1
|
Bácsi A, Ágics B, Pázmándi K, Kocsis B, Sándor V, Bertók L, Bruckner G, Sipka S. Radiation-Detoxified Form of Endotoxin Effectively Activates Th 1 Responses and Attenuates Ragweed-Induced Th 2-Type Airway Inflammation in Mice. Int J Mol Sci 2024; 25:1581. [PMID: 38338861 PMCID: PMC10855154 DOI: 10.3390/ijms25031581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Urbanization with reduced microbial exposure is associated with an increased burden of asthma and atopic symptoms. Conversely, environmental exposure to endotoxins in childhood can protect against the development of allergies. Our study aimed to investigate whether the renaturation of the indoor environment with aerosolized radiation-detoxified lipopolysaccharide (RD-LPS) has a preventative effect against the development of ragweed-induced Th2-type airway inflammation. To explore this, cages of six-week-old BALB/c mice were treated daily with aerosolized native LPS (N-LPS) or RD-LPS. After a 10-week treatment period, mice were sensitized and challenged with ragweed pollen extract, and inflammatory cell infiltration into the airways was observed. As dendritic cells (DCs) play a crucial role in the polarization of T-cell responses, in our in vitro experiments, the effects of N-LPS and RD-LPS were compared on human monocyte-derived DCs (moDCs). Mice in RD-LPS-rich milieu developed significantly less allergic airway inflammation than mice in N-LPS-rich or common environments. The results of our in vitro experiments demonstrate that RD-LPS-exposed moDCs have a higher Th1-polarizing capacity than moDCs exposed to N-LPS. Consequently, we suppose that the aerosolized, non-toxic RD-LPS applied in early life for the renaturation of urban indoors may be suitable for the prevention of Th2-mediated allergies in childhood.
Collapse
Affiliation(s)
- Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Beatrix Ágics
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (A.B.); (B.Á.); (K.P.)
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary;
| | - Viktor Sándor
- Institute of Bioanalysis, Medical School and Szentágothai Research Center, University of Pécs, H-7624 Pécs, Hungary;
| | - Lóránd Bertók
- National Research Directorate for Radiobiology and Radiohygiene, National Public Health Center, H-1221 Budapest, Hungary
| | - Geza Bruckner
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, KY 40536, USA;
| | - Sándor Sipka
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants (Basel) 2022; 11:2237. [PMID: 36421423 PMCID: PMC9687037 DOI: 10.3390/antiox11112237] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/01/2023] Open
Abstract
Inflammation of the human lung is mediated in response to different stimuli (e.g., physical, radioactive, infective, pro-allergenic or toxic) such as cigarette smoke and environmental pollutants. They often promote an increase in inflammatory activities in the airways that manifest themselves as chronic diseases (e.g., allergic airway diseases, asthma, chronic bronchitis/chronic obstructive pulmonary disease (COPD) or even lung cancer). Increased levels of oxidative stress (OS) reduce the antioxidant defenses, affect the autophagy/mitophagy processes, and the regulatory mechanisms of cell survival, promoting inflammation in the lung. In fact, OS potentiate the inflammatory activities in the lung, favoring the progression of chronic airway diseases. OS increases the production of reactive oxygen species (ROS), including superoxide anions (O2-), hydroxyl radicals (OH) and hydrogen peroxide (H2O2), by the transformation of oxygen through enzymatic and non-enzymatic reactions. In this manner, OS reduces endogenous antioxidant defenses in both nucleated and non-nucleated cells. The production of ROS in the lung can derive from both exogenous insults (cigarette smoke or environmental pollution) and endogenous sources such as cell injury and/or activated inflammatory and structural cells. In this review, we describe the most relevant knowledge concerning the functional interrelation between the mechanisms of OS and inflammation in airway diseases.
Collapse
|
3
|
Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF. Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 2021; 85:101026. [PMID: 34625291 DOI: 10.1016/j.mam.2021.101026] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/15/2021] [Indexed: 01/18/2023]
Abstract
The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and β2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.
