1
|
Zhao H, Xu J, Zhong Y, He S, Hao Z, Zhang B, Liu Z, Zhou X. Mammary hydroxylated oestrogen activates the NLRP3 inflammasome in tumor-associated macrophages to promote breast cancer progression and metastasis. Int Immunopharmacol 2024; 142:113034. [PMID: 39226826 DOI: 10.1016/j.intimp.2024.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Breast cancer remains one of the primary causes of cancer-related death. An imbalance of oestrogen homeostasis and an inflammatory tumor microenvironment (TME) are vital risk factors for the progression and metastasis of breast cancer. Here, we showed that oestrogen homeostasis was disrupted both in breast cancer patients and in a transgenic MMTV-PyMT mouse model of breast cancer, and significant levels of hydroxylated oestrogen accumulated in the mammary tissues of these patients and mice. We also observed that tumor-associated macrophages (TAMs) were the main population of immune cells present in the breast TME. TAM-dependent tumor metastasis could be triggered by hydroxylated oestrogen via NLRP3 inflammasome activation and IL-1β production. Mechanistically, TAM-derived inflammatory cytokines induced the expression of matrix metalloproteinases (MMPs) in breast tumor cells, leading to breast tumor invasion and metastasis. Conceptually, our study reveals a previously unknown role of hydroxylated oestrogen in the reprogramming of the TME via NLRP3 inflammasome activation in TAMs, which ultimately facilitates breast cancer cells proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Han Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China; The Second Affiliated Hospital of Nanjing University of Chinese Medicine, 210017 Nanjing, China
| | - Jiahao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ya'nan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Shiqing He
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China
| | - Zhixiang Hao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, 221009 Xuzhou, China
| | - Zhao Liu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Xuzhou Medical University, 221004 Xuzhou, China.
| | - Xueyan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.
| |
Collapse
|
2
|
Luo W, Han J, Peng X, Zhou X, Gong T, Zheng X. The role of Fusobacterium nucleatum in cancer and its implications for clinical applications. Mol Oral Microbiol 2024; 39:417-432. [PMID: 38988217 DOI: 10.1111/omi.12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Fusobacterium nucleatum, a gram-negative anaerobic bacterium abundantly found in the human oral cavity, is widely recognized as a key pathobiont responsible for the initiation and progression of periodontal diseases due to its remarkable aggregative capabilities. Numerous clinical studies have linked F. nucleatum with unfavorable prognostic outcomes in various malignancies. In further research, scholars have partially elucidated the mechanisms underlying F. nucleatum's impact on various types of cancer, thus gaining a certain comprehension of the role played by F. nucleatum in cancer. In this comprehensive review, we present an in-depth synthesis of the interplay between F. nucleatum and different cancers, focusing on aspects such as tumor initiation, metastasis, chemoresistance, and modulation of the tumor immune microenvironment and immunotherapy. The implications for cancer diagnosis and treatment are also summarized. The objective of this review is to enhance our comprehension of the intricate relationship between F. nucleatum and oncogenic pathogenesis, while emphasizing potential therapeutic strategies.
Collapse
Affiliation(s)
- Wanyi Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Juxi Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
3
|
Fu Y, Zhang Y, Zhang Y, Li R, Yang M, Bai T, Zheng X, Huang D, Zhang M, Tu K, Xu Q, Liu X. Nanoreactors with Cascade Catalytic Activity Reprogram the Tumor Microenvironment for Enhanced Immunotherapy by Synchronously Regulating Treg and Macrophage Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49053-49068. [PMID: 39241037 DOI: 10.1021/acsami.4c09830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Immunotherapy has been extensively utilized and studied as a prominent therapeutic strategy for tumors. However, the presence of a hypoxic immunosuppressive tumor microenvironment significantly reduces the efficacy of the treatment, thus impeding its application. In addition, the hypoxic microenvironment can also lead to the enrichment of immunosuppressive cells and reduce the effectiveness of tumor immunotherapy; nanoparticles with biocatalytic activity have the ability to relieve hypoxia in tumor tissues and deliver drugs to target cells and have been widely concerned and applied in the field of tumor therapy. The present study involved the development of a dual nanodelivery system that effectively targets the immune system to modify the tumor microenvironment (TME). The nanodelivery system was developed by incorporating R848 and Imatinib (IMT) into Pt nanozyme loaded hollow polydopamine (P@HP) nanocarriers. Subsequently, their surface was modified with specifically targeted peptides that bind to M2-like macrophages and regulatory T (Treg) cells, thereby facilitating the precise targeting of these cells. When introduced into the tumor model, the nanocarriers were able to selectively target immune cells in tumor tissue, causing M2-type macrophages to change into the M1 phenotype and reducing Treg activation within the tumor microenvironment. In addition, the carriers demonstrated exceptional biocatalytic activity, effectively converting H2O2 into oxygen and water at the tumor site while the drug was active, thereby alleviating the hypoxic inhibitory conditions present in the tumor microenvironment. Additionally, this further enhanced the infiltration of M1-type macrophages and cytotoxic T lymphocytes. Moreover, when used in conjunction with immune checkpoint therapy, the proposed approach demonstrated enhanced antitumor immunotherapeutic effects. The bimodal targeted immunotherapeutic strategy developed in the present study overcomes the drawbacks of traditional immunotherapy approaches while offering novel avenues for the treatment of cancer.
Collapse
Affiliation(s)
- Yuhan Fu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Runqing Li
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mei Yang
- Key Laboratory of Enhanced Recovery after Surgery of Intergrated Chinese and Western Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ting Bai
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, Zhejiang 310053, China
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xin Liu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
4
|
Kadry MO, Abdel-Megeed RM. CRISPR-Cas9 genome and long non-coding RNAs as a novel diagnostic index for prostate cancer therapy via liposomal-coated compounds. PLoS One 2024; 19:e0302264. [PMID: 38723038 PMCID: PMC11081254 DOI: 10.1371/journal.pone.0302264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/31/2024] [Indexed: 05/13/2024] Open
Abstract
CRISPR/Cas9 is a recently discovered genomic editing technique that altered scientist's sight in studying genes function. Cas9 is controlled via guide (g) RNAs, which match the DNA targeted in cleavage to modify the respective gene. The development in prostate cancer (PC) modeling directed not only to novel resources for recognizing the signaling pathways overriding prostate cell carcinoma, but it has also created a vast reservoir for complementary tools to examine therapies counteracting this type of cancer. Various cultured somatic rat models for prostate cancer have been developed that nearly mimic human prostate cancer. Nano-medicine can passively target cancer cells via increasing bioavailability and conjugation via specific legend, contributing to reduced systemic side-effects and increased efficacy. This article highlights liposomal loaded Nano-medicine as a potential treatment for prostate cancer and clarifies the CRISPR/Cas9 variation accompanied with prostate cancer. PC is induced experimentally in western rat model via ethinyl estradiol for 4 weeks and SC. dose of 3, 2'- dimethyl-4-aminobiphenyl estradiol (DAE) (50mg/kg) followed by treatment via targeted liposomal-coated compounds such as liposomal dexamethasone (DXM), liposomal doxorubicin (DOX) and liposomal Turmeric (TUR) (3mg/kg IP) for four weeks in a comparative study to their non-targeted analogue dexamethasone, doxorubicin and Turmeric. 3, 2'- dimethyl-4-aminobiphenylestradiol elicit prostate cancer in western rats within 5 months. Simultaneous supplementations with these liposomal compounds influence on prostate cancer; tumor markers were investigated via prostate-specific antigen (PSA), Nitric oxide (NOX) and CRISPR/Cas9 gene editing. Several long non-coding RNAs were reported to be deregulated in prostate cell carcinoma, including MALAT1. On the other hand, gene expression of apoptotic biomarkers focal adhesion kinase (AKT-1), phosphatidylinistol kinase (PI3K) and glycogen synthase kinase-3 (GSK-3) was also investigated and further confirming these results via histopathological examination. Liposomal loaded dexamethasone; doxorubicin and Turmeric can be considered as promising therapeutic agents for prostate cancer via modulating CRISPR/Cas9 gene editing and long non coding gene MALAT1.
