1
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
2
|
Okagawa T, Konnai S, Goto S, Sajiki Y, Ganbaatar O, Watari K, Nakamura H, Wang CX, Tachibana T, Kato Y, Kameda Y, Kohara J, Terasaki N, Kubota M, Takeda A, Takahashi H, Suzuki Y, Maekawa N, Murata S, Ohashi K. Development of a high-affinity anti-bovine PD-1 rabbit-bovine chimeric antibody using an efficient selection and large production system. Vet Res 2023; 54:82. [PMID: 37759311 PMCID: PMC10537840 DOI: 10.1186/s13567-023-01213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint molecules PD-1/PD-L1 cause T-cell exhaustion and contribute to disease progression in chronic infections of cattle. We established monoclonal antibodies (mAbs) that specifically inhibit the binding of bovine PD-1/PD-L1; however, conventional anti-PD-1 mAbs are not suitable as therapeutic agents because of their low binding affinity to antigen. In addition, their sensitivity for the detection of bovine PD-1 is low and their use for immunostaining PD-1 is limited. To address these issues, we established two anti-bovine PD-1 rabbit mAbs (1F10F1 and 4F5F2) and its chimeric form using bovine IgG1 (Boch1D10F1), which exhibit high binding affinity. One of the rabbit mAb 1D10F1 binds more strongly to bovine PD-1 compared with a conventional anti-PD-1 mAb (5D2) and exhibits marked inhibitory activity on the PD-1/PD-L1 interaction. In addition, PD-1 expression in bovine T cells could be detected with higher sensitivity by flow cytometry using 1D10F1. Furthermore, we established higher-producing cells of Boch1D10F1 and succeeded in the mass production of Boch1D10F1. Boch1D10F1 exhibited a similar binding affinity to bovine PD-1 and the inhibitory activity on PD-1/PD-L1 binding compared with 1D10F1. The immune activation by Boch1D10F1 was also confirmed by the enhancement of IFN-γ production. Finally, Boch1D10F1 was administered to bovine leukemia virus-infected cows to determine its antiviral effect. In conclusion, the high-affinity anti-PD-1 antibody developed in this study represents a powerful tool for detecting and inhibiting bovine PD-1 and is a candidate for PD-1-targeted immunotherapy in cattle.
Collapse
Affiliation(s)
- Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hayato Nakamura
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Cai-Xia Wang
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
| | - Taro Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Osaka, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yayoi Kameda
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junko Kohara
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku, Japan
| | | | - Manabu Kubota
- Hokkaido Agricultural Mutual Aid Association, Shibecha, Japan
| | - Akira Takeda
- Hokkaido Agricultural Mutual Aid Association, Shibecha, Japan
| | | | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Tiyamanee W, Konnai S, Okagawa T, Nojima Y, Ganbaatar O, Maekawa N, Hasebe R, Kagawa Y, Kato Y, Suzuki Y, Murata S, Ohashi K. Molecular characterization of immunoinhibitory factors PD-1/PD-L1 in sheep. Vet Immunol Immunopathol 2023; 261:110609. [PMID: 37201379 DOI: 10.1016/j.vetimm.2023.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Sheep have been used as a large animal experimental model for studying infectious diseases. However, due to a lack of staining antibodies and reagents, immunological studies on sheep have not progressed. The immunoinhibitory receptor programmed death-1 (PD-1) is expressed on T lymphocytes. The interaction of PD-1 with its ligand PD-ligand 1 (PD-L1) delivers inhibitory signals and impairs proliferation, cytokine production, and cytotoxicity of T cells. We previously reported that the PD-1/PD-L1 pathway was closely associated with T-cell exhaustion and disease progression in bovine chronic infections using anti-bovine PD-L1 monoclonal antibodies (mAbs). Furthermore, we found that blocking antibodies against PD-1 and PD-L1 restore T-cell functions and could be used in immunotherapy of cattle. However, the immunological role of the PD-1/PD-L1 pathway in chronic diseases of sheep remains unknown. In this study, we identified cDNA sequences of ovine PD-1 and PD-L1 and examined the cross-activity of anti-bovine PD-L1 mAbs against ovine PD-L1 as well as the expression of PD-L1 in ovine listeriosis. The amino acid sequences of ovine PD-1 and PD-L1 share a high degree of identity and similarity with homologs from ruminants and other mammalian species. Anti-bovine PD-L1 mAb recognized ovine PD-L1 on lymphocytes in the flow cytometric assay. Furthermore, an immunohistochemical staining confirmed the PD-L1 expression on macrophages in the brain lesions of ovine listeriosis. These findings indicated that our anti-PD-L1 mAb would be useful for analyzing the ovine PD-1/PD-L1 pathway. Further research is needed to determine the immunological role of PD-1/PD-L1 in chronic diseases such as BLV infection through experimental infection of sheep.
Collapse
Affiliation(s)
- Wisa Tiyamanee
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan; Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; International Affairs Office, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Enhancement of Vaccine-Induced T-Cell Responses by PD-L1 Blockade in Calves. Vaccines (Basel) 2023; 11:vaccines11030559. [PMID: 36992143 DOI: 10.3390/vaccines11030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.
Collapse
|
5
|
The role of long non-coding RNA HCG18 in cancer. Clin Transl Oncol 2023; 25:611-619. [PMID: 36346572 DOI: 10.1007/s12094-022-02992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022]
Abstract
The incidence of cancer is increasing worldwide and is becoming the most common cause of death. Identifying new biomarkers for cancer diagnosis and prognosis is important for developing cancer treatment strategies and reducing mortality. Long non-coding RNAs (lncRNAs) are non-coding, single-stranded RNAs that play an important role as oncogenes or tumor suppressors in the occurrence and development of human tumors. Abnormal expression of human leukocyte antigen complex group 18 (HCG18) is observed in many types of cancer, and its imbalance is closely related to cancer progression. HCG18 regulates cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, HCG18 is a potential tumor biomarker and therapeutic target. However, the therapeutic significance of HCG18 has not been well studied, and future research may develop new intervention strategies to combat cancer. In this study, we reviewed the biological function, mechanism, and potential clinical significance of HCG18 in various cancers to provide a reference for future research.
Collapse
|
6
|
Riondato F, Colitti B, Rosati S, Sini F, Martini V. A method to test antibody cross-reactivity toward animal antigens for flow cytometry. Cytometry A 2022; 103:455-457. [PMID: 36161760 DOI: 10.1002/cyto.a.24691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022]
Abstract
The availability of cross-reacting antibodies and/or of antibodies working in flow cytometry is a major issue in the veterinary field. One of the main problems is the availability of certain positive controls. With this brief communication, we report an method to quickly screen a wide number of products without the need to look for positive biological samples. We propose this approach as a first step to select the best antibodies to test on biological specimens.
Collapse
Affiliation(s)
- Fulvio Riondato
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Barbara Colitti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Sergio Rosati
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Sini
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Valeria Martini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Watari K, Konnai S, Okagawa T, Maekawa N, Sajiki Y, Kato Y, Suzuki Y, Murata S, Ohashi K. Enhancement of interleukin-2 production by bovine peripheral blood mononuclear cells treated with the combination of anti-programmed death-ligand 1 and cytotoxic T lymphocyte antigen 4 chimeric monoclonal antibodies. J Vet Med Sci 2021; 84:6-15. [PMID: 34789592 PMCID: PMC8810316 DOI: 10.1292/jvms.21-0552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.
Collapse
Affiliation(s)
- Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University
| | - Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University.,Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University
| |
Collapse
|
8
|
Xu YJ, Zhao JM, Ni XF, Wang W, Hu WW, Wu CP. LncRNA HCG18 suppresses CD8 + T cells to confer resistance to cetuximab in colorectal cancer via miR-20b-5p/PD-L1 axis. Epigenomics 2021; 13:1281-1297. [PMID: 34523356 DOI: 10.2217/epi-2021-0130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: We aimed to explore the effect of long noncoding RNA HCG18 in colorectal cancer (CRC). Materials & methods: Relative gene and protein expression were screened. Colony formation and flow cytometry assays were performed to determine proliferation and apoptosis. Dual luciferase and RNA immunoprecipitation assays were conducted to validate the interaction between indicated molecules. Xenograft in nude mice was applied to verify the conclusion in vivo. Results: HCG18 and PD-L1 were upregulated while miR-20b-5p was downregulated in CRC tissue. Functional analysis revealed that lncRNA HCG18 promoted proliferation, migration and resistance to cetuximab of CRC cells via the miR-20b-5p/PD-L1 axis. Conclusion: HCG18 facilitated progress of the tumor, conferred to cetuximab resistance and suppressed CD8+ T cells via the miR-20b-5p/PD-L1 axis.