Collapse
Affiliation(s)
- Charalambos Michaeloudes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom.
| | - Hisham Abubakar-Waziri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ramzi Lakhdar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Katie Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Piers Dixey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Sharon Mumby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Pankaj K Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, United Kingdom; Royal Brompton & Harefield NHS Trust, London, UK
| |
Collapse
|
4
|
Pointner L, Kraiem A, Thaler M, Richter F, Wenger M, Bethanis A, Klotz M, Traidl-Hoffmann C, Gilles S, Aglas L. Birch Pollen Induces Toll-Like Receptor 4-Dependent Dendritic Cell Activation Favoring T Cell Responses. FRONTIERS IN ALLERGY 2021; 2:680937. [PMID: 35386993 PMCID: PMC8974861 DOI: 10.3389/falgy.2021.680937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Seasonal exposure to birch pollen (BP) is a major cause of pollinosis. The specific role of Toll-like receptor 4 (TLR4) in BP-induced allergic inflammation and the identification of key factors in birch pollen extracts (BPE) initiating this process remain to be explored. This study aimed to examine (i) the importance of TLR4 for dendritic cell (DC) activation by BPE, (ii) the extent of the contribution of BPE-derived lipopolysaccharide (LPS) and other potential TLR4 adjuvant(s) in BPE, and (iii) the relevance of the TLR4-dependent activation of BPE-stimulated DCs in the initiation of an adaptive immune response. In vitro, activation of murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs by BPE or the equivalent LPS (nLPS) was analyzed by flow cytometry. Polymyxin B (PMB), a TLR4 antagonist and TLR4-deficient BMDCs were used to investigate the TLR4 signaling in DC activation. The immunostimulatory activity of BPE was compared to protein-/lipid-depleted BPE-fractions. In co-cultures of BPE-pulsed BMDCs and Bet v 1-specific hybridoma T cells, the influence of the TLR4-dependent DC activation on T cell activation was analyzed. In vivo immunization of IL-4 reporter mice was conducted to study BPE-induced Th2 polarization upon PMB pre-treatment. Murine and human DC activation induced by either BPE or nLPS was inhibited by the TLR4 antagonist or by PMB, and abrogated in TLR4-deficient BMDCs compared to wild-type BMDCs. The lipid-free but not the protein-free fraction showed a reduced capacity to activate the TLR4 signaling and murine DCs. In human DCs, nLPS only partially reproduced the BPE-induced activation intensity. BPE-primed BMDCs efficiently stimulated T cell activation, which was repressed by the TLR4 antagonist or PMB, and the addition of nLPS to Bet v 1 did not reproduce the effect of BPE. In vivo, immunization with BPE induced a significant Th2 polarization, whereas administration of BPE pre-incubated with PMB showed a decreased tendency. These findings suggest that TLR4 is a major pathway by which BPE triggers DC activation that is involved in the initiation of adaptive immune responses. Further characterization of these BP-derived TLR4 adjuvants could provide new candidates for therapeutic strategies targeting specific mechanisms in BP-induced allergic inflammation.
Collapse
Affiliation(s)
- Lisa Pointner
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Amin Kraiem
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Michael Thaler
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Fabian Richter
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Mario Wenger
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | | - Markus Klotz
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Claudia Traidl-Hoffmann
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Neuherberg, Germany
- Christine Kühne 96 Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Stefanie Gilles
- Chair of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- *Correspondence: Lorenz Aglas
| |
Collapse
|
5
|
Ruiz-Gil T, Acuña JJ, Fujiyoshi S, Tanaka D, Noda J, Maruyama F, Jorquera MA. Airborne bacterial communities of outdoor environments and their associated influencing factors. ENVIRONMENT INTERNATIONAL 2020; 145:106156. [PMID: 33039877 DOI: 10.1016/j.envint.2020.106156] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 05/16/2023]
Abstract
Microbial entities (such bacteria, fungi, archaea and viruses) within outdoor aerosols have been scarcely studied compared with indoor aerosols and nonbiological components, and only during the last few decades have their studies increased. Bacteria represent an important part of the microbial abundance and diversity in a wide variety of rural and urban outdoor bioaerosols. Currently, airborne bacterial communities are mainly sampled in two aerosol size fractions (2.5 and 10 µm) and characterized by culture-dependent (plate-counting) and culture-independent (DNA sequencing) approaches. Studies have revealed a large diversity of bacteria in bioaerosols, highlighting Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as ubiquitous phyla. Seasonal variations in and dispersion of bacterial communities have also been observed between geographical locations as has their correlation with specific atmospheric factors. Several investigations have also suggested the relevance of airborne bacteria in the public health and agriculture sectors as well as remediation and atmospheric processes. However, although factors influencing airborne bacterial communities and standardized procedures for their assessment have recently been proposed, the use of bacterial taxa as microbial indicators of specific bioaerosol sources and seasonality have not been broadly explored. Thus, in this review, we summarize and discuss recent advances in the study of airborne bacterial communities in outdoor environments and the possible factors influencing their abundance, diversity, and seasonal variation. Furthermore, airborne bacterial activity and bioprospecting in different fields (e.g., the textile industry, the food industry, medicine, and bioremediation) are discussed. We expect that this review will reveal the relevance and influencing factors of airborne bacteria in outdoor environments as well as stimulate new investigations on the atmospheric microbiome, particularly in areas where air quality is a public concern.