Collapse
Affiliation(s)
- Mai O. Kadry
- Therapeutic Chemistry Department, National Research Center, Al Bhoouth Street, Cairo, Egypt
| | - Rehab M. Abdel-Megeed
- Therapeutic Chemistry Department, National Research Center, Al Bhoouth Street, Cairo, Egypt
| |
Collapse
|
5
|
Yanuck SF. Failed Induction of the T H1 System in T H2 Dominant Patients: The Cancer-Permissive Immune Macroenvironment. Integr Med (Encinitas) 2024; 23:24-35. [PMID: 38911450 PMCID: PMC11193407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Tumor microenvironment infiltration by cells of the T helper cell type 1 (TH1) system, including TH1 cells, M1 macrophages, natural killer cells, and CD8+ T cells, is associated with better cancer prognosis. In contrast, tumor microenvironment infiltration by cells of the TH2 system, including TH2 cells, M2 macrophages, and innate lymphoid cells type 2, as well as immune suppressive myeloid-derived suppressor cells and regulatory T cells, is associated with poorer cancer prognosis. Beyond the tumor itself and a myriad of other modifying factors, such as genetic and epigenetic influences on tumorigenesis, the overall immune state of the patient, termed the macroenvironment, has also been shown to significantly influence cancer outcomes. Alterations in the tricarboxylic acid (TCA) cycle (TCA cycle breaks) involving loss of function of succinate dehydrogenase, isocitrate dehydrogenase, and fumarate hydratase have been shown to be associated with an intracellular metabolic shift away from oxidative phosphorylation and into glycolysis in cells that are transforming into cancer cells. The same loss of function of succinate dehydrogenase and isocitrate dehydrogenase has also been identified as inducing a shift in macrophages toward glycolysis that is associated with M1 macrophage polarization. M1 macrophages make interleukin 12, which stimulates TH1 cells and natural killer cells to produce interferon gamma (IFN-γ), which in turn stimulates M1 macrophage activity, forming an activation loop. IFN-γ also drives activation of CD8+ T cells. Thus, M1 macrophage activation initiates and sustains activation of the TH1 system of cells. In this fashion, TCA cycle breaks at succinate dehydrogenase and isocitrate dehydrogenase that promote cellular transformation into cancer cells are also associated with upregulation of the TH1 system that provides anti-cancer immune surveillance. The TH1 and TH2 systems are known to inhibit each other's activation. It is this author's hypothesis that, in patients whose macroenvironment is sufficiently TH2-dominant, the metabolic shift toward glycolysis induced by TCA cycle breaks that gives rise to mutagenic changes in tissue parenchymal cells is not counterbalanced by adequate activation of M1 macrophages, thus giving rise to cancer cell development. For instance, the atopic TH2-high asthma phenotype, a TH2 dominance-based comorbidity, is associated with a more than doubled incidence of colon, breast, lung, and prostate cancer, compared with non-asthmatics. Failure of TCA cycle breaks to induce M1 polarization of tissue-resident macrophages yields a tissue environment in which the tissue-resident macrophages fail to routinely perform M1-associated functions such as phagocytizing newly developing cancer cells. Failure of M1 phenotypic expression in both tissue-resident macrophages and monocyte-derived macrophages recruited to the tumor microenvironment yields both a loss of direct antitumor M1 macrophage actions and failure of TH1 system activation in general, including failure of CD8+ T cell activation, yielding a cancer-permissive tumor microenvironment and a poorer prognosis in patients with existing cancers. This paper proposes a conceptual framework that connects established elements in the existing research and points to the utility of a patient profiling process, aimed at personalization of treatment through identification and targeting of elements in each patient's tumor microenvironment and macroenvironment that contribute to unfavorable prognosis.
Collapse
Affiliation(s)
- Samuel F. Yanuck
- DC; Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
6
|
Tu YC, Wang YM, Yao LJ. Macrophage-Targeting DNA Nanomaterials: A Future Direction of Biological Therapy. Int J Nanomedicine 2024; 19:3641-3655. [PMID: 38681094 PMCID: PMC11055528 DOI: 10.2147/ijn.s459288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
DNA can be used for precise construction of complex and flexible micro-nanostructures, including DNA origami, frame nucleic acids, and DNA hydrogels. DNA nanomaterials have good biocompatibility and can enter macrophages via scavenger receptor-mediated endocytosis. DNA nanomaterials can be uniquely and flexibly designed to ensure efficient uptake by macrophages, which represents a novel strategy to regulate macrophage function. With the development of nanotechnology, major advances have been made in the design and manufacturing of DNA nanomaterials for clinical therapy. In diseases accompanied by macrophage disturbances including tumor, infectious diseases, arthritis, fibrosis, acute lung injury, and atherosclerosis, DNA nanomaterials received considerable attention as potential treatments. However, we lack sufficient information to guarantee precise targeting of macrophages by DNA nanomaterials, which precludes their therapeutic applications. In this review, we summarize recent studies of macrophage-targeting DNA nanomaterials and discuss the limitations and challenges of this approach with regard to its potential use as a biological therapy.
Collapse
Affiliation(s)
- Yu-Chi Tu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Mei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Jun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
7
|
Zou J, Zhang Y, Pan Y, Mao Z, Chen X. Advancing nanotechnology for neoantigen-based cancer theranostics. Chem Soc Rev 2024; 53:3224-3252. [PMID: 38379286 DOI: 10.1039/d3cs00162h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neoantigens play a pivotal role in the field of tumour therapy, encompassing the stimulation of anti-tumour immune response and the enhancement of tumour targeting capability. Nonetheless, numerous factors directly influence the effectiveness of neoantigens in bolstering anti-tumour immune responses, including neoantigen quantity and specificity, uptake rates by antigen-presenting cells (APCs), residence duration within the tumour microenvironment (TME), and their ability to facilitate the maturation of APCs for immune response activation. Nanotechnology assumes a significant role in several aspects, including facilitating neoantigen release, promoting neoantigen delivery to antigen-presenting cells, augmenting neoantigen uptake by dendritic cells, shielding neoantigens from protease degradation, and optimizing interactions between neoantigens and the immune system. Consequently, the development of nanotechnology synergistically enhances the efficacy of neoantigens in cancer theranostics. In this review, we provide an overview of neoantigen sources, the mechanisms of neoantigen-induced immune responses, and the evolution of precision neoantigen-based nanomedicine. This encompasses various therapeutic modalities, such as neoantigen-based immunotherapy, phototherapy, radiotherapy, chemotherapy, chemodynamic therapy, and other strategies tailored to augment precision in cancer therapeutics. We also discuss the current challenges and prospects in the application of neoantigen-based precision nanomedicine, aiming to expedite its clinical translation.
Collapse
Affiliation(s)
- Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yu Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuanbo Pan
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China.
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumour of Zhejiang Province, Hangzhou, Zhejiang 310009, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
8
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
9
|
Yu Y, Liu S, Yang L, Song P, Liu Z, Liu X, Yan X, Dong Q. Roles of reactive oxygen species in inflammation and cancer. MedComm (Beijing) 2024; 5:e519. [PMID: 38576456 PMCID: PMC10993368 DOI: 10.1002/mco2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024] Open
Abstract
Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.
Collapse
Affiliation(s)
- Yunfei Yu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Shengzhuo Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Luchen Yang
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Pan Song
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Zhenghuan Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xiaoyang Liu
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Xin Yan
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| | - Qiang Dong
- Department of UrologyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Liu Z, Li C, Cao Y, Xu X, Zhou Z, Du J, Yang S, Yang H. Manganese(III) Phthalocyanine Complex Nanoparticle-Loaded Glucose Oxidase to Enhance Tumor Inhibition through Energy Metabolism and Macrophage Polarization. ACS APPLIED BIO MATERIALS 2024; 7:1862-1877. [PMID: 38450575 DOI: 10.1021/acsabm.3c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Elevated levels of reactive oxygen species (ROS) have demonstrated efficacy in eliminating tumor cells by modifying the tumor microenvironment and inducing the polarization of tumor-associated macrophages (TAMs). Nevertheless, the transient nature and limited diffusion distance inherent in ROS present significant challenges in cancer treatment. In response to these limitations, we have developed a nanoparticle (MnClPc-HSA@GOx) that not only inhibits tumor energy metabolism but also facilitates the transition of TAMs from the M2 type (anti-inflammatory type) to the M1 type (proinflammatory type). MnClPc-HSA@GOx comprises a manganese phthalocyanine complex (MnClPc) enveloped in human serum albumin (HSA), with glucose oxidase (GOx) loaded onto MnClPc@HSA nanoparticles. GOx was employed to catalyze the decomposition of glucose to produce H2O2 and gluconic acid. Additionally, in the presence of MnClPc, it catalyzes the conversion of H2O2 into •O2- and 1O2. Results indicate that the nanoparticle effectively impedes the glucose supply to tumor cells and suppresses their energy metabolism. Simultaneously, the ROS-mediated polarization of TAMs induces a shift from M2 to M1 macrophages, resulting in a potent inhibitory effect on tumors. This dual-action strategy holds promising clinical inhibition applications in the treatment of cancer.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Chao Li
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yushi Cao
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xin Xu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Zhiguo Zhou
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jing Du
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shiping Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Hong Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
11
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
12
|
Bandi DR, Chitturi CMK, Aswathanarayan JB, Veeresh PKM, Bovilla VR, Sukocheva OA, Devi PS, Natraj SM, Madhunapantula SV. Pigmented Microbial Extract (PMB) from Exiguobacterium Species MB2 Strain (PMB1) and Bacillus subtilis Strain MB1 (PMB2) Inhibited Breast Cancer Cells Growth In Vivo and In Vitro. Int J Mol Sci 2023; 24:17412. [PMID: 38139241 PMCID: PMC10743659 DOI: 10.3390/ijms242417412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1.
Collapse
Affiliation(s)
- Deepa R. Bandi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Ch M. Kumari Chitturi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Jamuna Bai Aswathanarayan
- Department of Microbiology, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India;
| | - Prashant Kumar M. Veeresh
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Olga A. Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Potireddy Suvarnalatha Devi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Suma M. Natraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
- Special Interest Group (SIG) in Cancer Biology and Cancer Stem Cells (CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| |
Collapse
|
13
|
Jumaniyazova E, Lokhonina A, Dzhalilova D, Kosyreva A, Fatkhudinov T. Immune Cells in the Tumor Microenvironment of Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:5760. [PMID: 38136307 PMCID: PMC10741982 DOI: 10.3390/cancers15245760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Soft tissue sarcomas (STSs) are a rare heterogeneous group of malignant neoplasms characterized by their aggressive course and poor response to treatment. This determines the relevance of research aimed at studying the pathogenesis of STSs. By now, it is known that STSs is characterized by complex relationships between the tumor cells and immune cells of the microenvironment. Dynamic interactions between tumor cells and components of the microenvironment enhance adaptation to changing environmental conditions, which provides the high aggressive potential of STSs and resistance to antitumor therapy. Today, active research is being conducted to find effective antitumor drugs and to evaluate the possibility of using therapy with immune cells of STS. The difficulty in assessing the efficacy of new antitumor options is primarily due to the high heterogeneity of this group of malignant neoplasms. Studying the role of immune cells in the microenvironment in the progression STSs and resistance to antitumor therapies will provide the discovery of new biomarkers of the disease and the prediction of response to immunotherapy. In addition, it will help to initially divide patients into subgroups of good and poor response to immunotherapy, thus avoiding wasting precious time in selecting the appropriate antitumor agent.