Collapse
Affiliation(s)
- Yan-Jie Xu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, PR China
| | - Jie-Min Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, PR China
| | - Xue-Feng Ni
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, PR China
| | - Wei Wang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, PR China
| | - Wen-Wei Hu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, PR China
| | - Chang-Ping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu Province, PR China
| |
Collapse
|
9
|
Ganbaatar O, Konnai S, Okagawa T, Nojima Y, Maekawa N, Ichikawa Y, Kobayashi A, Shibahara T, Yanagawa Y, Higuchi H, Kato Y, Suzuki Y, Murata S, Ohashi K. Programmed death-ligand 1 expression in swine chronic infections and enhancement of interleukin-2 production via programmed death-1/programmed death-ligand 1 blockade. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1573-1583. [PMID: 34414683 PMCID: PMC8589367 DOI: 10.1002/iid3.510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/09/2023]
Abstract
Introduction Chronic infections lead to the functional exhaustion of T cells. Exhausted T cells are phenotypically differentiated by the surface expression of the immunoinhibitory receptor, such as programmed death‐1 (PD‐1). The inhibitory signal is produced by the interaction between PD‐1 and its PD‐ligand 1 (PD‐L1) and impairs the effector functions of T cells. However, the expression dynamics of PD‐L1 and the immunological functions of the PD‐1/PD‐L1 pathway in chronic diseases of pigs are still poorly understood. In this study, we first analyzed the expression of PD‐L1 in various chronic infections in pigs, and then evaluated the immune activation by the blocking assay targeting the swine PD‐1/PD‐L1 pathway. Methods In the initial experiments, anti‐bovine PD‐L1 monoclonal antibodies (mAbs) were tested for cross‐reactivity with swine PD‐L1. Subsequently, immunohistochemical analysis was conducted using the anti‐PD‐L1 mAb. Finally, we assessed the immune activation of swine peripheral blood mononuclear cells (PBMCs) by the blockade with anti‐PD‐L1 mAb. Results Several anti‐PD‐L1 mAbs tested recognized swine PD‐L1‐expressing cells. The binding of swine PD‐L1 protein to swine PD‐1 was inhibited by some of these cross‐reactive mAbs. In addition, immunohistochemical analysis revealed that PD‐L1 was expressed at the site of infection in chronic infections of pigs. The PD‐L1 blockade increased the production of interleukin‐2 from swine PBMCs. Conclusions These findings suggest that the PD‐1/PD‐L1 pathway could be also involved in immunosuppression in chronic infections in pigs. This study provides a new perspective on therapeutic strategies for chronic diseases in pigs by targeting immunosuppressive pathways.
Collapse
Affiliation(s)
- Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshiki Ichikawa
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoyuki Shibahara
- Division of Hygiene Management Research, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.,Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yojiro Yanagawa
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hidetoshi Higuchi
- Division of Health and Science, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. NPJ Precis Oncol 2021; 5:10. [PMID: 33580183 PMCID: PMC7881100 DOI: 10.1038/s41698-021-00147-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy targeting programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1) represents promising treatments for human cancers. Our previous studies demonstrated PD-L1 overexpression in some canine cancers, and suggested the therapeutic potential of a canine chimeric anti-PD-L1 monoclonal antibody (c4G12). However, such evidence is scarce, limiting the clinical application in dogs. In the present report, canine PD-L1 expression was assessed in various cancer types, using a new anti-PD-L1 mAb, 6C11-3A11, and the safety and efficacy of c4G12 were explored in 29 dogs with pulmonary metastatic oral malignant melanoma (OMM). PD-L1 expression was detected in most canine malignant cancers including OMM, and survival was significantly longer in the c4G12 treatment group (median 143 days) when compared to a historical control group (n = 15, median 54 days). In dogs with measurable disease (n = 13), one dog (7.7%) experienced a complete response. Treatment-related adverse events of any grade were observed in 15 dogs (51.7%). Here we show that PD-L1 is a promising target for cancer immunotherapy in dogs, and dogs could be a useful large animal model for human cancer research.
Collapse
|
11
|
Wong C, Darby JM, Murphy PR, Pinfold TL, Lennard PR, Woods GM, Lyons AB, Flies AS. Tasmanian devil CD28 and CTLA4 capture CD80 and CD86 from adjacent cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103882. [PMID: 33039410 DOI: 10.1016/j.dci.2020.103882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Immune checkpoint immunotherapy is a pillar of human oncology treatment with potential for non-human species. The first checkpoint immunotherapy approved for human cancers targeted the CTLA4 protein. CTLA4 can inhibit T cell activation by capturing and internalizing CD80 and CD86 from antigen presenting cells, a process called trans-endocytosis. Similarly, CD28 can capture CD80 and CD86 via trogocytosis and retain the captured ligands on the surface of the CD28-expressing cells. The wild Tasmanian devil (Sarcophilus harrisii) population has declined by 77% due to transmissible cancers that evade immune defenses despite genetic mismatches between the host and tumors. We used a live cell-based assay to demonstrate that devil CTLA4 and CD28 can capture CD80 and CD86. Mutation of evolutionarily conserved motifs in CTLA4 altered functional interactions with CD80 and CD86 in accordance with patterns observed in other species. These results suggest that checkpoint immunotherapies can be translated to evolutionarily divergent species.
Collapse
Affiliation(s)
- Candida Wong
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Peter R Murphy
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia; University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Terry L Pinfold
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Patrick R Lennard
- The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Gregory M Woods
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - A Bruce Lyons
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, 7000, Australia.
| |
Collapse
|
12
|
Sajiki Y, Konnai S, Ikenaka Y, Gulay KCM, Kobayashi A, Parizi LF, João BC, Watari K, Fujisawa S, Okagawa T, Maekawa N, Logullo C, da Silva Vaz I, Murata S, Ohashi K. Tick saliva-induced programmed death-1 and PD-ligand 1 and its related host immunosuppression. Sci Rep 2021; 11:1063. [PMID: 33441793 PMCID: PMC7806669 DOI: 10.1038/s41598-020-80251-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Yoshinori Ikenaka
- Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | | | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Benvindo Capela João
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
13
|
Ganbaatar O, Konnai S, Okagawa T, Nojima Y, Maekawa N, Minato E, Kobayashi A, Ando R, Sasaki N, Miyakoshi D, Ichii O, Kato Y, Suzuki Y, Murata S, Ohashi K. PD-L1 expression in equine malignant melanoma and functional effects of PD-L1 blockade. PLoS One 2020; 15:e0234218. [PMID: 33216754 PMCID: PMC7678989 DOI: 10.1371/journal.pone.0234218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Programmed death-1 (PD-1) is an immunoinhibitory receptor expressed on lymphocytes. Interaction of PD-1 with its ligand PD-ligand 1 (PD-L1) delivers inhibitory signals and impairs proliferation, cytokine production, and cytotoxicity of T cells. In our previous studies, we have developed anti-bovine PD-L1 monoclonal antibodies (mAbs) and reported that the PD-1/PD-L1 pathway was closely associated with T-cell exhaustion and disease progression in bovine chronic infections and canine tumors. Furthermore, we found that blocking antibodies that target PD-1 and PD-L1 restore T-cell functions and could be used in immunotherapy in cattle and dogs. However, the immunological role of the PD-1/PD-L1 pathway for chronic equine diseases, including tumors, remains unclear. In this study, we identified cDNA sequences of equine PD-1 (EqPD-1) and PD-L1 (EqPD-L1) and investigated the role of anti-bovine PD-L1 mAbs against EqPD-L1 using in vitro assays. In addition, we evaluated the expression of PD-L1 in tumor tissues of equine malignant melanoma (EMM). The amino acid sequences of EqPD-1 and EqPD-L1 share a considerable identity and similarity with homologs from non-primate species. Two clones of the anti-bovine PD-L1 mAbs recognized EqPD-L1 in flow cytometry, and one of these cross-reactive mAbs blocked the binding of equine PD-1/PD-L1. Of note, immunohistochemistry confirmed the PD-L1 expression in EMM tumor tissues. A cultivation assay revealed that PD-L1 blockade enhanced the production of Th1 cytokines in equine immune cells. These findings showed that our anti-PD-L1 mAbs would be useful for analyzing the equine PD-1/PD-L1 pathway. Further research is warranted to discover the immunological role of PD-1/PD-L1 in chronic equine diseases and elucidate a future application in immunotherapy for horses.
