 2025; 44:64-68. [PMID: 39163305 PMCID: PMC11627313 DOI: 10.1097/inf.0000000000004505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND An ex-27-week gestation female infant developed bilateral forearm nodules at 4 weeks of life during treatment for methicillin-sensitive Staphylococcus aureus bacteremia. A pure growth of Candida albicans was isolated on culture of both sterile aspiration of the forearm abscess and urine without evidence of methicillin-sensitive Staphylococcus aureus . The patient went on to develop bilateral obstructive renal fungal bezoars at 11 weeks of life. RESULTS Bilateral nephrostomies were required to alleviate obstruction with the addition of local irrigation with amphotericin B deoxycholate. Two weeks later, urokinase via the nephrostomy tubes was added due to an unchanged appearance on ultrasound (US) and ongoing candiduria. A significant reduction in the size of bezoars was seen on US after 3 days. Sterilization of urine culture was achieved 7 weeks into treatment, and resolution of bezoars on US was seen 9 weeks after treatment began. No adverse events occurred from the use of local urokinase. CONCLUSIONS Urokinase irrigation via nephrostomy is an effective and safe adjunctive treatment in refractory obstructive renal candidiasis in neonates.
Collapse
Affiliation(s)
- Kimberly Davis
- From the Department of Infection and Immunity
- General Paediatrics Department
| | - Natalie Yap
- From the Department of Infection and Immunity
- General Paediatrics Department
| | - Megan Clark
- Pharmacy Department
- Faculty of Pharmacy and Pharmaceutical Science, Monash University, Parkville, VIC, Australia
| | - Risha Bhatia
- Monash Newborn
- Department of Paediatrics, Monash University, Monash Children’s Hospital, Clayton, VIC, Australia
| | - Lilian Johnstone
- Department of Nephrology
- Department of Paediatrics, Monash University, Monash Children’s Hospital, Clayton, VIC, Australia
| | - Kiarash Taghavi
- Department of Nephrology
- Department of Paediatrics, Monash University, Monash Children’s Hospital, Clayton, VIC, Australia
| | - Matthew O’Brien
- From the Department of Infection and Immunity
- General Paediatrics Department
| | - Natasha Ching
- From the Department of Infection and Immunity
- General Paediatrics Department
| | - Jeremy Carr
- From the Department of Infection and Immunity
- Department of Paediatrics, Monash University, Monash Children’s Hospital, Clayton, VIC, Australia
| |
Collapse
|
2
|
Sedik S, Wolfgruber S, Hoenigl M, Kriegl L. Diagnosing fungal infections in clinical practice: a narrative review. Expert Rev Anti Infect Ther 2024; 22:935-949. [PMID: 39268795 DOI: 10.1080/14787210.2024.2403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Invasive fungal infections (IFI) present a major medical challenge, with an estimated 6.5 million cases annually, resulting in 3.8 million deaths. Pathogens such as Aspergillus spp. Candida spp. Mucorales spp. Cryptococcus spp. and other fungi species contribute to these infections, posing risks to immunocompromised individuals. Early and accurate diagnosis is crucial for effective treatment and better patient outcomes. AREAS COVERED This narrative review provides an overview of the current methods and challenges associated with diagnosing fungal diseases, including invasive aspergillosis and invasive candidiasis, as well as rare and endemic fungal infections. Various diagnostic techniques, including microscopy, culture, molecular diagnostics, and serological tests, are reviewed, highlighting their respective advantages and limitations and role in clinical guidelines. To illustrate, the need for improved diagnostic strategies to overcome existing challenges, such as the low sensitivity and specificity of current tests and the time-consuming nature of traditional culture-based methods, is addressed. EXPERT OPINION Current advancements in fungal infection diagnostics have significant implications for healthcare outcomes. Improved strategies like molecular testing and antigen detection promise early detection of fungal pathogens, enhancing patient management. Challenges include global access to advanced technologies and the need for standardized, user-friendly point-of-care diagnostics to improve diagnosis of fungal infections globally.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Stella Wolfgruber
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
3
|
Baltogianni M, Giapros V, Dermitzaki N. Recent Challenges in Diagnosis and Treatment of Invasive Candidiasis in Neonates. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1207. [PMID: 39457172 PMCID: PMC11506641 DOI: 10.3390/children11101207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Invasive Candida infections represent a significant cause of morbidity and mortality in the neonatal intensive care unit (NICU), particularly among preterm and low birth weight neonates. The nonspecific clinical presentation of invasive candidiasis, resembling that of bacterial sepsis with multiorgan involvement, makes the diagnosis challenging. Given the atypical clinical presentation and the potential detrimental effects of delayed treatment, empirical treatment is often initiated in cases with high clinical suspicion. This underscores the need to develop alternative laboratory methods other than cultures, which are known to have low sensitivity and a prolonged detection time, to optimize therapeutic strategies. Serum biomarkers, including mannan antigen/anti-mannan antibody and 1,3-β-D-glucan (BDG), both components of the yeast cell wall, a nano-diagnostic method utilizing T2 magnetic resonance, and Candida DNA detection by PCR-based techniques have been investigated as adjuncts to body fluid cultures and have shown promising results in improving diagnostic efficacy and shortening detection time in neonatal populations. This review aims to provide an overview of the diagnostic tools and the current management strategies for invasive candidiasis in neonates. Timely and accurate diagnosis followed by targeted antifungal treatment can significantly improve the survival and outcome of neonates affected by Candida species.