Collapse
Affiliation(s)
- Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Dzhuliia Dzhalilova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Anna Kosyreva
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia (T.F.)
- Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
14
|
Zheng J, Jiang J, Pu Y, Xu T, Sun J, Zhang Q, He L, Liang X. Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Front Bioeng Biotechnol 2023; 11:1248421. [PMID: 37654704 PMCID: PMC10466823 DOI: 10.3389/fbioe.2023.1248421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Targeting tumor-associated macrophages (TAMs) has emerged as a promising approach in cancer therapy. This article provides a comprehensive review of recent advancements in the field of nanomedicines targeting TAMs. According to the crucial role of TAMs in tumor progression, strategies to inhibit macrophage recruitment, suppress TAM survival, and transform TAM phenotypes are discussed as potential therapeutic avenues. To enhance the targeting capacity of nanomedicines, various approaches such as the use of ligands, immunoglobulins, and short peptides are explored. The utilization of live programmed macrophages, macrophage cell membrane-coated nanoparticles and macrophage-derived extracellular vesicles as drug delivery platforms is also highlighted, offering improved biocompatibility and prolonged circulation time. However, challenges remain in achieving precise targeting and controlled drug release. The heterogeneity of TAMs and the variability of surface markers pose hurdles in achieving specific recognition. Furthermore, the safety and clinical applicability of these nanomedicines requires further investigation. In conclusion, nanomedicines targeting TAMs hold great promise in cancer therapy, offering enhanced specificity and reduced side effects. Addressing the existing limitations and expanding our understanding of TAM biology will pave the way for the successful translation of these nano-therapies into clinical practice.
Collapse
Affiliation(s)
- Jixuan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jinting Jiang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yicheng Pu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Tingrui Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jiantong Sun
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qiang Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Liang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, West China School of Medicine, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Farr Zuend C, Lamont A, Noel-Romas L, Knodel S, Birse K, Kratzer K, McQueen P, Perner M, Ayele H, Mutch S, Berard AR, Schellenberg JJ, Senturk F, McCorrister S, Westmacott G, Mulhall F, Sandberg B, Yu A, Burnett M, Poliquin V, Burgener AD. Increased genital mucosal cytokines in Canadian women associate with higher antigen-presenting cells, inflammatory metabolites, epithelial barrier disruption, and the depletion of L. crispatus. MICROBIOME 2023; 11:159. [PMID: 37491398 PMCID: PMC10367425 DOI: 10.1186/s40168-023-01594-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/05/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Cervicovaginal inflammation has been linked to negative reproductive health outcomes including the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vaginal microbiome have been linked to genital inflammation, the molecular relationships between the functional components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our understanding of mucosal biology that may be important for reproductive health. RESULTS In this study, we used a multi'-omics approach to profile cervicovaginal samples collected from 43 Canadian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels of cervical antigen-presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neutrophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell-cell adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features associated with pro-inflammatory cytokines and increased APCs. CONCLUSIONS This study identified key molecular and immunological relationships with cervicovaginal inflammation, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive health. Video Abstract.
Collapse
Affiliation(s)
- Christina Farr Zuend
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA.
| | - Alana Lamont
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Laura Noel-Romas
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Samantha Knodel
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Kateryna Kratzer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Peter McQueen
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Michelle Perner
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Hossaena Ayele
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sarah Mutch
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Alicia R Berard
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - John J Schellenberg
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Faruk Senturk
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA
| | - Stuart McCorrister
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Garrett Westmacott
- JC Wilt Infectious Disease Research Centre, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | | | | | - Adelicia Yu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Margaret Burnett
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Vanessa Poliquin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada
| | - Adam D Burgener
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Canada.
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Xu S, Gu Z, Lu H, Guan P, Liu Z. Leveraging Macrophage-Mediated Cancer Immunotherapy via a Cascading Effect Induced by a Molecularly Imprinted Nanocoordinator. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267068 DOI: 10.1021/acsami.3c03950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reprogramming tumor-associated macrophages (TAMs) has emerged as a promising strategy in cancer immunotherapy. Targeted therapeutics integrating multiple functions to fully leverage the antitumor immune functions of macrophages without affecting systemic or tissue-resident macrophages are crucial for TAM reprogramming. Herein, by integrating molecular imprinting and nanotechnology, we rationally designed and engineered an unprecedented nanocoordinator for targeted remolding of TAMs to fully leverage the antitumor efficacy of macrophages by inducing a cascade effect. The nanocoordinator features a magnetic iron oxide nanoinner core and sialic acid-imprinted shell. Intravenously administered into systemic circulation, the nanocoordinator can rapidly accumulate at the tumor site in response to an external magnet. Then, by specifically binding to sialic acid overexpressed on tumor cells, the nanocoordinator anchors at the tumor site with prolonged retention time. Via binding with the nanocoordinator, tumor cells are tagged with a foreign substance, which promotes the intrinsic phagocytosis of macrophages. Subsequently, the nanocoordinator taken up by macrophages effectively promotes the polarization of macrophages toward the M1 phenotype, thus activating the immunotherapeutic efficacy of macrophages. Synergized by the cascade effect, this nanocoordinator effectively harnesses TAMs for macrophage-mediated immunotherapy. This study offers new TAM-targeted therapeutics that allows us to fully leverage the antitumor immune functions of macrophages without affecting the normal tissue.
Collapse
Affiliation(s)
- Shuxin Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zikuan Gu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Haifeng Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peixin Guan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| |
Collapse
|
17
|
Yi B, Cheng Y, Chang R, Zhou W, Tang H, Gao Y, Zhang C. Prognostic significance of tumor-associated macrophages polarization markers in lung cancer: a pooled analysis of 5105 patients. Biosci Rep 2023; 43:BSR20221659. [PMID: 36633963 PMCID: PMC9902841 DOI: 10.1042/bsr20221659] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/01/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The prognostic significance of tumor-associated macrophages (TAMs) in patients with lung cancer (LCa) remains controversial. We therefore conducted the present study to systematically evaluate the role of different TAMs markers and histologic locations on the prognosis of LCa. METHODS Searches of Web of Science, PubMed, and EMBASE databases were performed up to 28 February 2022. The pooled analysis was conducted in random-effect or fixed-effects model with hazard risk (HR) and 95% confidence interval (CI) for survival data including overall survival (OS), and disease-free survival (DFS) from raw or adjusted measures, according to different TAMs markers and histologic locations. RESULTS Including a total of 5105 patients from 30 eligible studies, the results indicated that the total count of CD68+ TAMs was negatively associated with OS and DFS, which was also observed in the relationship of CD68+ or CD204+ TAMs in tumor stroma (TS) with OS and DFS (all P<0.05). Conversely, higher CD68+ TAMs density in tumor nest (TN) or TN/TS ratio of CD68+ TAMs predicted better OS (all P<0.05). Similarly, higher HLA-DR+ TAMs density was correlated with better OS in TN and TS (all P<0.05). Besides, neither nest CD163+ TAM density nor stromal CD163+ TAM density was a prognostic factor in LCa patients (all P>0.05). CONCLUSION Our study indicated that different TAMs markers and histologic locations could bring about different prognostic effects in LCa patients. Great understanding of the infiltration modes of TAMs may contribute to improve outcomes of LCa patients.
Collapse
Affiliation(s)
- Bin Yi
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Ruimin Chang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Huili Tang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Yang Gao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008 Hunan, P. R. China
| |
Collapse
|
18
|
Luetragoon T, Thongsri Y, Daotak K, Potup P, Usuwanthim K. Anti-proliferative and immunomodulatory properties of kaffir lime leaves and bioactive compounds on macrophages co-cultured with squamous cell carcinoma. PLoS One 2023; 18:e0281378. [PMID: 36802384 PMCID: PMC9943011 DOI: 10.1371/journal.pone.0281378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 01/22/2023] [Indexed: 02/23/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide. Late-stage patients have a significant chance of local recurrence and distant metastasis, as well as poor prognosis. Therapeutic goals for patients must be improved and personalized to reduce adverse effects. This study explored the anti-proliferative activity and immunomodulation potential of the constituents of crude kaffir lime leaf extract (lupeol, citronellal and citronellol) under co-culture. Results showed high cytotoxicity to human SCC15 cell line but not to human monocyte-derived macrophages. Treatment with crude extract and the contained compounds also suppressed cell migration and colony formation of SCC15 compared to the untreated control group, while high levels of intracellular ROS production were detected in the treatment group of SCC15. The MuseTM cell analyzer revealed cell cycle arrest at G2/M phase and apoptosis induction. Inhibition of Bcl-2 and activation of Bax, leading to induction of the downstream caspase-dependent death pathway were confirmed by Western blot analysis. Co-culture with activated macrophages, kaffir lime extract and its constituents enhanced the development of pro-inflammatory (M1) macrophages and boosted TNF-α production, resulting in SCC15 apoptosis. Findings revealed novel potential activities of kaffir lime leaf extracts and their constituents in inducing M1 polarization against SCC15, as well as direct anti-proliferative activity.