Collapse
Affiliation(s)
- Otgontuya Ganbaatar
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yutaro Nojima
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Erina Minato
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Ando
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | | | - Osamu Ichii
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Ariyarathna H, Thomson NA, Aberdein D, Perrott MR, Munday JS. Increased programmed death ligand (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) expression is associated with metastasis and poor prognosis in malignant canine mammary gland tumours. Vet Immunol Immunopathol 2020; 230:110142. [PMID: 33129194 DOI: 10.1016/j.vetimm.2020.110142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/04/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
Aberrant expression of immune check point molecules, programmed death ligand (PD-L1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) has been reported in many human cancers with increased protein and gene expression correlated with an aggressive behaviour in some neoplasms. Additionally, PD-L1 blockade has been shown to be an effective therapy for some human cancers. Canine mammary gland tumours have previously been shown to produce PD-L1 protein, but there are no previous studies investigating CTLA-4 in these common canine neoplasms. The present study investigated protein and gene expression of PD-L1 and CTLA-4 using immunohistochemistry and RT-PCR in 41 histologically-malignant, outcome-known CMGTs. The PD-L1 and CTLA-4 immunostaining scores of the mammary gland tumours that subsequently metastasised were significantly higher than those of tumours which did not metastasise (PD-L1: p = 0.005, CTLA-4: p = 0.003). Gene expression of PD-L1 and CTLA-4 was also significantly higher in tumours which subsequently metastasised (PD-L1: p = 0.023, CTLA-4: p = 0.022). Further, higher PD-L1 or CTLA-4 immunostaining scores correlated with shorter survival times of dogs (PD-L1: rs = - 0.42, p = 0.008, CTLA-4: rs = - 0.4, p = 0.01) while PD-L1 immunostaining was independently prognostic of survival time (Δ F = 4.9, p = 0.035). These findings suggest that higher protein and gene expression of PD-L1 and CTLA-4 by tumour cells increases the chances of metastasis and measuring these proteins may predict likely neoplasm behaviour. Additionally, if increased expression of these proteins promotes metastasis, blocking PD-L1 or CTLA-4 may be beneficial to treat canine mammary gland tumours.
Collapse
Affiliation(s)
- Harsha Ariyarathna
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Neroli A Thomson
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Danielle Aberdein
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Matthew R Perrott
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - John S Munday
- Department of Pathobiology, School of Veterinary Science, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| |
Collapse
|
15
|
Takeuchi H, Konnai S, Maekawa N, Minato E, Ichikawa Y, Kobayashi A, Okagawa T, Murata S, Ohashi K. Expression Analysis of Canine CMTM6 and CMTM4 as Potential Regulators of the PD-L1 Protein in Canine Cancers. Front Vet Sci 2020; 7:330. [PMID: 32596272 PMCID: PMC7300202 DOI: 10.3389/fvets.2020.00330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023] Open
Abstract
Cancer is one of the most significant causes of death in dogs. Antibody drugs targeting the PD-1/PD-L1 axis represent a promising immunotherapy for both human and canine cancers. However, the regulation mechanisms of PD-L1 expression in canine cancers require further investigation to better understand the resistance mechanisms to anti-PD-L1 therapy. Recent reports have shown that CMTM6 and CMTM4 are critical regulators of PD-L1 protein expression in human cancer cells. By preventing PD-L1 from lysosome-mediated degradation, CMTM6 maintains PD-L1 expression on the cell surface. However, the literature has not reported on CMTM6 and CMTM4 in dogs, and their functions are completely unknown. To reveal a regulation mechanism of PD-L1 in canine cancers, this study firstly identified the gene sequences of CMTM6 and CMTM4. Then, the expression analysis of these proteins was performed by immunohistochemistry. Furthermore, the functions of CMTM6 and CMTM4 in regulating PD-L1 expression were examined by gene knockdown of CMTM6 and CMTM4. Canine CMTM6 and CMTM4 displayed high amino acid sequence identities compared with those of humans and mice. An immunohistochemical analysis using cross-reactive antibodies revealed that canine malignant melanoma and osteosarcoma express CMTM6, CMTM4, and PD-L1 simultaneously. Gene knockdown of CMTM6 and CMTM4 with RNA interference significantly reduced the cell surface expression of PD-L1 in a canine cell line. These results suggest that CMTM6 and CMTM4 are regulators of PD-L1 expression in canine cancers and could serve as potential therapeutic targets to enhance antitumor immunity.
Collapse
Affiliation(s)
- Hiroto Takeuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Erina Minato
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshiki Ichikawa
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsushi Kobayashi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Goto S, Konnai S, Hirano Y, Kohara J, Okagawa T, Maekawa N, Sajiki Y, Watari K, Minato E, Kobayashi A, Gondaira S, Higuchi H, Koiwa M, Tajima M, Taguchi E, Uemura R, Yamada S, Kaneko MK, Kato Y, Yamamoto K, Toda M, Suzuki Y, Murata S, Ohashi K. Upregulation of PD-L1 Expression by Prostaglandin E 2 and the Enhancement of IFN-γ by Anti-PD-L1 Antibody Combined With a COX-2 Inhibitor in Mycoplasma bovis Infection. Front Vet Sci 2020; 7:12. [PMID: 32154274 PMCID: PMC7045061 DOI: 10.3389/fvets.2020.00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Bovine mycoplasmosis caused by Mycoplasma bovis results in pneumonia and mastitis in cattle. We previously demonstrated that the programmed death 1 (PD-1)/PD-ligand 1 (PD-L1) pathway is involved in immune dysfunction during M. bovis infection and that prostaglandin E2 (PGE2) suppressed immune responses and upregulated PD-L1 expression in Johne's disease, a bacterial infection in cattle. In this study, we investigated the role of PGE2 in immune dysfunction and the relationship between PGE2 and the PD-1/PD-L1 pathway in M. bovis infection. In vitro stimulation with M. bovis upregulated the expressions of PGE2 and PD-L1 presumably via Toll-like receptor 2 in bovine peripheral blood mononuclear cells (PBMCs). PGE2 levels of peripheral blood in infected cattle were significantly increased compared with those in uninfected cattle. Remarkably, plasma PGE2 levels were positively correlated with the proportions of PD-L1+ monocytes in M. bovis-infected cattle. Additionally, plasma PGE2 production in infected cattle was negatively correlated with M. bovis-specific interferon (IFN)-γ production from PBMCs. These results suggest that PGE2 could be one of the inducers of PD-L1 expression and could be involved in immunosuppression during M. bovis infection. In vitro blockade assays using anti-bovine PD-L1 antibody and a cyclooxygenase 2 inhibitor significantly upregulated the M. bovis-specific IFN-γ response. Our study findings might contribute to the development of novel therapeutic strategies for bovine mycoplasmosis that target PGE2 and the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Hirano
- Agriculture Research Department, Animal Research Center, Hokkaido Research Organization, Shintoku, Japan
| | - Junko Kohara
- Agriculture Research Department, Animal Research Center, Hokkaido Research Organization, Shintoku, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Erina Minato
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Atsuhi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Gondaira
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hidetoshi Higuchi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Masateru Koiwa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Motoshi Tajima
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | | | - Ryoko Uemura
- Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keiichi Yamamoto
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Mikihiro Toda
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,New Business and International Business Development, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Programmed death-ligand 1 triggers PASMCs pyroptosis and pulmonary vascular fibrosis in pulmonary hypertension. J Mol Cell Cardiol 2019; 138:23-33. [PMID: 31733200 DOI: 10.1016/j.yjmcc.2019.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/07/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
Pyroptosis is a pro-inflammatory form of programmed cell death, whose genesis directly depended on caspase-1 activation. Pulmonary hypertension (PH) is a disease characterized, in part, by vascular fibrosis. Up to now, there is no report on the relationship between pyroptosis and vascular fibrosis in PH. Here, we confirmed that pyroptosis had occurred in the media of pulmonary arteries in two PH rat models and hypoxic human pulmonary arterial smooth muscle cells (hPASMCs). Caspase-1 inhibition attenuated the pathogenesis of PH, as assessed by vascular remodeling, right ventricular systolic pressure, right ventricle hypertrophy and hemodynamic parameters of pulmonary vasculature. Moreover, caspase-1 inhibition suppressed pulmonary vascular fibrosis as demonstrated by Masson staining, as well as immunohistochemistry and Western blot analysis of fibrillar collagen. In addition, Programmed death-ligand 1 (PD-L1) was markedly increased in PH, which was regulated by the transcription factor STAT1. Furthermore, PD-L1 knockdown in hPASMCs repressed the onset of hypoxia-induced pyroptosis and fibrosis. Overall, these data identify a critical STAT1-dependent posttranscriptional modification that promotes PD-L1 expression in the pyroptosis of PASMCs to modulate pulmonary vascular fibrosis and accelerate the progression of PH.