Collapse
Affiliation(s)
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (M.B.); (N.D.)
| | | |
Collapse
|
4
|
Taynton T, Allsup D, Barlow G. How can we optimize antifungal use and stewardship in the treatment of acute leukemia? Expert Rev Hematol 2024; 17:581-593. [PMID: 39037307 DOI: 10.1080/17474086.2024.2383401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The global need for antifungal stewardship is driven by spreading antimicrobial and antifungal resistance. Triazoles are the only oral and relatively well-tolerated class of antifungal medications, and usage is associated with acquired resistance and species replacement with intrinsically resistant organisms. On a per-patient basis, hematology patients are the largest inpatient consumers of antifungal drugs, but are also the most vulnerable to invasive fungal disease. AREAS COVERED In this review we discuss available and forthcoming antifungal drugs, antifungal prophylaxis and empiric antifungal therapy, and how a screening based and diagnostic-driven approach may be used to reduce antifungal consumption. Finally, we discuss components of an antifungal stewardship program, interventions that can be employed, and how impact can be measured. The search methodology consisted of searching PubMed for journal articles using the term antifungal stewardship plus program, intervention, performance measure or outcome before 1 January 2024. EXPERT OPINION Initial focus should be on implementing effective antifungal stewardship programs by developing and implementing local guidelines and using interventions, such as post-prescription review and feedback, which are known to be effective. Technologies such as microbiome analysis and machine learning may allow the development of truly individualized risk-factor-based approaches to antifungal stewardship in the future.
Collapse
Affiliation(s)
- Thomas Taynton
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, UK
- Centre for Biomedical Research, Hull York Medical School, Hull, UK
| | - David Allsup
- Biomedical Institute for Multimorbidity, Hull York Medical School, Hull, UK
- Queen's Centre for Oncology and Haematology, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Gavin Barlow
- Department of Infection, Hull University Teaching Hospitals NHS Trust, Hull, UK
- York Biomedical Research Institute and Hull York Medical School, University of York, York, UK
| |
Collapse
|
5
|
Panagopoulou P, Roilides E. An update on pharmacotherapy for fungal infections in allogeneic stem cell transplant recipients. Expert Opin Pharmacother 2024; 25:1453-1482. [PMID: 39096057 DOI: 10.1080/14656566.2024.2387686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Invasive fungal diseases (IFD) constitute a major cause of morbidity and mortality in hematopoietic stem cell transplantation (HSCT) recipients. AREAS COVERED We describe epidemiology, causes and risk factors of IFD in allogeneic HSCT discussing prophylaxis and treatment in various HSCT phases. We present the most recent studies on this thematic area, including novel data on currently available antifungals, i.e. formulations, dosing, safety, efficacy and therapeutic drug monitoring. Finally, we present the most recent relevant recommendations published. Literature search included PubMed, Scopus, and clinicaltrials.gov between January 2014 and April 2024. EXPERT OPINION The antifungal agents employed for prophylaxis and therapy should be predicated on local epidemiology of IFD. Fluconazole prophylaxis remains a first-line choice before engraftment when the main pathogen is Candida spp. After engraftment, prophylaxis should be with mold-active agents (i.e. triazoles). For candidiasis, echinocandins are suggested as first-line treatment, whereas aspergillosis responds well to mold-active azoles and liposomal amphotericin B (L-AmB). For mucormycosis, treatment of choice includes L-AmB and isavuconazole. Choice between fever-driven and diagnostics-driven strategies remains equivocal. Open research topics remain: 1) optimization of tools to ensure prompt and accurate IFD diagnosis to avoid unnecessary exposure to antifungals, drug interactions and cost; 2) refinement of treatment for resistant/refractory strains.
Collapse
Affiliation(s)
- Paraskevi Panagopoulou
- Pediatric Hematology & Oncology, 4th Department of Pediatrics, Aristotle University School of Medicine and Papageorgiou General Hospital, Thessaloniki, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University School of Medicine and Hippokration General Hospital, Thessaloniki, Greece
| |
Collapse
|
6
|
Keighley C, Kim HY, Kidd S, Chen SCA, Alastruey A, Dao A, Bongomin F, Chiller T, Wahyuningsih R, Forastiero A, Al-Nuseirat A, Beyer P, Gigante V, Beardsley J, Sati H, Morrissey CO, Alffenaar JW. Candida tropicalis-A systematic review to inform the World Health Organization of a fungal priority pathogens list. Med Mycol 2024; 62:myae040. [PMID: 38935905 PMCID: PMC11210624 DOI: 10.1093/mmy/myae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/14/2024] [Accepted: 04/29/2024] [Indexed: 06/29/2024] Open
Abstract
In response to the growing global burden of fungal infections with uncertain impact, the World Health Organization (WHO) established an Expert Group to identify priority fungal pathogens and establish the WHO Fungal Priority Pathogens List for future research. This systematic review aimed to evaluate the features and global impact of invasive candidiasis caused by Candida tropicalis. PubMed and Web of Science were searched for studies reporting on criteria of mortality, morbidity (defined as hospitalization and disability), drug resistance, preventability, yearly incidence, diagnostics, treatability, and distribution/emergence from 2011 to 2021. Thirty studies, encompassing 436 patients from 25 countries were included in the analysis. All-cause mortality due to invasive C. tropicalis infections was 55%-60%. Resistance rates to fluconazole, itraconazole, voriconazole and posaconazole up to 40%-80% were observed but C. tropicalis isolates showed low resistance rates to the echinocandins (0%-1%), amphotericin B (0%), and flucytosine (0%-4%). Leukaemia (odds ratio (OR) = 4.77) and chronic lung disease (OR = 2.62) were identified as risk factors for invasive infections. Incidence rates highlight the geographic variability and provide valuable context for understanding the global burden of C. tropicalis infections. C. tropicalis candidiasis is associated with high mortality rates and high rates of resistance to triazoles. To address this emerging threat, concerted efforts are needed to develop novel antifungal agents and therapeutic approaches tailored to C. tropicalis infections. Global surveillance studies could better inform the annual incidence rates, distribution and trends and allow informed evaluation of the global impact of C. tropicalis infections.