Collapse
Affiliation(s)
- Thitiya Luetragoon
- Faculty of Allied Health Sciences, Department of Medical Technology, Nakhonratchasima College, Nakhonratchasima, Thailand
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Yordhathai Thongsri
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Krai Daotak
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Pachuen Potup
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
| | - Kanchana Usuwanthim
- Faculty of Allied Health Sciences, Cellular and Molecular Immunology Research Unit, Naresuan University, Phitsanulok, Thailand
- * E-mail:
| |
Collapse
|
19
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
20
|
Hou X, Yang X, Xu Y, Lin J, Zhang F, Duan X, Liu S, Liu J, Shen J, Shuai X, Cao Z. Manganese-doped mesoporous polydopamine nanoagent for T1–T2 magnetic resonance imaging and tumor therapy. NANO RESEARCH 2023; 16:2991-3003. [DOI: 10.1007/s12274-022-4877-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 01/22/2025]
|
21
|
Du JJ, Su Z, Yu H, Qin S, Wang D. From design to clinic: Engineered peptide nanomaterials for cancer immunotherapy. Front Chem 2023; 10:1107600. [PMID: 36733612 PMCID: PMC9887119 DOI: 10.3389/fchem.2022.1107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Immunotherapy has revolutionized the field of cancer therapy. Nanomaterials can further improve the efficacy and safety of immunotherapy because of their tunability and multifunctionality. Owing to their natural biocompatibility, diverse designs, and dynamic self-assembly, peptide-based nanomaterials hold great potential as immunotherapeutic agents for many malignant cancers, with good immune response and safety. Over the past several decades, peptides have been developed as tumor antigens, effective antigen delivery carriers, and self-assembling adjuvants for cancer immunotherapy. In this review, we give a brief introduction to the use of peptide-based nanomaterials for cancer immunotherapy as antigens, carriers, and adjuvants, and to their current clinical applications. Overall, this review can facilitate further understanding of peptide-based nanomaterials for cancer immunotherapy and may pave the way for designing safe and efficient methods for future vaccines or immunotherapies.
Collapse
Affiliation(s)
- Jing-Jing Du
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Zhenhong Su
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Haoyi Yu
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Sanhai Qin
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, College of Medicine, Hubei Polytechnic University, Huangshi, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China,*Correspondence: Dongyuan Wang,
| |
Collapse
|
22
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
23
|
Lee IG, Joo YH, Jeon H, Jeong R, Kim EH, Chung H, Eyun SI, Kim J, Seo YJ, Hong SH. Galectin-4 increases the ability of M2 macrophages to enhance antiviral CD4+ T-cell responses. J Leukoc Biol 2023; 113:71-83. [PMID: 36822160 DOI: 10.1093/jleuko/qiac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/12/2023] Open
Abstract
Galectin-4 (Gal-4) is a β-galactoside-binding protein belonging to the galectin family. Although Gal-4 is known to be involved in several physiologic processes of the gastrointestinal tract, its immunomodulatory roles remain unclear. In this study, we investigated whether Gal-4 influences the function of M1 and M2 macrophages. Gal-4 treatment drove more robust changes in the gene expression of M2 macrophages compared to M1 macrophages. Antiviral immune response-related genes were significantly upregulated in Gal-4-treated M2 macrophages. Gal-4 significantly enhanced the immunostimulatory activity of M2 macrophages upon Toll-like receptor 7 stimulation or infection with lymphocytic choriomeningitis virus (LCMV). Moreover, the antibody production against LCMV infection and the antiviral CD4+ T-cell responses, but not the antiviral CD8+ T-cell responses, were greatly increased by Gal-4-treated M2 macrophages in vivo. The present results indicate that Gal-4 enhances the ability of M2 macrophages to promote antiviral CD4+ T-cell responses. Thus, Gal-4 could be used to boost antiviral immune responses.
Collapse
Affiliation(s)
- In-Gu Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yong-Hyun Joo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hoyeon Jeon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Raehyuk Jeong
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam 13488, Republic of Korea
| | - Hyunwoo Chung
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| |
Collapse
|
24
|
Lim DM, Kang J, Woo SY, Choi HS, Kwon M, Kim J, Park HR, Jung K, Baryawno N, Kim HS, Lee D, Kim YH. Risk stratification of patients with right-sided colorectal cancer based on the tumor-infiltrating M1 macrophage. Am J Cancer Res 2022; 12:5532-5551. [PMID: 36628292 PMCID: PMC9827086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/16/2022] [Indexed: 01/12/2023] Open
Abstract
The homing of M1 and M2 macrophages may play distinct roles in the tumor microenvironment (TME). However, these roles of macrophages in the TME remain unclear. We downloaded RNA sequencing data from The Cancer Genome Atlas (TCGA) database for patients with CRC. Subsequently, Kaplan-Meier survival curves were generated to assess the differential infiltration of M1 and M2 macrophages based on CRC location. Differentially expressed gene (DEG) and functional analyses were performed to screen the roles of DEGs. Critical prognostic genes were identified using least absolute shrinkage and selection operator regression. The risk scores were calculated for each patient. In patients with right-sided CRC, reduced M1 macrophage infiltration was associated with poor prognosis. M1 macrophage infiltration positively correlated with CD8+ T cell infiltration. A risk model was developed and validated for performance using GSE103479 and GSE72970. Nine genes were identified as independent prognostic genes that could be potential biomarkers for effectively predicting survival in patients with right-sided CRC. Kaplan-Meier curves for overall survival and progression-free survival analyses revealed that the high-risk group of patients with right-sided CRC had a poor prognosis. This novel M1 macrophage-related risk model may provide a gene signature for predicting the survival outcomes of patients with right-sided CRC and facilitate further studies examining the relationship between infiltration of M1 macrophages and the prognosis of such patients.
Collapse
Affiliation(s)
- Dong Min Lim
- Interdisciplinary Program of Genomic Data Science, Pusan National UniversityYangsan, Republic of Korea
| | - Junho Kang
- Medical Research Institute, Pusan National UniversityBusan, Republic of Korea
| | - Soo-Yeon Woo
- Department of Convergence Medicine, School of Medicine, Pusan National UniversityYangsan, Republic of Korea
| | - Hee-Sun Choi
- Department of Convergence Medicine, School of Medicine, Pusan National UniversityYangsan, Republic of Korea
| | - Munju Kwon
- Department of Convergence Medicine, School of Medicine, Pusan National UniversityYangsan, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medicine, School of Medicine, Pusan National UniversityYangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National UniversityYangsan, Republic of Korea
| | - Keehoon Jung
- Department of Anatomy and Cell Biology and Department of Biomedical Sciences, Seoul National University College of MedicineSeoul, Republic of Korea
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska InstitutetStockholm 17177, Sweden
| | - Hyung-Sik Kim
- Department of Oral Biochemistry, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea,Dental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National UniversityYangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National UniversityYangsan, Republic of Korea,Department of Biomedical Informatics, School of Medicine, Pusan National UniversityYangsan, Republic of Korea,Dental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsan 50612, Republic of Korea
| |
Collapse
|
25
|
Janku F, Han SW, Doi T, Amatu A, Ajani JA, Kuboki Y, Cortez A, Cellitti SE, Mahling PC, Subramanian K, Schoenfeld HA, Choi SM, Iaconis LA, Lee LH, Pelletier MR, Dranoff G, Askoxylakis V, Siena S. Preclinical Characterization and Phase I Study of an Anti-HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol Res 2022; 10:1441-1461. [PMID: 36129967 DOI: 10.1158/2326-6066.cir-21-0722] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 01/10/2023]
Abstract
Immune-stimulator antibody conjugates (ISAC) combining tumor-targeting monoclonal antibodies with immunostimulatory agents allow targeted delivery of immune activators into tumors. NJH395 is a novel, first-in-class ISAC comprising a Toll-like receptor 7 (TLR7) agonist conjugated to an anti-HER2 antibody via a noncleavable linker payload. Preclinical characterization showed ISAC-mediated activation of myeloid cells in the presence of antigen-expressing cancer cells, with antigen targeting and TLR7 agonism contributing to antitumor activity. Safety, efficacy, immunogenicity, pharmacokinetics, and pharmacodynamics were investigated in a phase I, multicenter, open-label study in patients with HER2+ non-breast advanced malignancies (NCT03696771). Data from 18 patients enrolled in single ascending dose escalation demonstrated delivery of the TLR7-agonist payload in HER2+ tumor cells and induction of type I IFN responses, which correlated with immune modulation in the tumor microenvironment. Cytokine release syndrome was a common, but manageable, drug-related adverse event. Antidrug antibodies and neuroinflammation at high doses represented significant clinical challenges. Data provide proof-of-mechanism and critical insights for novel immunotherapies.
Collapse
Affiliation(s)
- Filip Janku
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sae-Won Han
- Department of Internal Medicine, Seoul National University Hospital and Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | | | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Alex Cortez
- Novartis Institutes for BioMedical Research, San Diego, California
| | - Susan E Cellitti
- Novartis Institutes for BioMedical Research, San Diego, California
| | | | | | | | - Sarah M Choi
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Lori A Iaconis
- Novartis Institutes for BioMedical Research, San Diego, California
| | - Lang Ho Lee
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Marc R Pelletier
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Glenn Dranoff
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
26
|
Wei X, Wang J, Liang M, Song M. Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics 2022; 12:7821-7852. [PMID: 36451865 PMCID: PMC9706587 DOI: 10.7150/thno.78572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022] Open
Abstract
Clinical cancer immunotherapies are usually impeded by tumor immunosuppression driven by tumor associated macrophages (TAMs). Thus, TAMs can be considered as a promising therapeutic target for improved immunotherapy, and TAMs-focused molecular targeting agents have made ideal progress in clinical practice. Even so, most TAMs-targeting agents still cannot cover up their own shortcomings as free drugs. The emergence of multifunctional nanomaterials can expectedly endow these therapeutic cargoes with high solubility, favorable pharmacokinetic distribution, cell-specific delivery, and controlled release. Here, the underlying mechanisms of tumor immunosuppression caused by TAMs are first emphatically elucidated, and then the basic design of TAMs-focused immune-nanomedicines are discussed, mainly including diverse categories of nanomaterials, targeted and stimulus-responsive modifications, and TAM imaging in nanomedicines. A summary of current TAMs-targeting immunotherapeutic mechanisms based on functional nanomedicines for TAMs elimination and/or repolarization is further presented. Lastly, some severe challenges related to functional nanomedicines for TAMs-focused cancer immunotherapy are proposed, and some feasible perspectives on clinical translation of TAMs-associated anticancer immunonanomedicines are provided. It is hoped that, with rapid development of nanomedicine in cancer immunotherapy, TAMs-focused therapeutic strategies may be anticipated to become an emerging immunotherapeutic modality for future clinical cancer treatment.