Collapse
Affiliation(s)
- Tay Ruiz-Gil
- Doctorado en Ciencias de Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile; Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - So Fujiyoshi
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Daisuke Tanaka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Jun Noda
- Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan; Graduate School of Veterinary Science, Rakuno Gakuen University, Hokkaido, Japan
| | - Fumito Maruyama
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Microbial Genomics and Ecology, Office of Industry-Academia-Government and Community Collaboration, Hiroshima University, Hiroshima, Japan; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Network for Extreme Environment Research (NEXER), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile; Center for Holobiome and Built Environment (CHOBE), Hiroshima University, Japan.
| |
Collapse
|
6
|
Brand MD. Riding the tiger - physiological and pathological effects of superoxide and hydrogen peroxide generated in the mitochondrial matrix. Crit Rev Biochem Mol Biol 2020; 55:592-661. [PMID: 33148057 DOI: 10.1080/10409238.2020.1828258] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Elevated mitochondrial matrix superoxide and/or hydrogen peroxide concentrations drive a wide range of physiological responses and pathologies. Concentrations of superoxide and hydrogen peroxide in the mitochondrial matrix are set mainly by rates of production, the activities of superoxide dismutase-2 (SOD2) and peroxiredoxin-3 (PRDX3), and by diffusion of hydrogen peroxide to the cytosol. These considerations can be used to generate criteria for assessing whether changes in matrix superoxide or hydrogen peroxide are both necessary and sufficient to drive redox signaling and pathology: is a phenotype affected by suppressing superoxide and hydrogen peroxide production; by manipulating the levels of SOD2, PRDX3 or mitochondria-targeted catalase; and by adding mitochondria-targeted SOD/catalase mimetics or mitochondria-targeted antioxidants? Is the pathology associated with variants in SOD2 and PRDX3 genes? Filtering the large literature on mitochondrial redox signaling using these criteria highlights considerable evidence that mitochondrial superoxide and hydrogen peroxide drive physiological responses involved in cellular stress management, including apoptosis, autophagy, propagation of endoplasmic reticulum stress, cellular senescence, HIF1α signaling, and immune responses. They also affect cell proliferation, migration, differentiation, and the cell cycle. Filtering the huge literature on pathologies highlights strong experimental evidence that 30-40 pathologies may be driven by mitochondrial matrix superoxide or hydrogen peroxide. These can be grouped into overlapping and interacting categories: metabolic, cardiovascular, inflammatory, and neurological diseases; cancer; ischemia/reperfusion injury; aging and its diseases; external insults, and genetic diseases. Understanding the involvement of mitochondrial matrix superoxide and hydrogen peroxide concentrations in these diseases can facilitate the rational development of appropriate therapies.