Collapse
Affiliation(s)
- Caitlin Keighley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
- Southern IML Pathology, 3 Bridge St, Coniston, NSW, Australia
| | - Hannah Yejin Kim
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology & Infectious Diseases, SA Pathology, Adelaide, SA, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Sharon C-A Chen
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia
| | - Ana Alastruey
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Felix Bongomin
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GE, USA
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Agustina Forastiero
- Servicio de Micologia, Laboratorio de Microbiologia, Hospital Britanico, Buenos Aires, Argentina
| | - Adi Al-Nuseirat
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt
| | - Peter Beyer
- AMR Division, World Health Organization, Geneva
| | | | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| | - Hatim Sati
- AMR Division, World Health Organization, Geneva
| | - C Orla Morrissey
- The Alfred Hospital, Department of Infectious Diseases, Melbourne, Victoria, Australia
- Monash University, Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Melbourne, Victoria, Australia
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital, Westmead, NSW, Australia
| |
Collapse
|
7
|
Keighley C, Gall M, Halliday CL, Chaw K, Newton P, Sintchenko V, Chen SCA. Breakthrough Candida albicans bloodstream infection associated with in vivo development of pan-azole resistance related to ERG3 gene deletion. Pathology 2024; 56:578-579. [PMID: 38065820 DOI: 10.1016/j.pathol.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/07/2023] [Accepted: 09/17/2023] [Indexed: 05/13/2024]
Affiliation(s)
- Caitlin Keighley
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia; Medical School, The University of Wollongong, Wollongong, NSW, Australia; Southern IML Pathology, Sonic Healthcare, Wollongong, NSW, Australia.
| | - Mailie Gall
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| | - Khin Chaw
- Medical School, The University of Wollongong, Wollongong, NSW, Australia; Microbiology, NSW Health Pathology, Wollongong Hospital, Wollongong, NSW, Australia; Australian Red Cross Lifeblood, Brisbane, Qld, Australia
| | - Peter Newton
- Medical School, The University of Wollongong, Wollongong, NSW, Australia; Microbiology, NSW Health Pathology, Wollongong Hospital, Wollongong, NSW, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Westmead, NSW, Australia; Sydney ID, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Kosuta I, Premkumar M, Reddy KR. Review article: Evaluation and care of the critically ill patient with cirrhosis. Aliment Pharmacol Ther 2024; 59:1489-1509. [PMID: 38693712 DOI: 10.1111/apt.18016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The increase in prevalence of liver disease globally will lead to a substantial incremental burden on intensive care requirements. While liver transplantation offers a potential life-saving intervention, not all patients are eligible due to limitations such as organ availability, resource constraints, ongoing sepsis or multiple organ failures. Consequently, the focus of critical care of patients with advanced and decompensated cirrhosis turns to liver-centric intensive care protocols, to mitigate the high mortality in such patients. AIM Provide an updated and comprehensive understanding of cirrhosis management in critical care, and which includes emergency care, secondary organ failure management (mechanical ventilation, renal replacement therapy, haemodynamic support and intensive care nutrition), use of innovative liver support systems, infection control, liver transplantation and palliative and end-of life care. METHODS We conducted a structured bibliographic search on PubMed, sourcing articles published up to 31 March 2024, to cover topics addressed. We considered data from observational studies, recommendations of society guidelines, systematic reviews, and meta-analyses, randomised controlled trials, and incorporated our clinical expertise in liver critical care. RESULTS Critical care management of the patient with cirrhosis has evolved over time while mortality remains high despite aggressive management with liver transplantation serving as a crucial but not universally available resource. CONCLUSIONS Implementation of organ support therapies, intensive care protocols, nutrition, palliative care and end-of-life discussions and decisions are an integral part of critical care of the patient with cirrhosis. A multi-disciplinary approach towards critical care management is likely to yield better outcomes.
Collapse
Affiliation(s)
- Iva Kosuta
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Madhumita Premkumar
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Kessel B, Baker DE. Formulary Drug Review: Rezafungin. Hosp Pharm 2024; 59:245-253. [PMID: 38764996 PMCID: PMC11097930 DOI: 10.1177/00185787231206523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
|
10
|
Sehrawat SS, Premkumar M. Critical care management of acute liver failure. Indian J Gastroenterol 2024; 43:361-376. [PMID: 38578565 DOI: 10.1007/s12664-024-01556-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
The management of acute liver failure (ALF) in modern hepatology intensive care units (ICU) has improved patient outcomes. Critical care management of hepatic encephalopathy, cerebral edema, fluid and electrolytes; prevention of infections and organ support are central to improved outcomes of ALF. In particular, the pathogenesis of encephalopathy is multifactorial, with ammonia, elevated intra-cranial pressure and systemic inflammation playing a central role. Although ALF remains associated with high mortality, the availability of supportive care, including organ failure support such as plasma exchange, timely mechanical ventilation or continuous renal replacement therapy, either conservatively manages patients with ALF or offers bridging therapy until liver transplantation. Thus, appropriate critical care management has improved the likelihood of patient recovery in ALF. ICU care interventions such as monitoring of cerebral edema, fluid status assessment and interventions for sepsis prevention, nutritional support and management of electrolytes can salvage a substantial proportion of patients. In this review, we discuss the key aspects of critical care management of ALF.
Collapse
Affiliation(s)
- Surender Singh Sehrawat
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India
| | - Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160 012, India.
| |
Collapse
|
11
|
Azim A, Ahmed A. Diagnosis and management of invasive fungal diseases in non-neutropenic ICU patients, with focus on candidiasis and aspergillosis: a comprehensive review. Front Cell Infect Microbiol 2024; 14:1256158. [PMID: 38505289 PMCID: PMC10948617 DOI: 10.3389/fcimb.2024.1256158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Invasive fungal diseases pose a significant threat to non-neutropenic ICU patients, with Candida and Aspergillus infections being the most common. However, diagnosing these infections in the ICU population remains challenging due to overlapping clinical features, poor sensitivity of blood cultures, and invasive sampling requirements. The classical host criteria for defining invasive fungal disease do not fully apply to ICU patients, leading to missed or delayed diagnoses. Recent advancements have improved our understanding of invasive fungal diseases, leading to revised definitions and diagnostic criteria. However, the diagnostic difficulties in ICU patients remain unresolved, highlighting the need for further research and evidence generation. Invasive candidiasis is the most prevalent form of invasive fungal disease in non-neutropenic ICU patients, presenting as candidemia and deep-seated candidiasis. Diagnosis relies on positive blood cultures or histopathology, while non-culture-based techniques such as beta-D-glucan assay and PCR-based tests show promise. Invasive aspergillosis predominantly manifests as invasive pulmonary aspergillosis in ICU patients, often associated with comorbidities and respiratory deterioration in viral pneumonia. Diagnosis remains challenging due to poor sensitivity of blood cultures and difficulties in performing lung biopsies. Various diagnostic criteria have been proposed, including mycological evidence, clinical/radiological factors and expanded list of host factors. Non-culture-based techniques such as galactomannan assay and PCR-based tests can aid in diagnosis. Antifungal management involves tailored therapy based on guidelines and individual patient factors. The complexity of diagnosing and managing invasive fungal diseases in ICU patients underscore the importance of ongoing research and the need for updated diagnostic criteria and treatment approaches. Invasive fungal disease, Invasive fungal infection, Invasive candidiasis, Invasive aspergillosis, Antifungal drugs.