Collapse
Affiliation(s)
- Xiao Wei
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, P. R. China
| | - Jing Wang
- Section of Molecular Dermatology, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Min Liang
- Department of Thoracic and Cardiac Surgery, Affiliated Hospital of Chengdu University, Chengdu 610081, P. R. China
| | - Mingzhu Song
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, P. R. China
- Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
27
|
A Novel PSMA-Targeted Probe for NIRF-Guided Surgery and Photodynamic Therapy: Synthesis and Preclinical Validation. Int J Mol Sci 2022; 23:ijms232112878. [PMID: 36361667 PMCID: PMC9657290 DOI: 10.3390/ijms232112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
A total of 20% to 50% of prostate cancer (PCa) patients leave the surgery room with positive tumour margins. The intraoperative combination of fluorescence guided surgery (FGS) and photodynamic therapy (PDT) may be very helpful for improving tumour margin delineation and cancer therapy. PSMA is a transmembrane protein overexpressed in 90−100% of PCa cells. The goal of this work is the development of a PSMA-targeted Near InfraRed Fluorescent probe to offer the surgeon a valuable intraoperative tool for allowing a complete tumour removal, implemented with the possibility of using PDT to kill the eventual not resected cancer cells. PSMA-617 binding motif was conjugated to IRDye700DX-NHS and the conjugation did not affect the photophysical characteristics of the fluorophore. The affinity of IRDye700DX-PSMA-617 towards PCa cells followed the order of their PSMA expression, i.e., PC3-PIP > LNCaP > PC3, PC3-FLU. NIRF imaging showed a significant PC3-PIP tumour uptake after the injection of 1 or 5 nmol with a maximum tumour-to-muscle ratio (ca. 60) observed for both doses 24 h post-injection. Importantly, urine, healthy prostate, and the bladder were not fluorescent at 24 h post-injection. Flow cytometry and confocal images highlighted a co-localization of PSMA+ cells with IRDye700DX-PSMA uptake. Very interestingly, ex vivo analysis on a tumour specimen highlighted a significant PSMA expression by tumour-associated macrophages, likely attributable to extracellular vesicles secreted by the PSMA(+) tumour cells. FGS proved that IRDye700DX-PSMA was able to easily delineate tumour margins. PDT experiments showed a concentration-dependent decrease in cell viability (from 75% at 10 nM to 12% at 500 nM), whereas controls did not show any cytotoxicity. PC3-PIP tumour-bearing mice subjected to photodynamic therapy showed a delayed tumour growth. In conclusion, a novel PSMA-targeted NIRF dye with dual imaging-PDT capabilities was synthesized and displayed superior specificity compared to other small PSMA targeted molecules.
Collapse
|
28
|
Zhang J, Zhou X, Hao H. Macrophage phenotype-switching in cancer. Eur J Pharmacol 2022; 931:175229. [PMID: 36002039 DOI: 10.1016/j.ejphar.2022.175229] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022]
Abstract
Tumour-associated macrophages (TAMs) have been found to be of great importance in tumorigenesis and in promoting malignant progression, including tumour angiogenesis and metastasis. Moreover, the TAM phenotype is more likely to be an M2 type. Transforming TAMs by M2-polarization into the tumour-suppressive M1-phenotype is an important approach for tumour therapy. In this review, we analysed the effects of the tumour microenvironment on macrophage phenotype-switching, including hypoxia and cytokines, and the mechanisms of drugs targeting TAMs. Furthermore, we analysed the effects of exosomes on macrophage polarization, phenotype switching of macrophages, and the mechanisms of lipid mediators targeting TAMs.
Collapse
Affiliation(s)
- Jiamin Zhang
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiaoyan Zhou
- Department of Pathophysiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, PR China.
| |
Collapse
|
29
|
Minz AP, Das B, Mohapatra D, Suresh V, Mishra S, Senapati S. Gemcitabine induces polarization of mouse peritoneal macrophages towards M1-like and confers antitumor property by inducing ROS production. Clin Exp Metastasis 2022; 39:783-800. [PMID: 35838814 DOI: 10.1007/s10585-022-10178-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
In patients with pancreatic cancer (PC), the peritoneal cavity is the second-most common site of metastasis after the liver. Peritoneal macrophages (PMs) have been demonstrated to play a significant role in the peritoneal metastases of different cancers. Gemcitabine (GEM) is known to affect PC-associated immune cells, including macrophages. However, its effect on PMs and its possible clinical implication is yet to be investigated. In this study, mouse-derived PMs were treated with GEM ex vivo to analyze the polarization status. Production of GEM-induced reactive oxygen species (ROS) and reactive nitrogen species was evaluated using DCFH-DA, DAF-FM, and Griess assay. Antitumor effects of PMs on UN-KC-6141and UN-KPC-961 murine PC cells were evaluated in presence and absence of GEM in vitro. Similarly, effect of GEM on human THP-1 macrophage polarization and its tumoricidal effect was studied in vitro. Furthermore, the effect of GEM-treated PMs on peritoneal metastasis of UN-KC-6141 cells was evaluated in a syngeneic mouse model of PC. GEM upregulated M1 phenotype-associated molecular markers (Tnf-α and Inos) in vitro in PMs obtained from naïve mouse. Moreover, IL-4-induced M2-like PMs reverted to M1-like after GEM treatment. Co-culture of UN-KC-6141 and UN-KPC-961 cancer cells with PMs in the presence of GEM increased apoptosis of these cells, whereas cell death was markedly reduced after N-acetyl-L-cysteine treatment. Corroborating these findings co-culture of GEM-treated human THP-1 macrophages also induced cell death in MIAPaCa-2 cancer cells. GEM-treated PMs injected intraperitoneally along with UN-KC-6141 cells into mice extended survival period, but did not stop disease progression and mortality. Together, GEM induced M1-like polarization of PMs from naive and/or M2-polarized PMs in a ROS-dependent manner. GEM-induced M1-like PMs prompted cytotoxicity in PC cells and delayed disease progression in vivo.
Collapse
Affiliation(s)
- Aliva Prity Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Biswajit Das
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.,Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden
| | - Debasish Mohapatra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.,School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Voddu Suresh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Swayambara Mishra
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | |
Collapse
|
30
|
Zhao J, Ruan J, Lv G, Shan Q, Fan Z, Wang H, Du Y, Ling L. Cell membrane-based biomimetic nanosystems for advanced drug delivery in cancer therapy: A comprehensive review. Colloids Surf B Biointerfaces 2022; 215:112503. [PMID: 35429736 DOI: 10.1016/j.colsurfb.2022.112503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/08/2022] [Indexed: 12/30/2022]
Abstract
Natural types of cells display distinct characteristics with homotypic targeting and extended circulation in the blood, which are worthy of being explored as promising drug delivery systems (DDSs) for cancer therapy. To enhance their delivery efficiency, these cells can be combined with therapeutic agents and artificial nanocarriers to construct the next generation of DDSs in the form of biomimetic nanomedicines. In this review, we present the recent advances in cell membrane-based DDSs (CDDSs) and their applications for efficient cancer therapy. Different sources of cell membranes are discussed, mainly including red blood cells (RBC), leukocytes, cancer cells, stem cells and hybrid cells. Moreover, the extraction methods used for obtaining such cells and the mechanism contributing to the functional action of these biomimetic CDDSs are explained. Finally, a future perspective is proposed to highlight the limitations of CDDSs and the possible resolutions toward clinical transformation of currently developed biomimetic chemotherapies.
Collapse
Affiliation(s)
- Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Jian Ruan
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Guangyao Lv
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zhiping Fan
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
31
|
Wang C, Lin Y, Zhu H, Zhou Y, Mao F, Huang X, Sun Q, Li C. The Prognostic and Clinical Value of Tumor-Associated Macrophages in Patients With Breast Cancer: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:905846. [PMID: 35847911 PMCID: PMC9280493 DOI: 10.3389/fonc.2022.905846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background The prognostic and clinical value of tumor-associated macrophages (TAMs) in patients with breast cancer (BCa) remains unclear. We conducted the current meta-analysis to systematically evaluate the association of CD68+ and CD163+ TAM density with the prognosis and clinicopathologic features of BCa patients. Methods Searches of Web of Science, PubMed, and EMBASE databases were performed up to January 31, 2022. The meta-analysis was conducted using hazard risks (HRs) and 95% confidence intervals (CIs) for survival data including overall survival (OS), disease-free survival (DFS), and BCa specific survival. Sensitivity and meta-regression analyses were also conducted to identify the robustness of the pooled estimates. Results Our literature search identified relevant articles involving a total of 8,496 patients from 32 included studies. Our analysis indicates that a high CD68+ TAM density in the tumor stoma was significantly linked with poor OS (HR 2.46, 95% CI, 1.83–3.31, P<0.001) and shorter DFS (HR 1.77, 95% CI, 1.08–2.89, P=0.02) compared to low CD68+ TAM density. A significant association was also found in the tumor nest. Analysis of CD163+ TAM density showed similar results (all P<0.001). Notably, the pooled analysis with multivariate-adjusted HRs for OS and DFS also found that a high TAM density was significantly related to poorer outcomes for BCa patients (all P<0.05). In addition, BCa patients with high TAM density were more likely to have larger tumors, no vascular invasion, and positive estrogen receptor expression (all P<0.05). Conclusion This meta-analysis indicates that a high CD68+ and CD163+ TAM density is associated with poor OS and shorter DFS in BCa patients. Further clinical studies and in vivo experiments are needed to elucidate the underlying mechanism of TAMs. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022304853, identifier CRD42022304853.