Collapse
|
7
|
Li Y, Ouyang Y, Jiao J, Xu Z, Zhang L. Exposure to environmental black carbon exacerbates nasal epithelial inflammation via the reactive oxygen species (ROS)-nucleotide-binding, oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3)-caspase-1-interleukin 1β (IL-1β) pathway. Int Forum Allergy Rhinol 2020; 11:773-783. [PMID: 32779379 DOI: 10.1002/alr.22669] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Allergic rhinitis(AR) is an increasing challenge to public health worldwide. Exposure to environmental black carbon (BC) is associated with increased risk of allergic rhinitis, but the molecular mechanisms underlying its toxicity have not been fully elucidated. The aims of the present study were therefore to determine the effect of BC on the expression of interleukin 1β (IL-1β) and to investigate the mechanism underlying BC-induced IL-1β production in pollen-sensitized human nasal epithelial cells (hNECs). METHODS Nasal mucosal samples collected from 10 patients undergoing nasal surgery were used to isolate and culture epithelial cells as air-liquid interface (ALI) cultures. Cultures exposed to BC ± pollen allergen for 24 hours were assessed for the presence of IL-1β, the production of reactive oxygen species (ROS), and activation of the nucleotide-binding, oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Furthermore, the mechanisms underlying BC ± pollen allergen-induced IL-1β in hNECs were evaluated. RESULTS Exposure to BC significantly increased the production of IL-1β and ROS and the expression of NLRP3 in hNECs, compared with control, all of which were significantly increased further by exposure to a combination of BC and pollen. Incubation of hNECs with N-acetyl-L-cysteine (NAC) significantly attenuated BC ± pollen-induced expression of ROS, NLRP3, and IL-1β. NLRP3 and Caspase-1 inhibitors (MCC950 and YVAD) significantly inhibited IL-1β expression and NLRP3 activation, but not NLRP3 expression following exposure to BC ± pollen. CONCLUSION These findings suggest that exposure to BC and pollen can exaggerate oxidative stress and significantly increase the expression of IL-1β in hNECs, and that this may involve a pathway integrating ROS-NLRP3-Caspase-1-IL-1β signaling.
Collapse
Affiliation(s)
- Ying Li
- Department of Otolaryngology Head and Neck Surgery Beijing Tongren Hospital, Affiliated to the Capital University of Medical Science, Beijing, China
| | - Yuhui Ouyang
- Department of Allergy, Beijing Tongren Hospital, Affiliated to the Capital University of Medical Science, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Jian Jiao
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Zhaojun Xu
- Department of Environmental Medicine, Quanzhou Medical College, Quanzhou, Fujian, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery Beijing Tongren Hospital, Affiliated to the Capital University of Medical Science, Beijing, China.,Department of Allergy, Beijing Tongren Hospital, Affiliated to the Capital University of Medical Science, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| |
Collapse
|
8
|
In-silico and in-vitro analysis of endocan interaction with statins. Int J Biol Macromol 2020; 146:1087-1099. [DOI: 10.1016/j.ijbiomac.2019.09.235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/13/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023]
|
9
|
Kim YJ, Seok JH, Cheung W, Lee SN, Jang HH, Bae S, Lee H. Effects of Helichrysum bracteatum flower extracts on UVB irradiation-induced inflammatory biomarker expression. BIOMEDICAL DERMATOLOGY 2019. [DOI: 10.1186/s41702-019-0049-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
The present study aimed to investigate the anti-inflammatory activity of Helichrysum bracteatum (H. bracteatum) flower extracts in vitro.
Methods
H. bracteatum flowers were extracted with water, ethanol and 1,3-butylene glycol, and the anti-oxidative activities of the extracts were measured using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The inhibition of the expression of inflammation-related genes, including tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), was evaluated in vitro using reverse transcription-PCR in ultraviolet B (UVB)-irradiated human epidermal keratinocytes (HEKa cells). To investigate the inhibitory effects of H. bracteatum flower extracts on UVB-induced inflammatory responses in HEKa cells, the production of nitric oxide (NO) and TNF-α was measured using enzyme-linked immunosorbent assays. Results were expressed as the mean ± standard deviation; statistical significance was calculated using the Student’s t-test.
Results
The DPPH assay results showed that H. bracteatum flower extracts have good anti-oxidative effects and inhibited the expression of inflammation-related genes IL-6, COX-2 and TNF-α. Moreover, the production of NO and TNF-α was inhibited by H. bracteatum flower extracts.
Conclusions
These findings indicate that H. bracteatum flower extracts have efficacy against UVB-induced inflammation-related gene expression.