Collapse
|
18
|
Sajiki Y, Konnai S, Okagawa T, Nishimori A, Maekawa N, Goto S, Watari K, Minato E, Kobayashi A, Kohara J, Yamada S, Kaneko MK, Kato Y, Takahashi H, Terasaki N, Takeda A, Yamamoto K, Toda M, Suzuki Y, Murata S, Ohashi K. Prostaglandin E 2-Induced Immune Exhaustion and Enhancement of Antiviral Effects by Anti-PD-L1 Antibody Combined with COX-2 Inhibitor in Bovine Leukemia Virus Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:1313-1324. [PMID: 31366713 DOI: 10.4049/jimmunol.1900342] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/28/2019] [Indexed: 01/09/2023]
Abstract
Bovine leukemia virus (BLV) infection is a chronic viral infection of cattle and endemic in many countries, including Japan. Our previous study demonstrated that PGE2, a product of cyclooxygenase (COX) 2, suppresses Th1 responses in cattle and contributes to the progression of Johne disease, a chronic bacterial infection in cattle. However, little information is available on the association of PGE2 with chronic viral infection. Thus, we analyzed the changes in plasma PGE2 concentration during BLV infection and its effects on proviral load, viral gene transcription, Th1 responses, and disease progression. Both COX2 expression by PBMCs and plasma PGE2 concentration were higher in the infected cattle compared with uninfected cattle, and plasma PGE2 concentration was positively correlated with the proviral load. BLV Ag exposure also directly enhanced PGE2 production by PBMCs. Transcription of BLV genes was activated via PGE2 receptors EP2 and EP4, further suggesting that PGE2 contributes to disease progression. In contrast, inhibition of PGE2 production using a COX-2 inhibitor activated BLV-specific Th1 responses in vitro, as evidenced by enhanced T cell proliferation and Th1 cytokine production, and reduced BLV proviral load in vivo. Combined treatment with the COX-2 inhibitor meloxicam and anti-programmed death-ligand 1 Ab significantly reduced the BLV proviral load, suggesting a potential as a novel control method against BLV infection. Further studies using a larger number of animals are required to support the efficacy of this treatment for clinical application.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Asami Nishimori
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Erina Minato
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Junko Kohara
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirofumi Takahashi
- Shibecha Branch, Kushiro Central Office, Hokkaido Higashi Agricultural Mutual Aid Association, Shibecha 088-2311, Japan
| | - Nobuhiro Terasaki
- Shibecha Branch, Kushiro Central Office, Hokkaido Higashi Agricultural Mutual Aid Association, Shibecha 088-2311, Japan
| | - Akira Takeda
- Shibecha Branch, Kushiro Central Office, Hokkaido Higashi Agricultural Mutual Aid Association, Shibecha 088-2311, Japan
| | - Keiichi Yamamoto
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Mikihiro Toda
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,New Business and International Business Development, Fuso Pharmaceutical Industries, Ltd., Osaka 536-8523, Japan
| | - Yasuhiko Suzuki
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0019, Japan; and.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0019, Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
19
|
Ofori S, Awuah SG. Small-Molecule Poly(ADP-ribose) Polymerase and PD-L1 Inhibitor Conjugates as Dual-Action Anticancer Agents. ACS OMEGA 2019; 4:12584-12597. [PMID: 31460379 PMCID: PMC6682113 DOI: 10.1021/acsomega.9b01106] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/03/2019] [Indexed: 05/05/2023]
Abstract
Immune checkpoint blockades have revolutionized the treatment landscape for several cancer indications, yet they have not gained traction in a range of other tumors such as triple-negative breast cancer. Despite durable disease control by many patients, a third of cancer patients relapse due to acquired resistance. Combined immunotherapy has shown significant promise to overcome these grand challenges. In this report, we describe the synthesis and characterization of dual-action small-molecule PARP1/PD-L1 inhibitor conjugates as potential targeted anticancer agents. These conjugates display significant apoptosis and cytotoxic efficacy to approximately 2-20-fold better than their individual agents in a panel of cancer cell lines. This was underscored by derived combination indices, which was consistent with strong synergy when cells were treated with the individual agents, olaparib and BMS-001 using the Chou-Talalay method. Furthermore, we sought to unravel the mechanistic behavior of the conjugates and their implications on the PARP/PD-L1 axis. We used apoptosis, cell cycle, immunoblotting, and T-cell proliferation assays to establish the synergy imparted by these conjugates. These multifunctional compounds enable the discovery of small-molecule immunochemotherapeutic agents and chemical probes to elucidate the cross-talk between DNA repair and PD-L1 pathways.
Collapse
Affiliation(s)
- Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Samuel G. Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
20
|
Lomas-Neira J, Monaghan SF, Huang X, Fallon EA, Chung CS, Ayala A. Novel Role for PD-1:PD-L1 as Mediator of Pulmonary Vascular Endothelial Cell Functions in Pathogenesis of Indirect ARDS in Mice. Front Immunol 2018; 9:3030. [PMID: 30619369 PMCID: PMC6306416 DOI: 10.3389/fimmu.2018.03030] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Deficiency of the co-inhibitory receptor, Programmed cell death receptor (PD)-1, provides a survival benefit in our murine shock/sepsis model for the development of indirect acute respiratory distress syndrome (iARDS). Further, of clinical significance, patients that develop ARDS express increased PD-1 on their blood leukocytes. While PD-1 expression and its regulatory role have been associated with mainly T-cell responses, the contribution of its primary ligand, PD-L1, broadly expressed on non-immune cells such as lung endothelial cells (ECs) as well as immune cells, is less well-understood. Here we show that a “priming insult” for iARDS, such as non-lethal hemorrhagic shock alone, produced a marked increase in lung EC PD-L1 as well as blood leukocyte PD-1 expression, and when combined with a subsequent “trigger event” (polymicrobial sepsis), not only induced marked iARDS but significant mortality. These sequelae were both attenuated in the absence of PD-L1. Interestingly, we found that gene deficiency of both PD-1 and PD-L1 improved EC barrier function, as measured by decreased bronchoalveolar lavage fluid protein (i.e., lung leak). However, PD-L1 deficiency, unlike PD-1, significantly decreased EC activation through the Angiopoietin/Tie2 pathway in our iARDS mice. Additionally, while PD-1 gene deficiency was associated with decreased neutrophil influx in our iARDS mice, EC monolayers derived from PD-L1 deficient mice showed increased expression of EC junction proteins in response to ex vivo TNF-α stimulation. Together, these data suggest that ligation of PD-1:PD-L1 may play a novel role(s) in the maintenance of pulmonary EC barrier regulation, beyond that of the classic regulation of the leukocyte tolerogenic immune response, which may account for its pathogenic actions in iARDS.
Collapse
Affiliation(s)
- Joanne Lomas-Neira
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Sean F Monaghan
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Xin Huang
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Eleanor A Fallon
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Chun-Shiang Chung
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| | - Alfred Ayala
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital/Alpert School of Medicine at Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Okagawa T, Konnai S, Nishimori A, Maekawa N, Goto S, Ikebuchi R, Kohara J, Suzuki Y, Yamada S, Kato Y, Murata S, Ohashi K. Cooperation of PD-1 and LAG-3 in the exhaustion of CD4 + and CD8 + T cells during bovine leukemia virus infection. Vet Res 2018; 49:50. [PMID: 29914540 PMCID: PMC6006750 DOI: 10.1186/s13567-018-0543-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/03/2018] [Indexed: 12/25/2022] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that infects B cells in cattle and causes bovine leukosis after a long latent period. Progressive exhaustion of T cell functions is considered to facilitate disease progression of BLV infection. Programmed death-1 (PD-1) and lymphocyte activation gene-3 (LAG-3) are immunoinhibitory receptors that contribute to T-cell exhaustion caused by BLV infection in cattle. However, it is unclear whether the cooperation of PD-1 and LAG-3 accelerates disease progression of BLV infection. In this study, multi-color flow cytometric analyses of PD-1- and LAG-3-expressing T cells were performed in BLV-infected cattle at different stages of the disease. The frequencies of PD-1+LAG-3+ heavily exhausted T cells among CD4+ and CD8+ T cells was higher in the blood of cattle with B-cell lymphoma over that of BLV-uninfected and BLV-infected cattle without lymphoma. In addition, blockade assays of peripheral blood mononuclear cells were performed to examine whether inhibition of the interactions between PD-1 and LAG-3 and their ligands by blocking antibodies could restore T-cell function during BLV infection. Single or dual blockade of the PD-1 and LAG-3 pathways reactivated the production of Th1 cytokines, interferon-γ and tumor necrosis factor-α, from BLV-specific T cells of the infected cattle. Taken together, these results indicate that PD-1 and LAG-3 cooperatively mediate the functional exhaustion of CD4+ and CD8+ T cells and are associated with the development of B-cell lymphoma in BLV-infected cattle.