Collapse
Affiliation(s)
- Changjun Wang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yan Lin
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Hanjiang Zhu
- Department of Dermatology, 90 Medical Center Way, Surge 110, University of California, San Francisco, San Francisco, CA, United States
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Feng Mao
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Xin Huang
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| | - Chenggang Li
- State Key Laboratory of Medicinal Chemical biology, Nankai University, Tianjin, China
- College of Pharmacy, Nankai University, Tianjin, China
- *Correspondence: Qiang Sun, ; Chenggang Li,
| |
Collapse
|
32
|
Interaction of M2 macrophages with hepatocellular carcinoma co-culture system in the presence of doxorubicin-loaded nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Depression in breast cancer patients: Immunopathogenesis and immunotherapy. Cancer Lett 2022; 536:215648. [DOI: 10.1016/j.canlet.2022.215648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023]
|
34
|
Ojha PS, Maste MM, Tubachi S, Patil VS. Human papillomavirus and cervical cancer: an insight highlighting pathogenesis and targeting strategies. Virusdisease 2022; 33:132-154. [DOI: 10.1007/s13337-022-00768-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/07/2022] [Indexed: 11/29/2022] Open
|
35
|
Musick M, Yu X. Manipulation of the tumor immuno-microenvironment via TAM-targeted expression of transcription factors. Immunol Res 2022; 70:432-440. [PMID: 35486115 DOI: 10.1007/s12026-022-09277-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Abstract
An immunosuppressive tumor microenvironment (TME) leads to cancer growth, metastasis, and therapeutic resistance. Immunomodulatory immunotherapy aims to skew the immunosuppressive TME back to an immune active state. Tumor-associated macrophages (TAMs) are a critical component of the TME that are actively involved in tumor-specific inflammation and immunosuppression. TAMs exhibit a diverse range of phenotypes and functions, from pro-tumor to anti-tumor. The plasticity of TAMs makes them a promising target for immunotherapy, and TAM-targeted therapies via different strategies have shown great potential. This review discusses current TAM-specific delivery targets and genes of interest for TAM-reprogramming. As phagocytic cells, TAMs have several receptors that have been used to increase TAM-targeted in vivo delivery. Furthermore, a promising approach for reprogramming TAMs is to activate or suppress specific transcription factors in the signal transducers and activators of transcription (STAT) and interferon regulatory factor (IRF) families. Altering TAM transcription factor expression results in a potent shift in cytokine expression and overall TAM function potentially tipping the balance from an immunosuppressive to an immune active TME.
Collapse
Affiliation(s)
- Maggie Musick
- Department of Biological Sciences, Clemson University, 132 Long Hall, SC, 29631, Clemson, USA.
| | - Xianzhong Yu
- Department of Biological Sciences, Clemson University, 132 Long Hall, SC, 29631, Clemson, USA
| |
Collapse
|
36
|
Han IH, Jeong C, Yang J, Park SH, Hwang DS, Bae H. Therapeutic Effect of Melittin–dKLA Targeting Tumor-Associated Macrophages in Melanoma. Int J Mol Sci 2022; 23:ijms23063094. [PMID: 35328518 PMCID: PMC8954064 DOI: 10.3390/ijms23063094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 12/10/2022] Open
Abstract
Melanoma is an immunogenic tumor and a serious type of skin cancer. Tumor-associated macrophages (TAMs) express an M2-like phenotype and are involved in all stages of melanomagenesis; it is hence a promising target for cancer immunotherapy. We herein investigated whether melittin–dKLA inhibits the growth of melanoma by inducing apoptosis of M2-like macrophages. For the in vitro study, a conditioned medium of macrophages was prepared from M0, M1, or M2-differentiated THP-1 cells with and without melittin–dKLA. The affinity of melittin for M2 macrophages was studied with FITC (fluorescein isothiocyanate)-conjugated melittin. For the in vivo study, murine melanoma cells were inoculated subcutaneously in the right flank of mice, melittin–dKLA was intraperitoneally injected at 200 nmol/kg every three days, and flow cytometry analysis of TAMs was performed. Since melittin binds preferentially to M2-like macrophages, melittin–dKLA induced more caspase 3 expression and cell death in M2 macrophages compared with M0 and M1 macrophages and melanoma cells. Melittin–dKLA significantly inhibited the proliferation and migration of M2 macrophages, resulting in a decrease in melanoma tumor growth in vivo. The CD206+ M2-like TAMs were reduced, while the CD86+ M1-like TAMs were not affected. Melittin–dKLA is therapeutically effective against melanoma by inducing the apoptosis of M2-like TAMs.
Collapse
Affiliation(s)
- Ik-Hwan Han
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
| | - Chanmi Jeong
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea
| | - Seung-Hyeok Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea;
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea;
- Correspondence: (D.-S.H.); (H.B.); Tel.: +82-2-961-9316 (H.B.); Fax: +82-2-962-9316 (H.B.)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Korea; (I.-H.H.); (C.J.); (J.Y.)
- Correspondence: (D.-S.H.); (H.B.); Tel.: +82-2-961-9316 (H.B.); Fax: +82-2-962-9316 (H.B.)
| |
Collapse
|
37
|
Habanjar O, Diab-Assaf M, Caldefie-Chezet F, Delort L. The Impact of Obesity, Adipose Tissue, and Tumor Microenvironment on Macrophage Polarization and Metastasis. BIOLOGY 2022; 11:339. [PMID: 35205204 PMCID: PMC8869089 DOI: 10.3390/biology11020339] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Tumor metastasis is a major cause of death in cancer patients. It involves not only the intrinsic alterations within tumor cells, but also crosstalk between these cells and components of the tumor microenvironment (TME). Tumorigenesis is a complex and dynamic process, involving the following three main stages: initiation, progression, and metastasis. The transition between these stages depends on the changes within the extracellular matrix (ECM), in which tumor and stromal cells reside. This matrix, under the effect of growth factors, cytokines, and adipokines, can be morphologically altered, degraded, or reorganized. Many cancers evolve to form an immunosuppressive TME locally and create a pre-metastatic niche in other tissue sites. TME and pre-metastatic niches include myofibroblasts, immuno-inflammatory cells (macrophages), adipocytes, blood, and lymphatic vascular networks. Several studies have highlighted the adipocyte-macrophage interaction as a key driver of cancer progression and dissemination. The following two main classes of macrophages are distinguished: M1 (pro-inflammatory/anti-tumor) and M2 (anti-inflammatory/pro-tumor). These cells exhibit distinct microenvironment-dependent phenotypes that can promote or inhibit metastasis. On the other hand, obesity in cancer patients has been linked to a poor prognosis. In this regard, tumor-associated adipocytes modulate TME through the secretion of inflammatory mediators, which modulate and recruit tumor-associated macrophages (TAM). Hereby, this review describes the cellular and molecular mechanisms that link inflammation, obesity, and cancer. It provides a comprehensive overview of adipocytes and macrophages in the ECM as they control cancer initiation, progression, and invasion. In addition, it addresses the mechanisms of tumor anchoring and recruitment for M1, M2, and TAM macrophages, specifically highlighting their origin, classification, polarization, and regulatory networks, as well as their roles in the regulation of angiogenesis, invasion, metastasis, and immunosuppression, specifically highlighting the role of adipocytes in this process.
Collapse
Affiliation(s)
- Ola Habanjar
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Mona Diab-Assaf
- Equipe Tumorigénèse Pharmacologie moléculaire et anticancéreuse, Faculté des Sciences II, Université libanaise Fanar, Beyrouth 1500, Liban;
| | - Florence Caldefie-Chezet
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| | - Laetitia Delort
- Université Clermont-Auvergne, INRAE, UNH, ECREIN, f-63000 Clermont-Ferrand, France; (O.H.); (F.C.-C.)
| |
Collapse
|
38
|
Qiu X, Zhao T, Luo R, Qiu R, Li Z. Tumor-Associated Macrophages: Key Players in Triple-Negative Breast Cancer. Front Oncol 2022; 12:772615. [PMID: 35237507 PMCID: PMC8882594 DOI: 10.3389/fonc.2022.772615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Triple negative breast cancer (TNBC) refers to the subtype of breast cancer which is negative for ER, PR, and HER-2 receptors. Tumor-associated macrophages (TAMs) refer to the leukocyte infiltrating tumor, derived from circulating blood mononuclear cells and differentiating into macrophages after exuding tissues. TAMs are divided into typical activated M1 subtype and alternately activated M2 subtype, which have different expressions of receptors, cytokines and chemokines. M1 is characterized by expressing a large amount of inducible nitric oxide synthase and TNF-α, and exert anti-tumor activity by promoting pro-inflammatory and immune responses. M2 usually expresses Arginase 1 and high levels of cytokines, growth factors and proteases to support their carcinogenic function. Recent studies demonstrate that TAMs participate in the process of TNBC from occurrence to metastasis, and might serve as potential biomarkers for prognosis prediction.
Collapse
Affiliation(s)
- Xia Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianjiao Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Luo
- Department of Cell Biology, Wuhan Institute of Bioengineering, Wuhan, China
| | - Ran Qiu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Zhaoming Li, ; Ran Qiu,
| |
Collapse
|
39
|
Li Q, Sun L, Liu L, Ran Q, Du X, Yang Q, Wang Y, Li Y, Chen Y, Weng X, Cai W, Zhu X. Chamaejasmenin B, an Inhibitor for Metastatic Outgrowth, Reversed M2-Dominant Macrophage Polarization in Breast Tumor Microenvironment. Front Immunol 2022; 12:774230. [PMID: 35027915 PMCID: PMC8750059 DOI: 10.3389/fimmu.2021.774230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Metastasis is a multistep process that depends on the interactions between tumor cells and their microenvironment. Macrophages in the tumor microenvironment show high polarization plasticity and have a paradoxical role in cancer progression. Hijacked by tumor-promoting signals, the polarization status of macrophages was pathologically disturbed and believed to be the decisive mechanism forcing the progression of metastasis. In this study, we explored the immunological activity of Chamaejasmin B (ICJ), a previously proved inhibitor for metastasis, in macrophages from metastatic microenvironment. When intravenously injected of 4T1 cells in mice, ICJ significantly inhibited its metastatic outgrowth. Taking tumor cell and macrophage as a functional integrity, an adoptive transfer model was established in vitro to exclude the direct effect of ICJ on tumor. The findings suggest a dual influence of ICJ on both tumors and macrophages, as indicated by the rebalance of macrophage polarization and suppression of clonogenic potential in tumor cells. Mechanistically, ICJ redirected M2-dominant polarization of tumor-associated macrophage in an IL-4-mTOR-dependent manner. Collectively, our study revealed that ICJ rebalanced macrophage polarization in malignant microenvironment and showed promising effect in suppressing metastatic outgrowth in breast cancer model.