Collapse
|
10
|
Szekanecz Z, Szamosi S, Kovács GE, Kocsis E, Benkő S. The NLRP3 inflammasome - interleukin 1 pathway as a therapeutic target in gout. Arch Biochem Biophys 2019; 670:82-93. [DOI: 10.1016/j.abb.2019.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
11
|
Manirajan BA, Maisinger C, Ratering S, Rusch V, Schwiertz A, Cardinale M, Schnell S. Diversity, specificity, co-occurrence and hub taxa of the bacterial–fungal pollen microbiome. FEMS Microbiol Ecol 2018; 94:5033679. [DOI: 10.1093/femsec/fiy112] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/31/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Binoy Ambika Manirajan
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Corinna Maisinger
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Stefan Ratering
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Volker Rusch
- Institut für Integrative Biologie, Stiftung Old Herborn University, Herborn, Germany
| | - Andreas Schwiertz
- MVZ Institut für Mikroökologie GmbH, D-35745 Herborn, Auf den Lüppen 8, Germany,
| | - Massimiliano Cardinale
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sylvia Schnell
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Kwon DAH, Jeong JW, Choi EO, Lee HW, Lee KW, Kim KY, Kim SG, Hong SH, Kim GY, Park C, Hwang HJ, Son CG, Choi YH. Inhibitory effects on the production of inflammatory mediators and reactive oxygen species by Mori folium in lipopolysaccharide-stimulated macrophages and zebrafish. AN ACAD BRAS CIENC 2018; 89:661-674. [PMID: 28562828 DOI: 10.1590/0001-3765201720160836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/18/2017] [Indexed: 01/02/2023] Open
Abstract
Mori folium, the leaf of Morus alba L. (Moraceae), has been traditionally used for various medicinal purposes from ancient times to the present. In this study, we examined the effects of water extract of Mori folium (WEMF) on the production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. Our data indicated that WEMF significantly suppressed the secretion of NO and PGE2 in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects were accompanied by a marked reduction in their regulatory gene expression at the transcription level. WEMF attenuated LPS-induced intracellular ROS production in RAW 264.7 macrophages. It inhibited the nuclear translocation of the nuclear factor-kappa B p65 subunit and the activation of mitogen-activated protein kinases in LPS-treated RAW 264.7 macrophages. Furthermore, WEMF reduced LPS-induced NO production and ROS accumulation in zebrafish. Although more efforts are needed to fully understand the critical role of WEMF in the inhibition of inflammation, the findings of the present study may provide insights into the approaches for Mori folium as a potential therapeutic agent for inflammatory and antioxidant disorders.
Collapse
Affiliation(s)
- DA Hye Kwon
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Jin Woo Jeong
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Eun Ok Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Hye Won Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ki Won Lee
- Marine Bio-industry Development Center, Bio-Port Korea INC, Gijang-gun, Republic of Korea
| | - Ki Young Kim
- Marine Bio-industry Development Center, Bio-Port Korea INC, Gijang-gun, Republic of Korea
| | - Sung Goo Kim
- Marine Bio-industry Development Center, Bio-Port Korea INC, Gijang-gun, Republic of Korea
| | - Su Hyun Hong
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, South Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University, Busan, Republic of Korea
| | - Hye-Jin Hwang
- Department of Food and Nutrition, College of Natural Sciences & Human Ecology, Dongeui University, Busan, Republic of Korea
| | - Chang-Gue Son
- Daejeon Oriental Hospital, Oriental Medical College, Daejeon University, Daejeon, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dongeui University, Busan, Republic of Korea
| |
Collapse
|
13
|
Jeong JW, Cha HJ, Han MH, Hwang SJ, Lee DS, Yoo JS, Choi IW, Kim S, Kim HS, Kim GY, Hong SH, Park C, Lee HJ, Choi YH. Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish. Biomol Ther (Seoul) 2018; 26:146-156. [PMID: 28365977 PMCID: PMC5839493 DOI: 10.4062/biomolther.2016.272] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/25/2016] [Accepted: 01/18/2017] [Indexed: 01/10/2023] Open
Abstract
Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), and cytokines including tumor necrosis factor-α and interleukin-1β in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of NF-κB p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.