Collapse
Affiliation(s)
- Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI), Lucknow, India
| | - Armin Ahmed
- Department of Critical Care Medicine, King George’s Medical University, Lucknow, India
| |
Collapse
|
12
|
Boutin CA, Luong ML. Update on therapeutic approaches for invasive fungal infections in adults. Ther Adv Infect Dis 2024; 11:20499361231224980. [PMID: 38249542 PMCID: PMC10799587 DOI: 10.1177/20499361231224980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Invasive fungal infections are increasingly encountered with the expansion of iatrogenic immunosuppression, including not only solid organ and hematopoietic stem cell transplant recipients but also patients with malignancies or autoimmune diseases receiving immunomodulatory therapies, such as Bruton Tyrosine Kinase (BTK) inhibitor. Their attributable mortality remains elevated, part of which is a contribution from globally emerging resistance in both molds and yeasts. Because antifungal susceptibility test results are often unavailable or delayed, empiric and tailored antifungal approaches including choice of agent(s) and use of combination therapy are heterogeneous and often based on clinician experience with knowledge of host's net state of immunosuppression, prior antifungal exposure, antifungal side effects and interaction profile, clinical severity of disease including site(s) of infection and local resistance data. In this review, we aim to summarize previous recommendations and most recent literature on treatment of invasive mold and yeast infections in adults to guide optimal evidence-based therapeutic approaches. We review the recent data that support use of available antifungal agents, including the different triazoles that have now been studied in comparison to previously preferred agents. We discuss management of complex infections with specific emerging fungi such as Scedosporium spp., Fusarium spp., Trichosporon asahii, and Candida auris. We briefly explore newer antifungal agents or formulations that are now being investigated to overcome therapeutic pitfalls, including but not limited to olorofim, rezafungin, fosmanogepix, and encochleated Amphotericin B. We discuss the role of surgical resection or debridement, duration of treatment, follow-up modalities, and need for secondary prophylaxis, all of which remain challenging, especially in patients chronically immunocompromised or awaiting more immunosuppressive therapies.
Collapse
Affiliation(s)
- Catherine-Audrey Boutin
- Division of Infectious Diseases, Department of Medicine, Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC, Canada
| | - Me-Linh Luong
- Department of Medicine, Division of Infectious Diseases, Université de Montréal, Centre Hospitalier de l’Université de Montréal (CHUM), F Building, 6th Floor, Room F06.1102F, 1051 Sanguinet, Montreal, QC, H2X 0C1, Canada
| |
Collapse
|
13
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
14
|
Wattier RL, Bucayu RFT, Boge CLK, Ross RK, Yildirim I, Zaoutis TE, Palazzi DL, Vora SB, Castagnola E, Avilés-Robles M, Danziger-Isakov L, Tribble AC, Sharma TS, Arrieta AC, Maron G, Berman DM, Yin DE, Sung L, Green M, Roilides E, Belani K, Romero J, Soler-Palacin P, López-Medina E, Nolt D, Bin Hussain IZ, Muller WJ, Hauger SB, Halasa N, Dulek D, Pong A, Gonzalez BE, Abzug MJ, Carlesse F, Huppler AR, Rajan S, Aftandilian C, Ardura MI, Chakrabarti A, Hanisch B, Salvatore CM, Klingspor L, Knackstedt ED, Lutsar I, Santolaya ME, Shuster S, Johnson SK, Steinbach WJ, Fisher BT. Adjunctive Diagnostic Studies Completed Following Detection of Candidemia in Children: Secondary Analysis of Observed Practice From a Multicenter Cohort Study Conducted by the Pediatric Fungal Network. J Pediatric Infect Dis Soc 2023; 12:487-495. [PMID: 37589394 PMCID: PMC10533205 DOI: 10.1093/jpids/piad057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Adjunctive diagnostic studies (aDS) are recommended to identify occult dissemination in patients with candidemia. Patterns of evaluation with aDS across pediatric settings are unknown. METHODS Candidemia episodes were included in a secondary analysis of a multicenter comparative effectiveness study that prospectively enrolled participants age 120 days to 17 years with invasive candidiasis (predominantly candidemia) from 2014 to 2017. Ophthalmologic examination (OE), abdominal imaging (AbdImg), echocardiogram, neuroimaging, and lumbar puncture (LP) were performed per clinician discretion. Adjunctive diagnostic studies performance and positive results were determined per episode, within 30 days from candidemia onset. Associations of aDS performance with episode characteristics were evaluated via mixed-effects logistic regression. RESULTS In 662 pediatric candidemia episodes, 490 (74%) underwent AbdImg, 450 (68%) OE, 426 (64%) echocardiogram, 160 (24%) neuroimaging, and 76 (11%) LP; performance of each aDS per episode varied across sites up to 16-fold. Longer durations of candidemia were associated with undergoing OE, AbdImg, and echocardiogram. Immunocompromised status (58% of episodes) was associated with undergoing AbdImg (adjusted odds ratio [aOR] 2.38; 95% confidence intervals [95% CI] 1.51-3.74). Intensive care at candidemia onset (30% of episodes) was associated with undergoing echocardiogram (aOR 2.42; 95% CI 1.51-3.88). Among evaluated episodes, positive OE was reported in 15 (3%), AbdImg in 30 (6%), echocardiogram in 14 (3%), neuroimaging in 9 (6%), and LP in 3 (4%). CONCLUSIONS Our findings show heterogeneity in practice, with some clinicians performing aDS selectively, potentially influenced by clinical factors. The low frequency of positive results suggests that targeted application of aDS is warranted.