Collapse
Affiliation(s)
- Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lidong Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingsen Ran
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinke Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaogang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiyan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
Arora L, Kalia M, Pal D. Role of macrophages in cancer progression and targeted immunotherapies. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 135:281-311. [PMID: 37061335 DOI: 10.1016/bs.apcsb.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The vast complexity of the tumor microenvironment (TME) aggrandizes the underlying principles responsible for immune escape, therapy resistance, and treatment failure. The stromal and immune cell population circumjacent to the tumor cells affects the cancer cell cycle leading to tumor progression. Tumor-associated macrophages (TAMs) exhibiting a unique M2 polarization state constitute a significant portion of the TME. They serve as tumor suppressors at early stages and tumor promoters at advanced stages by governing various microenvironmental cues. TAMs secreted various pro-tumoral cytokines, chemokines, and matrix metalloproteases are known to regulate the different cell cycle molecules including checkpoint inhibitors in cancer cells leading to cell cycle progression with faulty cellular components. Moreover, TAMs are well-known immunosuppressors and thereby facilitating the tumor cells' evasion from immune recognition. This chapter will describe the interaction between TAMs and tumor cells, the involvement of TAMs in the regulation of cancer cell progression by controlling cell cycle checkpoints or molecular pathways, and current TAM-based therapies, including restriction of TAM recruitment, anti-survival strategies, or switching polarity. Moreover, this chapter will also emphasize recently developed drug targets and CAR-macrophage cell therapy that restricts tumor progression.
Collapse
|
41
|
Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021; 10:60. [PMID: 34965886 PMCID: PMC8715617 DOI: 10.1186/s40164-021-00252-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are heterogeneous cells that present as different functional phenotypes due to their plasticity. They can be classified into two categories, namely M1- and M2-like macrophages, which are involved in processes as diverse as anti-tumor activity and immunosuppressive tumor promotion. Tumor-associated macrophages (TAMs) are defined as being of an M2-type and are considered as the active component in tumor microenvironment. TAMs are involved in multiple processes of tumor progression through the expression of cytokines, chemokines, growth factors, protein hydrolases and more, which lead to enhance tumor cell proliferation, angiogenesis, and immunosuppression, which in turn supports invasion and metastasis. It is assumed that the abundance of TAMs in major solid tumors is correlated to a negative patient prognosis. Because of the currently available data of the TAMs’ role in tumor development, these cells have emerged as a promising target for novel cancer treatment strategies. In this paper, we will briefly describe the origins and types of TAMs and will try to comprehensively show how TAMs contribute to tumorigenesis and disease progression. Finally, we will present the main TAM-based therapeutic strategies currently available.
Collapse
|
42
|
Chu G, Shan W, Ji X, Wang Y, Niu H. Multi-Omics Analysis of Novel Signature for Immunotherapy Response and Tumor Microenvironment Regulation Patterns in Urothelial Cancer. Front Cell Dev Biol 2021; 9:764125. [PMID: 34926452 PMCID: PMC8678486 DOI: 10.3389/fcell.2021.764125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/17/2021] [Indexed: 01/01/2023] Open
Abstract
The tumor microenvironment (TME) is mainly composed of tumor cells, tumor-infiltrating immune cells, and stromal components. It plays an essential role in the prognosis and therapeutic response of patients. Nonetheless, the TME landscape of urothelial cancer (UC) has not been fully elucidated. In this study, we systematically analyzed several UC cohorts, and three types of TME patterns (stromal-activation subtype, immune-enriched subtype and immune-suppressive subtype) were defined. The tumor microenvironment signature (TMSig) was constructed by modified Lasso penalized regression. Patients were stratified into high- and low-TMSig score groups. The low-score group had a better prognosis (p < 0.0001), higher M1 macrophage infiltration (p < 0.01), better response to immunotherapy (p < 0.05), and more similar molecular characteristics to the luminal (differentiated) subtype. The accuracy of the TMSig for predicting the immunotherapy response was also verified in three independent cohorts. We highlighted that the TMSig is an effective predictor of patient prognosis and immunotherapy response. Quantitative evaluation of a single sample is valuable for us to combine histopathological and molecular characteristics to comprehensively evaluate the status of the patient. Targeted macrophage treatment has great potential for the individualized precision therapy of UC patients.
Collapse
Affiliation(s)
- Guangdi Chu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenhong Shan
- Department of Nephrology, Qingdao Central Hospital, The Second Clinical Medical College of Qingdao University, Qingdao, China
| | - Xiaoyu Ji
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
43
|
Tang Y, Tang Z, Li P, Tang K, Ma Z, Wang Y, Wang X, Li C. Precise Delivery of Nanomedicines to M2 Macrophages by Combining "Eat Me/Don't Eat Me" Signals and Its Anticancer Application. ACS NANO 2021; 15:18100-18112. [PMID: 34751571 DOI: 10.1021/acsnano.1c06707] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Targeted delivery of nanomedicines to M2 tumor-associated macrophages (TAMs) has been proposed to reduce tumor promotion and enhance the efficacy of anticancer therapy. However, upregulated receptors on M2 TAMs are also expressed on M1 TAMs and other macrophages in normal tissues. Therefore, improving targeting specificity remains a key challenge. Here, we developed a precise M2 TAM-targeted delivery system using "eat-me" and "don't-eat-me" signals. A CD47-derived self-peptide ligand (don't-eat-me signal) and galactose ligand (eat-me signal) were introduced on liposomes. Cleavable phospholipid-polyethylene glycol was covered on the surface and could combine with the self-peptide to inhibit macrophage recognition even after immunoglobulin M adsorption and protect galactose from hepatic clearance to prolong the circulation time and promote the accumulation of liposomes in tumors. This detachable polymer can be removed by the redox microenvironment upon transcytosis through the tumor endothelium and re-expose the self-peptide and galactose. The self-peptide highly reduced M1 macrophage phagocytosis, and the galactose ligand enhanced the interaction between the liposomes and M2 macrophages. Thus, the modified liposomes enabled specific recognition of M1/M2 TAMs. In vitro evidence revealed reduced endocytosis of the liposomes by M1 macrophages. Moreover, in vivo studies demonstrated that doxorubicin-loaded liposomes efficiently eliminated M2 TAMs but did not affect M1 TAMs, enhancing the potency of the antitumor therapy. Collectively, our results demonstrate the potential of combining active escape and active targeting for precisely delivering a drug of interest to M2 macrophages and suggest its application in anticancer therapy.
Collapse
Affiliation(s)
- Yixuan Tang
- Institute of MateriaMedica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250000, People's Republic of China
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Kaicheng Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhongyi Ma
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yantong Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaoyou Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
44
|
Wang Y, Tan J, Li J, Chen H, Wang W. ING5 Inhibits Migration and Invasion of Esophageal Cancer Cells by Downregulating the IL-6/CXCL12 Signaling Pathway. Technol Cancer Res Treat 2021; 20:15330338211039940. [PMID: 34520285 PMCID: PMC8445537 DOI: 10.1177/15330338211039940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common cancer in East Asia and in other parts of the world and exhibits a poor prognosis. Growth inhibitor 5 (ING5) is a new member of the growth inhibitor (ING) protein family and is involved in many important cellular functions, such as the cell cycle, apoptosis, and chromatin remodeling. As a newly discovered tumor suppressor, ING5 has been shown to inhibit lung cancer proliferation and distant metastasis through the AKT pathway. In lung cancer tumors, ING5 can attenuate the ability of cancer cells to invade normal tumor-adjacent tissues. However, ING5 has rarely been studied in ESCC. Here, we found that in ESCC EC-109 cancer cells, ING5 overexpression inhibited cell proliferation and tumor invasion, whereas, in ESCC TE-1 cancer cells, ING5 knockdown promoted cell invasion. In a nude mouse xenograft model, ING5 overexpression inhibited tumor growth and the invasion ability of ESCC cells. Further studies revealed that ING5 overexpression inhibited IL-6/CXCL12 expression at both the mRNA and protein levels as well as morphological changes. We found for the first time that ING5 inhibits ESCC cell migration and invasion by downregulating the IL-6/CXCL12 signaling pathway.