Collapse
Affiliation(s)
- Jin-Woo Jeong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan 49267, Republic of Korea
| | - Min Ho Han
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Su Jung Hwang
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Dae-Sung Lee
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jong Su Yoo
- Natural products Research Team, Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Su Hyun Hong
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University, Busan 47340, Republic of Korea
| | - Hyo-Jong Lee
- Department of Pharmacy, College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
14
|
Jeong JW, Hwang SJ, Han MH, Lee DS, Yoo JS, Choi IW, Cha HJ, Kim S, Kim HS, Kim GY, Jeon YJ, Lee HJ, Park HT, Yoo YH, Choi YH. Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Knaysi G, Smith AR, Wilson JM, Wisniewski JA. The Skin as a Route of Allergen Exposure: Part II. Allergens and Role of the Microbiome and Environmental Exposures. Curr Allergy Asthma Rep 2017; 17:7. [PMID: 28210979 DOI: 10.1007/s11882-017-0675-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW This second part of the article aims to highlight recent contributions in the literature that enhance our understanding of the cutaneous immune response to allergen. RECENT FINDINGS Several properties of allergens facilitate barrier disruption and cutaneous sensitization. There is a strong epidemiologic relationship between the microbiome, both the gut and skin, and atopic dermatitis (AD). The mechanisms connecting these two entities remain enigmatic; however, recent murine models show that commensal skin bacteria play an active role in supporting skin barrier homeostasis and defense against microbial penetration. Likewise, the association between the lack of colonization with Staph species and AD development suggests a potentially functional role for these organisms in regulating the skin barrier and response to environmental allergens. In undisrupted skin, evidence suggests that the cutaneous route may promote allergen tolerance. Properties of environmental allergens and commensal bacteria add to the complex landscape of skin immunity. Further investigation is needed to elucidate how these properties regulate the cutaneous immune response to allergen.
Collapse
Affiliation(s)
- George Knaysi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH, 03755, USA
| | - Anna R Smith
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jeffrey M Wilson
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Julia A Wisniewski
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
16
|
Basic A, Alizadehgharib S, Dahlén G, Dahlgren U. Hydrogen sulfide exposure induces NLRP3 inflammasome-dependent IL-1β and IL-18 secretion in human mononuclear leukocytes in vitro. Clin Exp Dent Res 2017; 3:115-120. [PMID: 29744188 PMCID: PMC5719819 DOI: 10.1002/cre2.69] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022] Open
Abstract
The aim was to investigate if hydrogen sulfide (H2S) induces the formation of the NLRP3 inflammasome and subsequent IL‐1β and IL‐18 secretion in human peripheral blood mononuclear cells (PBMCs) and in the human monocyte cell line THP1. Bacterial production of H2S has been suggested to participate in the inflammatory host response in periodontitis pathogenesis. H2S is a toxic gas with pro‐inflammatory properties. It is produced by bacterial degradation of sulfur‐containing amino acids, for example, cysteine. We hypothesize that H2S affects the inflammatory host response by inducing formation of the NLRP3 inflammasome and thereby causes the secretion of IL‐1ß and IL‐18. PBMCs from eight healthy blood donors, the human monocyte cell line THP1 Null, and two variants of the THP1 cell line unable to form the NLRP3 inflammasome were cultured in the presence or absence of 1 mM sodium hydrosulfide (NaHS) in 24‐well plates at 37°C for 24 hr. Supernatants were collected and the IL‐1β and IL‐18 concentrations were measured with DuoSet ELISA Development kit. PBMCs exposed to NaHS produced more IL‐1ß and IL‐18 than unexposed control cells (p = .023 and p = .008, respectively). An increase of extracellular potassium ions (K+) inhibited the secretion of IL‐1ß and IL‐18 (p = .008). Further, NaHS triggered the secretion of IL‐1ß and IL‐18 in human THP1‐Null monocytes (p = .0006 and p = .002, respectively), while the NaHS‐dependent secretion was reduced in the monocyte cell lines unable to form the NLRP3 inflammasome. Hence, the results suggest that NaHS induces the formation of the NLRP3 inflammasome and thus the secretion of IL‐1ß and IL‐18. Enhanced NLRP3 inflammasome‐dependent secretion of IL‐1β and IL‐18 in human mononuclear leukocytes exposed to NaHS in vitro is reported. This may be a mode for H2S to contribute to the inflammatory host response and pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Amina Basic
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| | - Sara Alizadehgharib
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| | - Gunnar Dahlén
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology Institute of Odontology, Sahlgrenska Academy, University of Gothenburg Sweden
| |
Collapse
|
17
|
Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 138:336-49. [PMID: 27497276 DOI: 10.1016/j.jaci.2016.06.010] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti-IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system players. These targeted molecules can be expressed on or drive the cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment.