Collapse
Affiliation(s)
- Tomohiro Okagawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Asami Nishimori
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Naoya Maekawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Shinya Goto
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
- Present Address: Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, 584-8540 Japan
| | - Junko Kohara
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku, 081-0038 Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, 001-0020 Japan
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, 001-0020 Japan
| | - Shinji Yamada
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, 980-8575 Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Graduate School of Medicine, Tohoku University, Sendai, 980-8575 Japan
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818 Japan
| |
Collapse
|
22
|
Beesley NJ, Caminade C, Charlier J, Flynn RJ, Hodgkinson JE, Martinez‐Moreno A, Martinez‐Valladares M, Perez J, Rinaldi L, Williams DJL. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound Emerg Dis 2018; 65 Suppl 1:199-216. [PMID: 28984428 PMCID: PMC6190748 DOI: 10.1111/tbed.12682] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 12/16/2022]
Abstract
Fasciola hepatica is a trematode parasite with a global distribution, which is responsible for considerable disease and production losses in a range of food producing species. It is also identified by WHO as a re-emerging neglected tropical disease associated with endemic and epidemic outbreaks of disease in human populations. In Europe, F. hepatica is mostly associated with disease in sheep, cattle and goats. This study reviews the most recent advances in our understanding of the transmission, diagnosis, epidemiology and the economic impact of fasciolosis. We also focus on the impact of the spread of resistance to anthelmintics used to control F. hepatica and consider how vaccines might be developed and applied in the context of the immune-modulation driven by the parasite. Several major research gaps are identified which, when addressed, will contribute to providing focussed and where possible, bespoke, advice for farmers on how to integrate stock management and diagnosis with vaccination and/or targeted treatment to more effectively control the parasite in the face of increasing the prevalence of infection and spread of anthelmintic resistance that are likely to be exacerbated by climate change.
Collapse
Affiliation(s)
- N. J. Beesley
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| | - C. Caminade
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
- Health Protection Research Unit in
Emerging and Zoonotic InfectionsUniversity of LiverpoolLiverpoolUK
| | | | - R. J. Flynn
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| | - J. E. Hodgkinson
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| | | | | | - J. Perez
- Universidad de CordobaCordobaSpain
| | - L. Rinaldi
- Department of Veterinary Medicine
and Animal ProductionsUniversity of Naples Federico IINapoliItaly
| | - D. J. L. Williams
- Institute of Infection and Global
HealthUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
23
|
Prostaglandin E 2 Induction Suppresses the Th1 Immune Responses in Cattle with Johne's Disease. Infect Immun 2018; 86:IAI.00910-17. [PMID: 29483289 DOI: 10.1128/iai.00910-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/17/2018] [Indexed: 12/31/2022] Open
Abstract
Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis, is a bovine chronic infection that is endemic in Japan and many other countries. The expression of immunoinhibitory molecules is upregulated in cattle with Johne's disease, but the mechanism of immunosuppression is poorly understood. Prostaglandin E2 (PGE2) is immunosuppressive in humans, but few veterinary data are available. In this study, functional and kinetic analyses of PGE2 were performed to investigate the immunosuppressive effect of PGE2 during Johne's disease. In vitro PGE2 treatment decreased T-cell proliferation and Th1 cytokine production and upregulated the expression of immunoinhibitory molecules such as interleukin-10 and programmed death ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMCs) from healthy cattle. PGE2 was upregulated in sera and intestinal lesions of cattle with Johne's disease. In vitro stimulation with Johnin purified protein derivative (J-PPD) induced cyclooxygenase-2 (COX-2) transcription, PGE2 production, and upregulation of PD-L1 and immunoinhibitory receptors in PBMCs from cattle infected with M. avium subsp. paratuberculosis Therefore, Johnin-specific Th1 responses could be limited by the PGE2 pathway in cattle. In contrast, downregulation of PGE2 with a COX-2 inhibitor promoted J-PPD-stimulated CD8+ T-cell proliferation and Th1 cytokine production in PBMCs from the experimentally infected cattle. PD-L1 blockade induced J-PPD-stimulated CD8+ T-cell proliferation and interferon gamma production in vitro Combined treatment with a COX-2 inhibitor and anti-PD-L1 antibodies enhanced J-PPD-stimulated CD8+ T-cell proliferation in vitro, suggesting that the blockade of both pathways is a potential therapeutic strategy to control Johne's disease. The effects of COX-2 inhibition warrant further study as a novel treatment of Johne's disease.
Collapse
|
24
|
He B, Yan F, Wu C. Overexpressed miR-195 attenuated immune escape of diffuse large B-cell lymphoma by targeting PD-L1. Biomed Pharmacother 2017; 98:95-101. [PMID: 29247952 DOI: 10.1016/j.biopha.2017.11.146] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) seriously threatens patients life with the morbidity increases at a high rate. Immune response disorder is the potential factor that induces DLBCL, while the potential mechanism still not fully understand. METHODS Real-time PCR and western blot were performed to determine genes expression. Flow cytometry was employed to detect the expression of PD-1 and the ratio of PD-1+T cells. Enzyme-linked immune sorbent assay (ELISA) was used to determine the cytokines secretion. RESULTS MiR-195 was down-regulated, while PD-L1 was up-regulated in DLBCL tissues, and the rate of PD-1+T cells was increased in T cells of peripheral blood in DLBCL. Overexpressed miR-195 suppressed the expression of PD-L1. Moreover, miR-195 overexpression significantly promoted the secretion of IFN-γ and TNF-α, but decreased IL-10 and PD-1+T cells rate in the co-culture model of T cells and OCI-Ly-10 cells. MiR-195 targets PD-L1 to regulate the expression of IFN-γ, TNF-α, IL-10 and the rate of PD-1+T cells. CONCLUSION MiR-195 regulated immune response of DLBCL through targeting PD-L1.
Collapse
Affiliation(s)
- Bai He
- Department of Hematology, The Third Affiliated Hospital of Suzhou University, The First People'S Hospital of Changzhou, Changzhou, 213003, Jiangsu, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Suzhou University, The First People'S Hospital of Changzhou, Changzhou, 213003, Jiangsu, China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Suzhou University, The First People'S Hospital of Changzhou, No. 185 Juqian Street, Changzhou, 213003, Jiangsu, China.
| |
Collapse
|
25
|
A canine chimeric monoclonal antibody targeting PD-L1 and its clinical efficacy in canine oral malignant melanoma or undifferentiated sarcoma. Sci Rep 2017; 7:8951. [PMID: 28827658 PMCID: PMC5567082 DOI: 10.1038/s41598-017-09444-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy targeting immune checkpoint molecules, programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1), using therapeutic antibodies has been widely used for some human malignancies in the last 5 years. A costimulatory receptor, PD-1, is expressed on T cells and suppresses effector functions when it binds to its ligand, PD-L1. Aberrant PD-L1 expression is reported in various human cancers and is considered an immune escape mechanism. Antibodies blocking the PD-1/PD-L1 axis induce antitumour responses in patients with malignant melanoma and other cancers. In dogs, no such clinical studies have been performed to date because of the lack of therapeutic antibodies that can be used in dogs. In this study, the immunomodulatory effects of c4G12, a canine-chimerised anti-PD-L1 monoclonal antibody, were evaluated in vitro, demonstrating significantly enhanced cytokine production and proliferation of dog peripheral blood mononuclear cells. A pilot clinical study was performed on seven dogs with oral malignant melanoma (OMM) and two with undifferentiated sarcoma. Objective antitumour responses were observed in one dog with OMM (14.3%, 1/7) and one with undifferentiated sarcoma (50.0%, 1/2) when c4G12 was given at 2 or 5 mg/kg, every 2 weeks. c4G12 could be a safe and effective treatment option for canine cancers.
Collapse
|
26
|
Okagawa T, Konnai S, Nishimori A, Maekawa N, Ikebuchi R, Goto S, Nakajima C, Kohara J, Ogasawara S, Kato Y, Suzuki Y, Murata S, Ohashi K. Anti-Bovine Programmed Death-1 Rat-Bovine Chimeric Antibody for Immunotherapy of Bovine Leukemia Virus Infection in Cattle. Front Immunol 2017. [PMID: 28638381 PMCID: PMC5461298 DOI: 10.3389/fimmu.2017.00650] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Blockade of immunoinhibitory molecules, such as programmed death-1 (PD-1)/PD-ligand 1 (PD-L1), is a promising strategy for reinvigorating exhausted T cells and preventing disease progression in a variety of chronic infections. Application of this therapeutic strategy to cattle requires bovinized chimeric antibody targeting immunoinhibitory molecules. In this study, anti-bovine PD-1 rat–bovine chimeric monoclonal antibody 5D2 (Boch5D2) was constructed with mammalian expression systems, and its biochemical function and antiviral effect were characterized in vitro and in vivo using cattle infected with bovine leukemia virus (BLV). Purified Boch5D2 was capable of detecting bovine PD-1 molecules expressed on cell membranes in flow cytometric analysis. In particular, Biacore analysis determined that the binding affinity of Boch5D2 to bovine PD-1 protein was similar to that of the original anti-bovine PD-1 rat monoclonal antibody 5D2. Boch5D2 was also capable of blocking PD-1/PD-L1 binding at the same level as 5D2. The immunomodulatory and therapeutic effects of Boch5D2 were evaluated by in vivo administration of the antibody to a BLV-infected calf. Inoculated Boch5D2 was sustained in the serum for a longer period. Boch5D2 inoculation resulted in activation of the proliferation of BLV-specific CD4+ T cells and decrease in the proviral load of BLV in the peripheral blood. This study demonstrates that Boch5D2 retains an equivalent biochemical function to that of the original antibody 5D2 and is a candidate therapeutic agent for regulating antiviral immune response in vivo. Clinical efficacy of PD-1/PD-L1 blockade awaits further experimentation with a large number of animals.