Collapse
Affiliation(s)
- Yali Wang
- Henan Provincial Chest Hospital, Zhengzhou, P.R. China
| | - Jiao Tan
- Henan Provincial Chest Hospital, Zhengzhou, P.R. China
| | - Jing Li
- Henan Provincial Chest Hospital, Zhengzhou, P.R. China
| | - Huihui Chen
- Henan Provincial Chest Hospital, Zhengzhou, P.R. China
| | - Wei Wang
- Henan Provincial Chest Hospital, Zhengzhou, P.R. China
| |
Collapse
|
45
|
Cheng Y, Song S, Wu P, Lyu B, Qin M, Sun Y, Sun A, Mu L, Xu F, Zhang L, Wang J, Zhang Q. Tumor Associated Macrophages and TAMs-Based Anti-Tumor Nanomedicines. Adv Healthc Mater 2021; 10:e2100590. [PMID: 34292673 DOI: 10.1002/adhm.202100590] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Indexed: 12/14/2022]
Abstract
As an important part of tumor microenvironment, tumor associated macrophages (TAMs) play a vital role in the occurrence, development, invasion, and metastasis of many malignant tumors and can significantly promote the formation of tumor blood vessels and lymphatic vessels, hence TAMs are greatly associated with poor prognosis. The research on nanomedicine has achieved huge progress, and nano-drugs have been widely utilized to treat various diseases through different mechanisms. Therefore, developing nano-drugs that are based on TAMs-associated anti-tumor mechanisms to effectively suppress tumor growth is expected to be a promising research filed. This paper introduces relevant information about TAMs in terms of their origin, and their roles in tumor genesis, development and metastasis. Furthermore, TAMs-related anti-tumor nano-drugs are summarized. Specifically, a wide range of nano-drugs targeting at TAMs are introduced, and categorized according to their therapeutic mechanisms toward tumors. Additionally, various nano delivery platforms using TAMs as cell carriers which aim at inhibiting tumor growth are reviewed. These two parts elucidate that the exploration of nanomedicine is essential to the study on TAMs-related anti-tumor strategies. This review is also intended to provide novel ideas for in-depth investigation on anti-tumor molecular mechanisms and nano-drug delivery systems based on TAMs.
Collapse
Affiliation(s)
- Yuxi Cheng
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Siyang Song
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Peiyao Wu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
- School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 China
| | - Bochen Lyu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Mengmeng Qin
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Yanan Sun
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Aning Sun
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Limin Mu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Fei Xu
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Lu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Jiancheng Wang
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs Peking University Beijing 100191 China
- School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|
46
|
Yang Y, Guo J, Huang L. Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends Pharmacol Sci 2021; 41:701-714. [PMID: 32946772 DOI: 10.1016/j.tips.2020.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is a highly complex environment that surrounds tumors. Interactions between cancer cells/non-cancerous cells and cells/non-cell components in the TME support tumor initiation, development, and metastasis. Of the cell types in the TME, tumor-associated macrophages (TAMs) have gained attention owing to their crucial roles in supporting tumors and conferring therapy resistance. Recent developments in nanotechnology raise opportunities for the application of nano targeted drug-delivery systems (Nano-TDDS) in cancer therapy. We focus our discussion on current knowledge of TAMs, and describe recent examples of Nano-TDDS-based TAM modulation, highlighting strategies to overcome in vivo delivery barriers associated with the TME and their potential for clinical translation.
Collapse
Affiliation(s)
- Yishun Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
47
|
Luque-Campos N, Bustamante-Barrientos FA, Pradenas C, García C, Araya MJ, Bohaud C, Contreras-López R, Elizondo-Vega R, Djouad F, Luz-Crawford P, Vega-Letter AM. The Macrophage Response Is Driven by Mesenchymal Stem Cell-Mediated Metabolic Reprogramming. Front Immunol 2021; 12:624746. [PMID: 34149687 PMCID: PMC8213396 DOI: 10.3389/fimmu.2021.624746] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent adult stromal cells widely studied for their regenerative and immunomodulatory properties. They are capable of modulating macrophage plasticity depending on various microenvironmental signals. Current studies have shown that metabolic changes can also affect macrophage fate and function. Indeed, changes in the environment prompt phenotype change. Therefore, in this review, we will discuss how MSCs orchestrate macrophage’s metabolic plasticity and the impact on their function. An improved understanding of the crosstalk between macrophages and MSCs will improve our knowledge of MSC’s therapeutic potential in the context of inflammatory diseases, cancer, and tissue repair processes in which macrophages are pivotal.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | | | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile.,Cells for Cells, Regenero, Las Condes, Santiago, Chile.,Laboratory of Nano-Regenerative Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| |
Collapse
|
48
|
Zhang Y, Chen Y, Li J, Zhu X, Liu Y, Wang X, Wang H, Yao Y, Gao Y, Chen Z. Development of Toll-like Receptor Agonist-Loaded Nanoparticles as Precision Immunotherapy for Reprogramming Tumor-Associated Macrophages. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24442-24452. [PMID: 34008947 DOI: 10.1021/acsami.1c01453] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most cancers contain abundant tumor-associated macrophages (TAMs). TAMs usually display a tumor-supportive M2-like phenotype; they promote tumor growth and influence lymphocyte infiltration, leading to immunosuppression. These properties have made TAMs an attractive cancer immunotherapy target. One promising immunotherapeutic strategy involves switching the tumor-promoting immune suppressive microenvironment by reprogramming TAMs. However, clinical trials of M2-like macrophage reprogramming have yielded unsatisfactory results due to their low efficacy and nonselective effects. In this article, we describe the development of M2-like macrophage-targeting nanoparticles (PNP@R@M-T) that efficiently and selectively deliver drugs to 58% of M2-like macrophages, over 39% of M1-like macrophages, and 32% of dendritic cells within 24 h in vivo. Compared with the control groups, administration of PNP@R@M-T dramatically reprogrammed the M2-like macrophages (51%), reduced tumor size (82%), and prolonged survival. Our findings indicate that PNP@R@M-T nanoparticles provide an effective and selective reprogramming strategy for macrophage-mediated cancer immunotherapy.
Collapse
Affiliation(s)
- Yun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yalan Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jiahao Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yajing Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hongfei Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yongjie Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Zhenzhen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
49
|
Li Y, Li M, Jin F, Liu J, Chen M, Yin J. DNAJC12 promotes lung cancer growth by regulating the activation of β‑catenin. Int J Mol Med 2021; 47:105. [PMID: 33907820 PMCID: PMC8057298 DOI: 10.3892/ijmm.2021.4938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/24/2021] [Indexed: 01/03/2023] Open
Abstract
Lung cancer has become the leading cause of cancer‑associated mortality worldwide. However, the underlying mechanisms of lung cancer remain poorly understood. DnaJ heat shock protein family (HSP40) member C12 (DNAJC12) is a type III member belonging to the HSP40/DNAJ family. The role of DNAJC12 in numerous types of cancer has been previously reported; however, the effect of DNAJC12 in lung cancer remains unknown. The results of the present study indicated that DNAJC12 may be involved in lung cancer proliferation and migration by regulating the β‑catenin signaling pathway. Data generated in the present study and from The Cancer Genome Atlas revealed that the DNAJC12 expression levels were significantly upregulated in lung cancer tissues compared with non‑cancer lung tissues. The expression of DNAJC12 was subsequently knocked down in A549 and NCI‑H1975 lung cancer cells using lentiviral transfections and further experiments demonstrated that the knockdown of DNAJC12 inhibited the proliferation, colony formation, migration and invasion of lung cancer cells. The results of flow cytometric assays also revealed that the knockdown of DNAJC12 induced the apoptosis of lung cancer cells. In addition, the effects of DNAJC12 knockdown on the in vivo growth of lung cancer cells were observed. Signaling pathway analysis revealed that the knockdown of DNAJC12 expression suppressed the phosphorylation of p65 NF‑κB, downregulated the expression levels and inhibited the subsequent activation of β‑catenin, and downregulated the expression levels of vimentin. Rescue experiments demonstrated that the overexpression of β‑catenin, but not that of NF‑κB or vimentin, reversed the effects of DNAJC12 knockdown on the proliferation and invasion of lung cancer cells. On the whole, the findings of the present study suggest that DNAJC12 may play a crucial role in lung cancer tumorigenesis by regulating the expression and activation of β‑catenin. Therefore, DNAJC12 may represent a novel target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yun Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Meng Li
- Department of Thoracic Surgery, The First People's Hospital of Taian Affiliated to Shandong First Medical University, Taian, Shandong 271000, P.R. China
| | - Fengqi Jin
- Department of Thoracic Surgery, Jinan Zhangqiu District Hospital of Traditional Chinese Medicine, Jinan, Shandong 250200, P.R. China
| | - Jianbo Liu
- Department of Thoracic Surgery, The Fourth People's Hospital, Heze, Shangdong 274100, P.R. China
| | - Minghui Chen
- Department of Anesthesia Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 271000, P.R. China
| | - Jingjing Yin
- Department of Thoracic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
50
|
Wan Y, Yu W, Li J, Peng N, Ding X, Wang Y, Zou T, Cheng Y, Liu Y. Multi-functional carboxymethyl chitin-based nanoparticles for modulation of tumor-associated macrophage polarity. Carbohydr Polym 2021; 267:118245. [PMID: 34119189 DOI: 10.1016/j.carbpol.2021.118245] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/08/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022]
Abstract
Current challenge of using cytokines is its poor distribution and systemic side effects. To avoid this issue, we prepared the tumor-targeted and microenvironment-responsive nanocarriers (TRN), which were consisted of α-tocopheryl succinate (α-TOS) loaded mesoporous silica nanoparticles as cores, and surface-modified by thioketal-linkage, electrostatically coated with carboxymethyl chitin, and further anchored glucose-regulated protein 78-binding peptide as shells for encapsulating IL-12. TRN showed a size of 260 nm after encapsulated IL-12 and α-TOS with loading content of 0.0206% and 7.21%, respectively, and exhibited good biocompatibility to 4 T1 cells and macrophages. Moreover, IL-12/α-TOS loaded TRN displayed obvious anti-tumor efficacy on BALB/c nude mice bearing 4 T1 tumors, which was derived from promoted targeting to tumor tissue, endocytosed by macrophages and locally release IL-12 to subsequently repolarize tumor-associated macrophages into tumoricidal M1 phenotype with reduced side effects. The nanosystem exhibited as a promising strategy with functional conversion of macrophages in tumor microenvironment for anti-tumor therapy.
Collapse
Affiliation(s)
- Yunfeng Wan
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Wenjie Yu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Jiami Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China.
| | - Xiao Ding
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yanlong Wang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Tao Zou
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yang Cheng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China; State Key Laboratory of Separation Membranes and Membrane Process, School and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300378, China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|