Collapse
Affiliation(s)
- Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.
| | - Jean-Pierre Allam
- Department of Dermatology and Allergy, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Stefanie Gilles
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, and the Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfram Hoetzenecker
- Department of Dermatology/Allergology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Edward Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Allergy Unit, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Swiss Institute for Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
18
|
Natural Compounds as Regulators of NLRP3 Inflammasome-Mediated IL-1 β Production. Mediators Inflamm 2016; 2016:5460302. [PMID: 27672241 PMCID: PMC5031844 DOI: 10.1155/2016/5460302] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 12/17/2022] Open
Abstract
IL-1β is one of the main proinflammatory cytokines that regulates a broad range of immune responses and also participates in several physiological processes. The canonical production of IL-1β requires multiprotein complexes called inflammasomes. One of the most intensively studied inflammasome complexes is the NLRP3 inflammasome. Its activation requires two signals: one signal “primes” the cells and induces the expression of NLRP3 and pro-IL-1β, while the other signal leads to the assembly and activation of the complex. Several stimuli were reported to function as the second signal including reactive oxygen species, lysosomal rupture, or cytosolic ion perturbation. Despite very intensive studies, the precise function and regulation of the NLRP3 inflammasome are still not clear. However, many chronic inflammatory diseases are related to the overproduction of IL-1β that is mediated via the NLRP3 inflammasome. In this review, we aimed to provide an overview of studies that demonstrated the effect of plant-derived natural compounds on NLRP3 inflammasome-mediated IL-1β production. Although many of these studies lack the mechanistic explanation of their action, these compounds may be considered as complementary supplements in the treatment of chronic inflammatory diseases, consumed as preventive agents, and may also be considered as molecular tools to study NLRP3 function.
Collapse
|
19
|
Guo W, Wang P, Liu Z, Yang P, Ye P. The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells. BMC Oral Health 2015; 15:133. [PMID: 26511096 PMCID: PMC4625523 DOI: 10.1186/s12903-015-0115-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/10/2015] [Indexed: 01/15/2023] Open
Abstract
Background Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). The aim of this study was to determine whether the activation of NLRP3 inflammasome depends on infection with the periodontal pathogen Porphyromonas gingivalis (P. gingivalis), or stimulation with P. gingivalis lipopolysaccharide (LPS), and/or extracellular adenosine triphosphate (ATP). Methods An oral epithelial cell line was treated with P. gingivalis, P. gingivalis LPS and ATP. The gene and protein expression of NLRP3 inflammasome components were quantified by real time RT-PCR and immunoblots. Production of IL-1β and IL-18 was measured by ELISA. Results There was no increase in NLRP3 inflammasome gene expression after P. gingivalis infection unless pre-stimulated by ATP. Obvious increases of NLRP3 inflammasome gene expression was observed after P. gingivalis LPS stimulation, even pre-stimulated by ATP at 2 h. Conclusions The findings indicate that the activation of NLRP3 inflammasome does not rely on P. gingivalis infection, unless stimulated by P. gingivalis LPS and/or extracellular ATP, suggesting diverse signaling pathways are involved in the host immune response.
Collapse
Affiliation(s)
- Wei Guo
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China. .,Department of Endodontics, Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Peng Wang
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Zhonghao Liu
- Yantai Stomatological Hospital, Yantai, Shandong Province, China.
| | - Pishan Yang
- Department of Periodontology, Shandong Provincial Key Laboratory of Oral Biomedicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Ping Ye
- Institute of Dental Research, Westmead Millennium Institute and Westmead Centre for Oral Health, Westmead Hospital, Westmead, Australia.