Collapse
Affiliation(s)
- Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Goto
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Junko Kohara
- Animal Research Center, Agriculture Research Department, Hokkaido Research Organization, Shintoku, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
27
|
Goto S, Konnai S, Okagawa T, Nishimori A, Maekawa N, Gondaira S, Higuchi H, Koiwa M, Tajima M, Kohara J, Ogasawara S, Kato Y, Suzuki Y, Murata S, Ohashi K. Increase of cells expressing PD-1 and PD-L1 and enhancement of IFN-γ production via PD-1/PD-L1 blockade in bovine mycoplasmosis. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:355-363. [PMID: 28544524 PMCID: PMC5569371 DOI: 10.1002/iid3.173] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 12/31/2022]
Abstract
Introduction Bovine mycoplasma, chiefly Mycoplasma bovis, is a pathogen that causes pneumonia, mastitis, arthritis, and otitis media in cattle. This pathogen exerts immunosuppressive effects, such as the inhibition of interferon production. However, the mechanisms involved in bovine mycoplasmosis have not been fully elucidated. In this study, we investigated the role of the programmed death‐1 (PD‐1)/programmed death‐ligand 1 (PD‐L1) pathway in immunosuppression in bovine mycoplasmosis. Methods In the initial experiments, we used enzyme‐linked immunosorbent assay to measure interferon‐γ (IFN‐γ) from peripheral blood mononuclear cells (PBMCs) isolated from cattle with mycoplasmosis. Results Expectedly, IFN‐γ production significantly decreased in cattle with mycoplasmosis compared with that in clinically healthy cattle. Concomitantly, flow cytometric analysis revealed that the proportions of PD‐1+CD4+ and PD‐L1+CD14+ cells significantly increased in peripheral blood of the infected cattle. Interestingly, the number of PD‐1+CD4+ and PD‐1+CD8+ T cells were negatively correlated with IFN‐γ production from PBMCs in bovine mycoplasmosis. Additionally, blockade of the PD‐1/PD‐L1 pathway in vitro by anti‐bovine PD‐1‐ and anti‐bovine PD‐L1 antibodies significantly upregulated the production of IFN‐γ from anti‐mycoplasma‐specific cells. Conclusions These results suggest that the PD‐1/PD‐L1 pathway could be involved in immune exhaustion of bovine mycoplasma‐specific T cells. In conclusion, our study opens up a new perspective in the therapeutic strategy for bovine mycoplasmosis by targeting the immunoinhibitory receptor pathways.
Collapse
Affiliation(s)
- Shinya Goto
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Gondaira
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hidetoshi Higuchi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Masateru Koiwa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Motoshi Tajima
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Junko Kohara
- Hokkaido Research Organization, Agriculture Research Department, Animal Research Center, Shintoku, Japan
| | - Satoshi Ogasawara
- Department of Regional Innovation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Nishimori A, Konnai S, Okagawa T, Maekawa N, Ikebuchi R, Goto S, Sajiki Y, Suzuki Y, Kohara J, Ogasawara S, Kato Y, Murata S, Ohashi K. In vitro and in vivo antivirus activity of an anti-programmed death-ligand 1 (PD-L1) rat-bovine chimeric antibody against bovine leukemia virus infection. PLoS One 2017; 12:e0174916. [PMID: 28445479 PMCID: PMC5405919 DOI: 10.1371/journal.pone.0174916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/17/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed death-1 (PD-1), an immunoinhibitory receptor on T cells, is known to be involved in immune evasion through its binding to PD-ligand 1 (PD-L1) in many chronic diseases. We previously found that PD-L1 expression was upregulated in cattle infected with bovine leukemia virus (BLV) and that an antibody that blocked the PD-1/PD-L1 interaction reactivated T-cell function in vitro. Therefore, this study assessed its antivirus activities in vivo. First, we inoculated the anti-bovine PD-L1 rat monoclonal antibody 4G12 into a BLV-infected cow. However, this did not induce T-cell proliferation or reduction of BLV provirus loads during the test period, and only bound to circulating IgM+ B cells until one week post-inoculation. We hypothesized that this lack of in vivo effects was due to its lower stability in cattle and so established an anti-PD-L1 rat-bovine chimeric antibody (Boch4G12). Boch4G12 was able to bind specifically with bovine PD-L1, interrupt the PD-1/PD-L1 interaction, and activate the immune response in both healthy and BLV-infected cattle in vitro. Therefore, we experimentally infected a healthy calf with BLV and inoculated it intravenously with 1 mg/kg of Boch4G12 once it reached the aleukemic (AL) stage. Cultivation of peripheral blood mononuclear cells (PBMCs) isolated from the tested calf indicated that the proliferation of CD4+ T cells was increased by Boch4G12 inoculation, while BLV provirus loads were significantly reduced, clearly demonstrating that this treatment induced antivirus activities. Therefore, further studies using a large number of animals are required to support its efficacy for clinical application.
Collapse
Affiliation(s)
- Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Maekawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Goto
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yamato Sajiki
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Junko Kohara
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Japan
| | | | - Yukinari Kato
- Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Prognostic impact of programmed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor-infiltrating lymphocytes in ovarian high grade serous carcinoma. Oncotarget 2016; 7:1486-99. [PMID: 26625204 PMCID: PMC4811475 DOI: 10.18632/oncotarget.6429] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022] Open
Abstract
Aims Antibodies targeting the checkpoint molecules programmed cell death 1 (PD-1) and its ligand PD-L1 are emerging cancer therapeutics. We systematically investigated PD-1 and PD-L1 expression patterns in the poor-prognosis tumor entity high-grade serous ovarian carcinoma. Methods PD-1 and PD-L1 protein expression was determined by immunohistochemistry on tissue microarrays from 215 primary cancers both in cancer cells and in tumor-infiltrating lymphocytes (TILs). mRNA expression was measured by quantitative reverse transcription PCR. An in silico validation of mRNA data was performed in The Cancer Genome Atlas (TCGA) dataset. Results PD-1 and PD-L1 expression in cancer cells, CD3+, PD-1+, and PD-L1+ TILs densities as well as PD-1 and PD-L1 mRNA levels were positive prognostic factors for progression-free (PFS) and overall survival (OS), with all factors being significant for PFS (p < 0.035 each), and most being significant for OS. Most factors also had prognostic value that was independent from age, stage, and residual tumor. Moreover, high PD-1+ TILs as well as PD-L1+ TILs densities added prognostic value to CD3+TILs (PD-1+: p = 0.002,; PD-L1+: p = 0.002). The significant positive prognostic impact of PD-1 and PD-L1 mRNA expression could be reproduced in the TCGA gene expression datasets (p = 0.02 and p < 0.0001, respectively). Conclusions Despite their reported immune-modulatory function, high PD-1 and PD-L1 levels are indicators of a favorable prognosis in ovarian cancer. Our data indicate that PD-1 and PD-L1 molecules are biologically relevant regulators of the immune response in high-grade serous ovarian carcinoma, which is an argument for the evaluation of immune checkpoint inhibiting drugs in this tumor entity.
Collapse
|
30
|
Abstract
Recently, dysfunction of antigen-specific T cells is well documented as T-cell exhaustion and has been defined by the loss of effector functions during chronic infections and cancer in human. The exhausted T cells are characterized phenotypically by the surface expression of immunoinhibitory receptors, such as programmed death 1 (PD-1), lymphocyte activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) and cytotoxic T-lymphocyte antigen 4 (CTLA-4). However, there is still a fundamental lack of knowledge about the immunoinhibitory receptors in the fields of veterinary medicine. In particular, very little is known about mechanism of T cell dysfunction in chronic infection in cattle. Recent our studies have revealed that immunoinhibitory molecules including PD-1/ programmed death-ligand 1 (PD-L1) play critical roles in immune exhaustion and disease progression in case of bovine leukemia virus (BLV) infection, Johne's disease and bovine anaplasmosis. This review includes some recent data from us.