Collapse
Affiliation(s)
- Rachel L Wattier
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Robert F T Bucayu
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Craig L K Boge
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rachael K Ross
- Department of Epidemiology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
| | - Inci Yildirim
- Department of Pediatrics, Yale University School of Medicine, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Yale Center for Infection and Immunity, New Haven, Connecticut, USA
- Department of Epidemiology, Yale School of Public Health, New Haven, Connecticut, USA
| | - Theoklis E Zaoutis
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Debra L Palazzi
- Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, Texas, USA
| | - Surabhi B Vora
- Department of Pediatrics, University of Washington, Division of Infectious Diseases, Seattle Children’s Hospital, Seattle, Washington, USA
| | - Elio Castagnola
- Department of Pediatrics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Martha Avilés-Robles
- Department of Infectious Diseases, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Lara Danziger-Isakov
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Alison C Tribble
- Division of Infectious Diseases, Department of Pediatrics, University of Michigan and C.S. Mott Children’s Hospital, Ann Arbor, Michigan, USA
| | - Tanvi S Sharma
- Division of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Antonio C Arrieta
- Department of Infectious Diseases, Children’s Hospital of Orange County, Orange, California, USA
- Department of Pediatrics, University of California Irvine, Irvine, California, USA
| | - Gabriela Maron
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - David M Berman
- Division of Pediatric Infectious Diseases, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Dwight E Yin
- Department of Pediatrics, Children’s Mercy and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Canada
| | - Michael Green
- Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, Aristotle University and Hippokration Hospital, Thessaloniki, Greece
| | - Kiran Belani
- Pediatric Infectious Diseases, Children’s Minnesota, Minneapolis, Minnesota, USA
| | - José Romero
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Barcelona, Catalonia, Spain
| | - Eduardo López-Medina
- Centro de Estudios en Infectología Pediátrica, Clínica Imbanaco Grupo Quirónsalud and Universidad del Valle, Cali, Colombia
| | - Dawn Nolt
- Department of Pediatrics, Oregon Health and Science University and Doernbecher Children’s Hospital, Portland, Oregon, USA
| | - Ibrahim Zaid Bin Hussain
- Pediatric Infectious Diseases, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - William J Muller
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago and Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sarmistha B Hauger
- Department of Pediatrics, University of Texas at Austin and Dell Children’s Medical Center, Austin, Texas, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Daniel Dulek
- Department of Pediatrics, Vanderbilt University Medical Center and Monroe Carell Jr. Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Alice Pong
- Department of Pediatrics, University of California San Diego and Rady Children’s Hospital San Diego, San Diego, California, USA
| | - Blanca E Gonzalez
- Center for Pediatric Infectious Diseases, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mark J Abzug
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Fabianne Carlesse
- Instituto de Oncologia Pediatrica–IOP/GRAACC-UNIFESP, São Paulo, Brazil
| | - Anna R Huppler
- Department of Pediatrics, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, Wisconsin, USA
| | - Sujatha Rajan
- Division of Pediatric Infectious Diseases, Cohen Children’s Medical Center, New Hyde Park, New York, USA
| | - Catherine Aftandilian
- Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Monica I Ardura
- Division of Infectious Diseases and Host Defense Program, Department of Pediatrics, Nationwide Children’s Hospital and The Ohio State University, Columbus, Ohio, USA
| | | | - Benjamin Hanisch
- Pediatric Infectious Diseases, Children’s National Health System, Washington, District of Columbia, USA
| | - Christine M Salvatore
- Division of Pediatric Infectious Diseases, Weill Cornell Medicine and Komansky Children’s Hospital, New York, New York, USA
| | - Lena Klingspor
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Irja Lutsar
- Department of Microbiology, University of Tartu, Tartu, Estonia
| | - Maria E Santolaya
- Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sydney Shuster
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah K Johnson
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - William J Steinbach
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brian T Fisher
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Bilal H, Zhang D, Shafiq M, Khan MN, chen C, Khan S, Wang Q, Cai L, Islam R, Hu H, Zeng Y. Six-Year Retrospective Analysis of Epidemiology, Risk Factors, and Antifungal Susceptibilities of Candidiasis from a Tertiary Care Hospital in South China. Microbiol Spectr 2023; 11:e0070823. [PMID: 37310269 PMCID: PMC10434190 DOI: 10.1128/spectrum.00708-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023] Open
Abstract
Candidiasis is a life-threatening disease that increases mortality in critically ill patients. However, such epidemiological data are still lacking in underdeveloped regions of China. A retrospective analysis (2016 to 2021) was conducted in Meizhou People's Hospital, China to study the burden of candidiasis, particularly candidemia, and antifungal susceptibilities of the species among hospitalized patients. Of the 7,864 candidiasis cases, 461 (5.86%) were candidemia cases. Candida albicans (64.25%) was the most identified species, followed by C. tropicalis (12.61%), C. glabrata (10.79%), and C. parapsilosis (9.79%). In non-C. albicans (NCA) candidemia cases, the number of C. glabrata cases was higher (102/461, 22.37%) than C. tropicalis (64/461, 14.04%). Gastrointestinal pathology, respiratory dysfunctions, septic shock, and malignancies were common underlying comorbidities, respectively. A central venous catheter was an independent risk factor for both C. albicans and NCA candidemia. The mortality rate was not statistically significant for either C. albicans or NCA. Amphotericin B and 5-flucytosine were highly effective (98 to 100%), while azoles were least effective (67.74 to 95.66%). Candidemia cases caused by C. tropicalis and C. glabrata had significantly lower azole susceptibility than non-candidemia-causing isolates. This study provides valuable information for prescribers to choose the right empirical therapy, for researchers to explore different resistance mechanisms, and for health care managers to control candidiasis better. IMPORTANCE This study provides important information on the burden of candidiasis, particularly candidemia, and the antifungal susceptibility of Candida species among hospitalized patients in an underdeveloped region of China. First, the finding that azoles were least effective against Candida species causing candidemia is particularly noteworthy, as it suggests the possibility of resistance to this class of antifungal agents. This information can guide the choice of empirical therapy and help in the selection of appropriate antifungal agents for the treatment of candidemia, thereby reducing the risk of resistance development. Second, the study provides important information for researchers to explore different resistance mechanisms in Candida species. Finally, the study has important implications for health care managers in controlling the spread of candidiasis. The high prevalence of candidemia cases in the study highlights the need for appropriate infection control measures to prevent the spread of the disease.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong Province, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong Province, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-I-Azam University, Islamabad, Pakistan