| |
Collapse
|
20
|
Affiliation(s)
- W. Peng
- Department of Dermatology and Allergy; University of Bonn; Bonn Germany
| | - N. Novak
- Department of Dermatology and Allergy; University of Bonn; Bonn Germany
| |
Collapse
|
21
|
Abais JM, Xia M, Li G, Gehr TWB, Boini KM, Li PL. Contribution of endogenously produced reactive oxygen species to the activation of podocyte NLRP3 inflammasomes in hyperhomocysteinemia. Free Radic Biol Med 2014; 67:211-20. [PMID: 24140862 PMCID: PMC3945111 DOI: 10.1016/j.freeradbiomed.2013.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 12/13/2022]
Abstract
Hyperhomocysteinemia (hHcys) is an important pathogenic factor contributing to the progression of end-stage renal disease. Recent studies have demonstrated the implication of nicotinamide adenine dinucleotide phosphate oxidase-mediated NLRP3 inflammasome activation in the development of podocyte injury and glomerular sclerosis during hHcys. However, it remains unknown which reactive oxygen species (ROS) are responsible for this activation of NLRP3 inflammasomes and how such action of ROS is controlled. This study tested the contribution of common endogenous ROS including superoxide (O2(-)), hydrogen peroxide (H2O2), peroxynitrite (ONOO(-)), and hydroxyl radical (OH) to the activation of NLRP3 inflammasomes in mouse podocytes and glomeruli. In vitro, confocal microscopy and size-exclusion chromatography demonstrated that dismutation of O2(-) by 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (Tempol) and decomposition of H2O2 by catalase prevented Hcys-induced aggregation of NLRP3 inflammasome proteins and inhibited Hcys-induced caspase-1 activation and IL-1β production in mouse podocytes. However, scavenging of ONOO(-) or OH had no significant effect on either Hcys-induced NLRP3 inflammasome formation or activation. In vivo, scavenging of O2(-) by Tempol and removal of H2O2 by catalase substantially inhibited NLRP3 inflammasome formation and activation in glomeruli of hHcys mice as shown by reduced colocalization of NLRP3 with ASC or caspase-1 and inhibition of caspase-1 activation and IL-1β production. Furthermore, Tempol and catalase significantly attenuated hHcys-induced glomerular injury. In conclusion, endogenously produced O2(-) and H2O2 primarily contribute to NLRP3 inflammasome formation and activation in mouse glomeruli resulting in glomerular injury or consequent sclerosis during hHcys.
Collapse
Affiliation(s)
- Justine M Abais
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Min Xia
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Todd W B Gehr
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Krishna M Boini
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| |
Collapse
|
22
|
Ayissi Owona B, Njayou NF, Laufer S, Moundipa PF, Schluesener HJ. A fraction of stem bark extract of Entada africana suppresses lipopolysaccharide-induced inflammation in RAW 264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:162-8. [PMID: 23796875 DOI: 10.1016/j.jep.2013.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/12/2013] [Accepted: 06/12/2013] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Entada africana is a plant used in African traditional medicine for the treatment of stomachache, fever, liver related diseases, wound healing, cataract and dysentery. AIMS OF THE STUDY This study aimed at evaluating the anti-inflammatory activity of fractions of the stem bark extract of the plant using lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages model. MATERIALS AND METHODS The crude extract was prepared using the mixture CH2Cl2/MeOH (1:1, v/v) and fractionated by flash chromatography using solvents of increasing polarity to obtain five different fractions. The effects of the fractions on the cells viability were studied by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and their inhibitory activity against LPS-induced nitric oxide (NO) production screened by Griess test. The most active fraction was further investigated for its effects on reactive oxygen species (ROS) production using flux cytometry, the expression of inducible nitric oxide synthase (iNOS), pro-and anti-inflammatory cytokines (IL1β, TNFα, IL6, IL10 and IL13) by RT-PCR, and the activity of the enzyme p38 MAPK kinase by enzyme-linked immunosorbent assay (ELISA). RESULTS The fractions presented no significant effect on the viability of macrophages at 100 μg/ml after 24h incubation. The CH2Cl2/MeOH 5% (Ea5) fraction was found to be the most potent in inhibiting NO production with a half inhibition concentration (IC50)=18.36 μg/ml, and showed the highest inhibition percentage (89.068%) in comparison with Baicalin (63.34%), an external standard at 50 μg/ml. Ea5, as well as Baicalin significantly (P<0.05) inhibited the expression of TNFα, IL6 and IL1β mRNA, attenuated mRNA expression of inducible NO synthase in a concentration-dependent manner, stimulated the expression of anti-inflammatory cytokines (IL10 and IL13), and showed a 30% inhibition of the activity of p38 MAPK kinase. CONCLUSION The results of the present study indicate that the fraction Ea5 of Entada africana possesses most potent in vitro anti-inflammatory activity and may contain compounds useful as a therapeutic agent in the treatment of inflammatory related diseases cause by over-activation of macrophages.
Collapse
Affiliation(s)
- Brice Ayissi Owona
- Division of Immunopathology of Nervous System, Department of Neuropathology, Institute of Pathology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|