Collapse
Affiliation(s)
- Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | |
Collapse
|
31
|
Cooperation of PD-1 and LAG-3 Contributes to T-Cell Exhaustion in Anaplasma marginale-Infected Cattle. Infect Immun 2016; 84:2779-90. [PMID: 27430272 DOI: 10.1128/iai.00278-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/15/2016] [Indexed: 01/02/2023] Open
Abstract
The CD4(+) T-cell response is central for the control of Anaplasma marginale infection in cattle. However, the infection induces a functional exhaustion of antigen-specific CD4(+) T cells in cattle immunized with A. marginale outer membrane proteins or purified outer membranes (OMs), which presumably facilitates the persistence of this rickettsia. In the present study, we hypothesize that T-cell exhaustion following infection is induced by the upregulation of immunoinhibitory receptors on T cells, such as programmed death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3). OM-specific T-cell responses and the kinetics of PD-1-positive (PD-1(+)) LAG-3(+) exhausted T cells were monitored in A. marginale-challenged cattle previously immunized with OMs. Consistent with data from previous studies, OM-specific proliferation of peripheral blood mononuclear cells (PBMCs) and interferon gamma (IFN-γ) production were significantly suppressed in challenged animals by 5 weeks postinfection (wpi). In addition, bacteremia and anemia also peaked in these animals at 5 wpi. Flow cytometric analysis revealed that the percentage of PD-1(+) LAG-3(+) T cells in the CD4(+), CD8(+), and γδ T-cell populations gradually increased and also peaked at 5 wpi. A large increase in the percentage of LAG-3(+) γδ T cells was also observed. Importantly, in vitro, the combined blockade of the PD-1 and LAG-3 pathways partially restored OM-specific PBMC proliferation and IFN-γ production at 5 wpi. Taken together, these results indicate that coexpression of PD-1 and LAG-3 on T cells contributes to the rapid exhaustion of A. marginale-specific T cells following infection and that these immunoinhibitory receptors regulate T-cell responses during bovine anaplasmosis.
Collapse
|
32
|
Maekawa N, Konnai S, Okagawa T, Nishimori A, Ikebuchi R, Izumi Y, Takagi S, Kagawa Y, Nakajima C, Suzuki Y, Kato Y, Murata S, Ohashi K. Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma. PLoS One 2016; 11:e0157176. [PMID: 27276060 PMCID: PMC4898770 DOI: 10.1371/journal.pone.0157176] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/25/2016] [Indexed: 12/11/2022] Open
Abstract
Spontaneous cancers are common diseases in dogs. Among these, some malignant cancers such as oral melanoma, osteosarcoma, hemangiosarcoma, and mast cell tumor are often recognized as clinical problems because, despite their high frequencies, current treatments for these cancers may not always achieve satisfying outcomes. The absence of effective systemic therapies against these cancers leads researchers to investigate novel therapeutic modalities, including immunotherapy. Programmed death 1 (PD-1) is a costimulatory receptor with immunosuppressive function. When it binds its ligands, PD-ligand 1 (PD-L1) or PD-L2, PD-1 on T cells negatively regulates activating signals from the T cell receptor, resulting in the inhibition of the effector function of cytotoxic T lymphocytes. Aberrant PD-L1 expression has been reported in many human cancers and is considered an immune escape mechanism for cancers. In clinical trials, anti-PD-1 or anti-PD-L1 antibodies induced tumor regression for several malignancies, including advanced melanoma, non-small cell lung carcinoma, and renal cell carcinoma. In this study, to assess the potential of the PD-1/PD-L1 axis as a novel therapeutic target for canine cancer immunotherapy, immunohistochemical analysis of PD-L1 expression in various malignant cancers of dogs was performed. Here, we show that dog oral melanoma, osteosarcoma, hemangiosarcoma, mast cell tumor, mammary adenocarcinoma, and prostate adenocarcinoma expressed PD-L1, whereas some other types of cancer did not. In addition, PD-1 was highly expressed on tumor-infiltrating lymphocytes obtained from oral melanoma, showing that lymphocytes in this cancer type might have been functionally exhausted. These results strongly encourage the clinical application of PD-1/PD-L1 inhibitors as novel therapeutic agents against these cancers in dogs.
Collapse
Affiliation(s)
- Naoya Maekawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Izumi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Takagi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yumiko Kagawa
- North Lab, Sapporo, Japan
- Department of Diagnostic Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Chie Nakajima
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukinari Kato
- Department of Regional Innovation, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
33
|
Hartley G, Faulhaber E, Caldwell A, Coy J, Kurihara J, Guth A, Regan D, Dow S. Immune regulation of canine tumour and macrophage PD-L1 expression. Vet Comp Oncol 2016; 15:534-549. [PMID: 26842912 DOI: 10.1111/vco.12197] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/08/2015] [Accepted: 10/25/2015] [Indexed: 01/08/2023]
Abstract
Expression of programmed cell death receptor ligand 1 (PD-L1) on tumor cells has been associated with immune escape in human and murine cancers, but little is known regarding the immune regulation of PD-L1 expression by tumor cells and tumor-infiltrating macrophages in dogs. Therefore, 14 canine tumor cell lines, as well as primary cultures of canine monocytes and macrophages, were evaluated for constitutive PD-L1 expression and for responsiveness to immune stimuli. We found that PD-L1 was expressed constitutively on all canine tumor cell lines evaluated, although the levels of basal expression were very variable. Significant upregulation of PD-L1 expression by all tumor cell lines was observed following IFN-γ exposure and by exposure to a TLR3 ligand. Canine monocytes and monocyte-derived macrophages did not express PD-L1 constitutively, but did significantly upregulate expression following treatment with IFN-γ. These findings suggest that most canine tumors express PD-L1 constitutively and that both innate and adaptive immune stimuli can further upregulate PD-L1 expression. Therefore the upregulation of PD-L1 expression by tumor cells and by tumor-infiltrating macrophages in response to cytokines such as IFN-γ may represent an important mechanism of tumor-mediated T-cell suppression in dogs as well as in humans.
Collapse
Affiliation(s)
- G Hartley
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - E Faulhaber
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - A Caldwell
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - J Coy
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - J Kurihara
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - A Guth
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - D Regan
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| | - S Dow
- Department of Clinical Sciences, Flint Animal Cancer Center, Colorado State University, Ft. Collins, CO, USA
| |
Collapse
|
34
|
Brown WC, Barbet AF. Persistent Infections and Immunity in Ruminants to Arthropod-Borne Bacteria in the Family Anaplasmataceae. Annu Rev Anim Biosci 2015; 4:177-97. [PMID: 26734888 DOI: 10.1146/annurev-animal-022513-114206] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tick-transmitted gram-negative bacteria in the family Anaplasmataceae in the order Rickettsiales cause persistent infection and morbidity and mortality in ruminants. Whereas Anaplasma marginale infection is restricted to ruminants, Anaplasma phagocytophilum is promiscuous and, in addition to causing disease in sheep and cattle, notably causes disease in humans, horses, and dogs. Although the two pathogens invade and replicate in distinct blood cells (erythrocytes and neutrophils, respectively), they have evolved similar mechanisms of antigenic variation in immunodominant major surface protein 2 (MSP2) and MSP2(P44) that result in immune evasion and persistent infection. Furthermore, these bacteria have evolved distinct strategies to cause immune dysfunction, characterized as an antigen-specific CD4 T-cell exhaustion for A. marginale and a generalized immune suppression for A. phagocytophilum, that also facilitate persistence. This indicates highly adapted strategies of Anaplasma spp. to both suppress protective immune responses and evade those that do develop. However, conserved subdominant antigens are potential targets for immunization.