| | - Canhua chen
- Clinical Laboratory, Meizhou People's Hospital, Meizhou, Guangdong Province, China
| | - Sabir Khan
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qian Wang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Medical-Surgical and Experimental Sciences, University of Sassari Neurology Unit, Azienza Ospedaliera Universitaria (AOU) Sassari, Italy
| | - Lin Cai
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Haibin Hu
- First Clinical Medical College, Guangdong Medical University, Zhanjiang, China
| | - Yuebin Zeng
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Wang B, Wang Q, Liang Z, Yin Y, Wang L, Wang Q, Li Y, Ou J, Ren H, Dong Y. Tocilizumab, an IL6-receptor antibody, proved effective as adjuvant therapy for cytokine storm induced by severe infection in patients with hematologic malignancy. Ann Hematol 2023; 102:961-966. [PMID: 36864209 PMCID: PMC9981444 DOI: 10.1007/s00277-023-05146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Patients with hematological malignancies who experience severe infections are at risk of developing dangerous complications due to excessive inflammatory cytokines. To improve the prognosis, it is crucial to identify better ways to manage the systemic inflammatory storm after infection. In this study, we evaluated four patients with hematological malignancies who developed severe bloodstream infections during the agranulocytosis phase. Despite receiving antibiotics, all four patients presented elevated serum IL-6 levels as well as persistent hypotension or organ injury. Adjuvant therapy with tocilizumab, an IL-6-receptor antibody, was administered, and three of the four patients showed significant improvement. Unfortunately, the fourth patient died due to multiple organ failure caused by antibiotic resistance. Our preliminary experience suggests that tocilizumab, as an adjuvant therapy, may help alleviate systemic inflammation and reduce risk of organ injury in patients with elevated IL-6 levels and severe infection. Further randomized controlled trials are needed to confirm the effectiveness of this IL-6 targeting approach.
Collapse
Affiliation(s)
- Bingjie Wang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Qian Wang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Zeyin Liang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Lihong Wang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Qingya Wang
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Jinping Ou
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China.
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
17
|
Ierano C, Percival M, Poole S, Mackie K, Rashidzada Z, Corallo C, Mcmahon JH, Morrissey CO, Duncan A. Echinocandin use in an Australian tertiary hospital: implications for antifungal stewardship. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2023. [DOI: 10.1002/jppr.1859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Velazhahan V, McCann BL, Bignell E, Tate CG. Developing novel antifungals: lessons from G protein-coupled receptors. Trends Pharmacol Sci 2023; 44:162-174. [PMID: 36801017 DOI: 10.1016/j.tips.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 02/18/2023]
Abstract
Up to 1.5 million people die yearly from fungal disease, but the repertoire of antifungal drug classes is minimal and the incidence of drug resistance is rising rapidly. This dilemma was recently declared by the World Health Organization as a global health emergency, but the discovery of new antifungal drug classes remains excruciatingly slow. This process could be accelerated by focusing on novel targets, such as G protein-coupled receptor (GPCR)-like proteins, that have a high likelihood of being druggable and have well-defined biology and roles in disease. We discuss recent successes in understanding the biology of virulence and in structure determination of yeast GPCRs, and highlight new approaches that might pay significant dividends in the urgent search for novel antifungal drugs.
Collapse
Affiliation(s)
- Vaithish Velazhahan
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Bethany L McCann
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK
| | - Elaine Bignell
- MRC Centre for Medical Mycology, Stocker Road, University of Exeter, Exeter EX4 4QD, UK.
| | - Christopher G Tate
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
19
|
Chaari A, Munir A, Sharaf A, Khairy A, Kauts V, Erdem H. Predictive factors and prognostic value of candiduria in critically-ill patients with solid and hematological malignancies. J Mycol Med 2023; 33:101353. [PMID: 36442396 DOI: 10.1016/j.mycmed.2022.101353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the epidemiology of candiduria in critically-ill patients with solid/hematological malignancies and to assess its predictive factors and prognostic value. METHODS All adult patients with confirmed solid/hematological malignancy admitted in the intensive care units (ICUs) for more than 48 h were retrospectively included. Urine cultures were sampled on admission and then whenever signs of sepsis were identified. Two groups were compared: (candiduria (+)) and (candiduria (-)). RESULTS One-hundred-seventy-three patients were included. Solid cancer was the underlying oncological disease for 147 patients (85%) while 26 patients (15%) had hematological malignancies. Twenty-nine patients (16.8%) were diagnosed with candiduria, and 31 urinary samples grew Candida spp. Candida spp represented 55.8% of the total urinary isolates. Fourteen isolates (45.2%) of Candida albicans were identified. Among the 17 non-albicans isolates, Candida tropicalis was the most predominant (41.9%). Six patients (3.5%) had candidemia with no significant difference between candiduria(+) and candiduria(-) groups (respectively, 6.9% and 2.8%; p = 0.264). In multivariate analysis, previous exposure to quinolones (OR = 3.8, CI95% [1.4-8.3]; p = 0.008), mechanical ventilation (OR = 4.1, CI95% [1.1-14.7]; p = 0.034) and renal replacement therapy (OR = 3.5, 95%CI [1.2-9.7]; p = 0.017) were identified as independent factors predicting candiduria. Candiduria was associated with significantly higher ICU-mortality after adjusting for SAPSII score on admission (OR = 2.9 CI95% [1.3-6.8]; p = 0.009). CONCLUSION Candiduria is common in cancer critically-ill patients. We reported an increased rate of non-albicans species, over albicans species. Patients with candiduria had higher ICU mortality, probably related to higher frailty and clinical severity.
Collapse
Affiliation(s)
- Anis Chaari
- Critical Care Department, Bahrain Oncology Centre, King Hamad University Hospital, Building 2435, Road 2835, Block 228 - P.O. Box 24343, Bussaiteen, Bahrain.
| | - Ahmed Munir
- Critical Care Department, Bahrain Oncology Centre, King Hamad University Hospital, Building 2435, Road 2835, Block 228 - P.O. Box 24343, Bussaiteen, Bahrain
| | - Amr Sharaf
- Critical Care Department, Bahrain Oncology Centre, King Hamad University Hospital, Building 2435, Road 2835, Block 228 - P.O. Box 24343, Bussaiteen, Bahrain
| | - Amira Khairy
- Microbiology Department, King Hamad University Hospital, Bahrain
| | - Vipin Kauts
- Critical Care Department, Bahrain Oncology Centre, King Hamad University Hospital, Building 2435, Road 2835, Block 228 - P.O. Box 24343, Bussaiteen, Bahrain
| | - Hakan Erdem
- Infectious Disease Department, Bahrain Oncology Centre, King Hamad University Hospital, Bahrain
| |
Collapse
|
20
|
Koc Ö, Kessler HH, Hoenigl M, Wagener J, Suerbaum S, Schubert S, Dichtl K. Performance of Multiplex PCR and β-1,3-D-Glucan Testing for the Diagnosis of Candidemia. J Fungi (Basel) 2022; 8:jof8090972. [PMID: 36135696 PMCID: PMC9504845 DOI: 10.3390/jof8090972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Bloodstream infections caused by Candida yeasts (candidemia) are associated with high morbidity and mortality. Diagnosis remains challenging, with the current gold standard—isolation from blood culture (BC)—being limited by low sensitivity and long turnaround time. This study evaluated the performance of two nonculture methods: PCR and β-1,3-D-glucan (BDG) testing. The sera of 103 patients with BC-proven candidemia and of 46 controls were analyzed with the Fungiplex Candida Real-Time PCR and the Wako β-Glucan Test. The BDG assay demonstrated higher sensitivity than the multiplex PCR (58% vs. 33%). This was particularly evident in ICU patients (60% vs. 28%) and in C. albicans candidemia (57% vs. 37%). The earlier prior to BC sampling the sera were obtained, the more the PCR sensitivity decreased (46% to 18% in the periods of 0−2 and 3−5 days before BC, respectively), while BDG testing was independent of the sampling date. No positive PCR results were obtained in sera sampled more than five days before BC. Specificities were 89% for BDG and 93% for PCR testing. In conclusion, BDG testing demonstrated several advantages over PCR testing for the diagnosis of candidemia, including higher sensitivity and earlier diagnosis. However, BC remains essential, as BDG does not allow for species differentiation.
Collapse
Affiliation(s)
- Özlem Koc
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany
| | - Harald H. Kessler
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Johannes Wagener
- Microbiology Department, St. James’s Hospital, D08 RX0X Dublin, Ireland
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, The University of Dublin, St. James’s Hospital Campus, D08 RX0X Dublin, Ireland
| | - Sebastian Suerbaum
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany
| | - Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany
- Correspondence: (S.S.); (K.D.)
| | - Karl Dichtl
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria
- Correspondence: (S.S.); (K.D.)
| |
Collapse
|
21
|
Swaminathan N, Anderson K, Nosanchuk JD, Akiyama MJ. Candida glabrata Empyema Thoracis—A Post-COVID-19 Complication. J Fungi (Basel) 2022; 8:jof8090923. [PMID: 36135649 PMCID: PMC9502712 DOI: 10.3390/jof8090923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic is associated with a significant increase in the incidence of invasive mycosis, including pulmonary aspergillosis, mucormycosis, and candidiasis. Fungal empyema thoracis (FET) is an uncommon clinical presentation of invasive fungal disease (IFD) associated with significant mortality. Here, we describe the first report of a patient with post-COVID-19 multifocal necrotizing pneumonia complicated by a polymicrobial empyema that included Candida glabrata. Candida empyemas represent another manifestation of a COVID-19-associated fungal opportunistic infection, and this infrequently encountered entity requires a high degree of clinical suspicion for timely identification and management. Therapy for empyemas and other non-bloodstream Candida infections may differ from candidemia due to several pharmacokinetic parameters impacting bioavailability of the antifungal in the affected tissue (e.g., pleural space) and is an area that needs more investigation.
Collapse
Affiliation(s)
- Neeraja Swaminathan
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, USA
- Correspondence:
| | - Katherine Anderson
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Joshua D. Nosanchuk
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, USA
| | - Matthew J. Akiyama
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
22
|
Invasive Candidiasis: Update and Current Challenges in the Management of This Mycosis in South America. Antibiotics (Basel) 2022; 11:antibiotics11070877. [PMID: 35884131 PMCID: PMC9312041 DOI: 10.3390/antibiotics11070877] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/23/2022] Open
Abstract
Invasive candidiasis encompassing Candida bloodstream infections and deep-seated candidiasis can become a persistent health problem. These infections are caused by Candida species and have high morbidity and mortality rates. Species distribution, access to diagnosis, treatment and mortality are different around the world. The mortality rate is high in South America (30–70%), and Candida albicans is the most prevalent species in this region. However, a global epidemiological shift to non-albicans species has been observed. In this group, C. parapsilosis is the species most frequently detected, followed by C. tropicalis, and at a slower rate, C. glabrata, which has also increased, in addition to the emerging C. auris, resistance to several drugs. This article summarizes relevant aspects of candidemia pathogenesis, such as the mechanisms of fungal invasion, immune response, and the impact of genetic defects that increase host susceptibility to developing the infection. We also discuss relevant aspects of treatment and future challenges in South America.