Collapse
Affiliation(s)
- Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164;
| | - Anthony F Barbet
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida 32611;
| |
Collapse
|
35
|
Bovine Immunoinhibitory Receptors Contribute to Suppression of Mycobacterium avium subsp. paratuberculosis-Specific T-Cell Responses. Infect Immun 2015; 84:77-89. [PMID: 26483406 DOI: 10.1128/iai.01014-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/10/2015] [Indexed: 01/09/2023] Open
Abstract
Johne's disease (paratuberculosis) is a chronic enteritis in cattle that is caused by intracellular infection with Mycobacterium avium subsp. paratuberculosis. This infection is characterized by the functional exhaustion of T-cell responses to M. avium subsp. paratuberculosis antigens during late subclinical and clinical stages, presumably facilitating the persistence of this bacterium and the formation of clinical lesions. However, the mechanisms underlying T-cell exhaustion in Johne's disease are poorly understood. Thus, we performed expression and functional analyses of the immunoinhibitory molecules programmed death-1 (PD-1)/PD-ligand 1 (PD-L1) and lymphocyte activation gene 3 (LAG-3)/major histocompatibility complex class II (MHC-II) in M. avium subsp. paratuberculosis-infected cattle during the late subclinical stage. Flow cytometric analyses revealed the upregulation of PD-1 and LAG-3 in T cells in infected animals, which suffered progressive suppression of interferon gamma (IFN-γ) responses to the M. avium subsp. paratuberculosis antigen. In addition, PD-L1 and MHC-II were expressed on macrophages from infected animals, consistent with PD-1 and LAG-3 pathways contributing to the suppression of IFN-γ responses during the subclinical stages of M. avium subsp. paratuberculosis infection. Furthermore, dual blockade of PD-L1 and LAG-3 enhanced M. avium subsp. paratuberculosis-specific IFN-γ responses in blood from infected animals, and in vitro LAG-3 blockade enhanced IFN-γ production from M. avium subsp. paratuberculosis-specific CD4(+) and CD8(+) T cells. Taken together, the present data indicate that M. avium subsp. paratuberculosis-specific T-cell exhaustion is in part mediated by PD-1/PD-L1 and LAG-3/MHC-II interactions and that LAG-3 is a molecular target for the control of M. avium subsp. paratuberculosis-specific T-cell responses.
Collapse
|
36
|
Toyomane K, Konnai S, Niwa A, Githaka N, Isezaki M, Yamada S, Ito T, Takano A, Ando S, Kawabata H, Murata S, Ohashi K. Identification and the preliminary in vitro characterization of IRIS homologue from salivary glands of Ixodes persulcatus Schulze. Ticks Tick Borne Dis 2015; 7:119-125. [PMID: 26460162 DOI: 10.1016/j.ttbdis.2015.09.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
Ixodes ricinus immunosuppressor (Iris) is a tick salivary gland protein derived from I. ricinus. In this study, Iris homolog was identified in the salivary glands of Ixodes persulcatus, which is the specific vector of the Lyme disease agent in Japan. The homolog was named Ipis-1. To investigate the function of Ipis-1, we prepared a recombinant Ipis-1 expressed in COS-7 cells as a rabbit IgG Fc-fused protein (Ipis-1-Ig). Cell proliferation assay and IFN-γ ELISA showed that Ipis-1-Ig inhibits the proliferation and IFN-γ production of bovine peripheral blood mononuclear cells (PBMCs). Notably, Ipis-1-Ig inhibited the cell proliferation and production of IFN-γ in bovine PBMCs even when CD14(+) cells were depleted, suggesting that Ipis could directly interact with T cells and inhibit their functions. In conclusion, Ipis could contribute to the establishment of environments suitable for tick blood feeding and pathogen transmission by suppressing the function of immune cells.
Collapse
Affiliation(s)
- Kochi Toyomane
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | - Ayano Niwa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Naftaly Githaka
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masayoshi Isezaki
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Shinji Yamada
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Ito
- Hokkaido Institute of Public Health, Sapporo, Japan
| | - Ai Takano
- Department of Veterinary Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Shuji Ando
- National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Kawabata
- National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
37
|
Maekawa N, Konnai S, Ikebuchi R, Okagawa T, Adachi M, Takagi S, Kagawa Y, Nakajima C, Suzuki Y, Murata S, Ohashi K. Expression of PD-L1 on canine tumor cells and enhancement of IFN-γ production from tumor-infiltrating cells by PD-L1 blockade. PLoS One 2014; 9:e98415. [PMID: 24915569 PMCID: PMC4051644 DOI: 10.1371/journal.pone.0098415] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/02/2014] [Indexed: 12/30/2022] Open
Abstract
Programmed death 1 (PD-1), an immunoinhibitory receptor, and programmed death ligand 1 (PD-L1), its ligand, together induce the “exhausted” status in antigen-specific lymphocytes and are thus involved in the immune evasion of tumor cells. In this study, canine PD-1 and PD-L1 were molecularly characterized, and their potential as therapeutic targets for canine tumors was discussed. The canine PD-1 and PD-L1 genes were conserved among canine breeds. Based on the sequence information obtained, the recombinant canine PD-1 and PD-L1 proteins were constructed; they were confirmed to bind each other. Antibovine PD-L1 monoclonal antibody effectively blocked the binding of recombinant PD-1 with PD-L1–expressing cells in a dose-dependent manner. Canine melanoma, mastocytoma, renal cell carcinoma, and other types of tumors examined expressed PD-L1, whereas some did not. Interestingly, anti-PD-L1 antibody treatment enhanced IFN-γ production from tumor-infiltrating cells. These results showed that the canine PD-1/PD-L1 pathway is also associated with T-cell exhaustion in canine tumors and that its blockade with antibody could be a new therapeutic strategy for canine tumors. Further investigations are needed to confirm the ability of anti-PD-L1 antibody to reactivate canine antitumor immunity in vivo, and its therapeutic potential has to be further discussed.
Collapse
Affiliation(s)
- Naoya Maekawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mami Adachi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Takagi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yumiko Kagawa
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- North Lab, Sapporo, Japan
| | - Chie Nakajima
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
38
|
Nishimori A, Konnai S, Ikebuchi R, Okagawa T, Nakajima C, Suzuki Y, Mingala CN, Murata S, Ohashi K. Identification and characterization of bovine programmed death-ligand 2. Microbiol Immunol 2014; 58:388-97. [PMID: 24845976 DOI: 10.1111/1348-0421.12160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/03/2014] [Accepted: 05/12/2014] [Indexed: 11/30/2022]
Abstract
Previous reports from this group have indicated that the immunoinhibitory programmed death (PD)-1 receptor and its ligand, PD-L1, are involved in the mechanism of immune evasion of bovine chronic infection. However, no functional analysis of bovine PD-L2 in cattle has been reported. Thus, in this study, the molecular function of bovine PD-L2 was analyzed in vitro. Recombinant PD-L2 (PD-L2-Ig), which comprises an extracellular domain of bovine PD-L2 fused to the Fc portion of rabbit IgG1, was prepared based on the cloned cDNA sequence for bovine PD-L2. Bovine PD-L2-Ig bound to bovine PD-1-expressing cells and addition of soluble bovine PD-1-Ig clearly inhibited the binding of PD-L2-Ig to membrane PD-1 in a dose-dependent manner. Cell proliferation and IFN-γ production were significantly enhanced in the presence of PD-L2-Ig in peripheral blood mononuclear cells (PBMCs) from cattle. Moreover, PD-L2-Ig significantly enhanced IFN-γ production from virus envelope peptides-stimulated PBMCs derived from bovine leukemia virus-infected cattle. Interestingly, PD-L2-Ig-induced IFN-γ production was further enhanced by treatment with anti-bovine PD-1 antibody. These data suggest potential applications of bovine PD-L2-Ig as a therapy for bovine diseases.
Collapse
Affiliation(s)
- Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ikebuchi R, Konnai S, Okagawa T, Nishimori A, Nakahara A, Murata S, Ohashi K. Differences in cellular function and viral protein expression between IgMhigh and IgMlow B-cells in bovine leukemia virus-infected cattle. J Gen Virol 2014; 95:1832-1842. [PMID: 24814926 DOI: 10.1099/vir.0.065011-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bovine leukemia virus (BLV) induces abnormal B-cell proliferation and B-cell lymphoma in cattle, where the BLV provirus is integrated into the host genome. BLV-infected B-cells rarely express viral proteins in vivo, but short-term cultivation augments BLV expression in some, but not all, BLV-infected B-cells. This observation suggests that two subsets, i.e. BLV-silencing cells and BLV-expressing cells, are present among BLV-infected B-cells, although the mechanisms of viral expression have not been determined. In this study, we examined B-cell markers and viral antigen expression in B-cells from BLV-infected cattle to identify markers that may discriminate BLV-expressing cells from BLV-silencing cells. The proportions of IgM(high) B-cells were increased in blood lymphocytes from BLV-infected cattle. IgM(high) B-cells mainly expressed BLV antigens, whereas IgM(low) B-cells did not, although the provirus load was equivalent in both subsets. Several parameters were investigated in these two subsets to characterize their cellular behaviour. Real-time PCR and microarray analyses detected higher expression levels of some proto-oncogenes (e.g. Maf, Jun and Fos) in IgM(low) B-cells than those in IgM(high) B-cells. Moreover, lymphoma cells obtained from the lymph nodes of 14 BLV-infected cattle contained IgM(low) or IgM(-) B-cells but no IgM(high) B-cells. To our knowledge, this is the first study to demonstrate that IgM(high) B-cells mainly comprise BLV-expressing cells, whereas IgM(low) B-cells comprise a high proportion of BLV-silencing B-cells in BLV-infected cattle.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Okagawa
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asami Nishimori
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ayako Nakahara
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shiro Murata
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|