Collapse
|
23
|
|
24
|
Chang CC, Blyth CC, Chen SCA, Khanina A, Morrissey CO, Roberts JA, Thursky KA, Worth LJ, Slavin MA. Introduction to the updated Australasian consensus guidelines for the management of invasive fungal disease and use of antifungal agents in the haematology/oncology setting, 2021. Intern Med J 2021; 51 Suppl 7:3-17. [PMID: 34937135 DOI: 10.1111/imj.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This article introduces the fourth update of the Australian and New Zealand consensus guidelines for the management of invasive fungal disease and use of antifungal agents in the haematology/oncology setting. These guidelines are comprised of nine articles as presented in this special issue of the Internal Medicine Journal. This introductory chapter outlines the rationale for the current update and the steps taken to ensure implementability in local settings. Given that 7 years have passed since the previous iteration of these guidelines, pertinent contextual changes that impacted guideline content and recommendations are discussed, including the evolution of invasive fungal disease (IFD) definitions. We also outline our approach to guideline development, evidence grading, review and feedback. Highlights of the 2021 update are presented, including expanded scope to provide more detailed coverage of common and emerging fungi such as Aspergillus and Candida species, and emerging fungi, and a greater focus on the principles of antifungal stewardship. We also introduce an entirely new chapter dedicated to helping healthcare workers convey important concepts related to IFD, infection prevention and antifungal therapy, to patients.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Therapeutic and Vaccine Research Programme, Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Christopher C Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Paediatric Infectious Diseases, Perth Children's Hospital, Perth, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine WA, QEII Medical Centre, Perth, Western Australia, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Anna Khanina
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - C Orla Morrissey
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Karin A Thursky
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia.,National Centre for Antimicrobial Stewardship, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Victorian Infectious Diseases Service, The Peter Doherty Institute for Immunity and Infection, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Leon J Worth
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Immunocompromised Host Infection Service, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | | |
Collapse
|
25
|
Chang CC, Hall V, Cooper C, Grigoriadis G, Beardsley J, Sorrell TC, Heath CH. Consensus guidelines for the diagnosis and management of cryptococcosis and rare yeast infections in the haematology/oncology setting, 2021. Intern Med J 2021; 51 Suppl 7:118-142. [PMID: 34937137 DOI: 10.1111/imj.15590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cryptococcosis caused by the Cryptococcus neoformans-Cryptococcus gattii complex is an important opportunistic infection in people with immunodeficiency, including in the haematology/oncology setting. This may manifest clinically as cryptococcal meningitis or pulmonary cryptococcosis, or be detected incidentally by cryptococcal antigenemia, a positive sputum culture or radiological imaging. Non-Candida, non-Cryptococcus spp. rare yeast fungaemia are increasingly common in this population. These consensus guidelines aim to provide clinicians working in the Australian and New Zealand haematology/oncology setting with clear guiding principles and practical recommendations for the management of cryptococcosis, while also highlighting important and emerging rare yeast infections and their recommended management.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Therapeutic and Vaccine Research Programme, Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, KwaZulu Natal, South Africa
| | - Victoria Hall
- Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Transplant Infectious Diseases and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Celia Cooper
- Department of Microbiology and Infectious Diseases, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - George Grigoriadis
- Monash Haematology, Monash Health, Melbourne, Victoria, Australia.,School of Clinical Sciences, Monash University, Melbourne, Victoria, Australia.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Haematology, Alfred Hospital, Prahran, Victoria, Australia
| | - Justin Beardsley
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney, Sydney, New South Wales, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Department of Infectious Diseases, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney, Sydney, New South Wales, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Infectious Diseases and Sexual Health, Western Sydney Local Health District, Parramatta, New South Wales, Australia
| | - Christopher H Heath
- Department of Microbiology, Fiona Stanley Hospital Network, PathWest Laboratory Medicine, Murdoch, Western Australia, Australia.,Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Infectious Diseases, Royal Perth Hospital, Perth, Western Australia, Australia.,Faculty of Health and Medical Sciences, University of Western Australia, Murdoch, Western Australia, Australia
| | | |
Collapse
|
26
|
Khanina A, Tio SY, Ananda‐Rajah MR, Kidd SE, Williams E, Chee L, Urbancic K, Thursky KA. Consensus guidelines for antifungal stewardship, surveillance and infection prevention, 2021. Intern Med J 2021; 51 Suppl 7:18-36. [DOI: 10.1111/imj.15586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Khanina
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne Victoria Australia
| | - Shio Yen Tio
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology The University of Melbourne Melbourne Victoria Australia
| | - Michelle R. Ananda‐Rajah
- Department of General Medicine Alfred Health Melbourne Victoria Australia
- Department of Infectious Diseases Alfred Health Melbourne Victoria Australia
| | - Sarah E. Kidd
- National Mycology Reference Centre Microbiology and Infectious Diseases, SA Pathology Adelaide South Australia Australia
- School of Biological Sciences University of Adelaide Adelaide South Australia Australia
| | - Eloise Williams
- Department of Microbiology Royal Melbourne Hospital Melbourne Victoria Australia
- Department of Microbiology and Immunology The Peter Doherty Institute for Immunity and Infection, The University of Melbourne Melbourne Parkville Victoria Australia
| | - Lynette Chee
- Department of Clinical Haematology Peter MacCallum Cancer Centre and Royal Melbourne Hospital Melbourne Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
| | - Karen Urbancic
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
- Pharmacy Department Austin Health Melbourne Victoria Australia
- National Centre for Antimicrobial Stewardship Melbourne Victoria Australia
| | - Karin A. Thursky
- National Centre for Infections in Cancer Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Medicine The University of Melbourne Melbourne Victoria Australia
- National Centre for Antimicrobial Stewardship Melbourne Victoria Australia
- Department of Infectious Diseases Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Victorian Infectious Diseases Service The Peter Doherty Institute for Immunity and Infection, Royal Melbourne Hospital Melbourne Victoria Australia
| | | |
Collapse
|