1
|
Sahu R, Verma R, Egbo TE, Giambartolomei GH, Singh SR, Dennis VA. Effects of prime-boost strategies on the protective efficacy and immunogenicity of a PLGA (85:15)-encapsulated Chlamydia recombinant MOMP nanovaccine. Pathog Dis 2024; 82:ftae004. [PMID: 38862192 PMCID: PMC11186516 DOI: 10.1093/femspd/ftae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024] Open
Abstract
To begin to optimize the immunization routes for our reported PLGA-rMOMP nanovaccine [PLGA-encapsulated Chlamydia muridarum (Cm) recombinant major outer membrane protein (rMOMP)], we compared two prime-boost immunization strategies [subcutaneous (SC) and intramuscular (IM-p) prime routes followed by two SC-boosts)] to evaluate the nanovaccine-induced protective efficacy and immunogenicity in female BALB/c mice. Our results showed that mice immunized via the SC and IM-p routes were protected against a Cm genital challenge by a reduction in bacterial burden and with fewer bacteria in the SC mice. Protection of mice correlated with rMOMP-specific Th1 (IL-2 and IFN-γ) and not Th2 (IL-4, IL-9, and IL-13) cytokines, and CD4+ memory (CD44highCD62Lhigh) T-cells, especially in the SC mice. We also observed higher levels of IL-1α, IL-6, IL-17, CCL-2, and G-CSF in SC-immunized mice. Notably, an increase of cytokines/chemokines was seen after the challenge in the SC, IM-p, and control mice (rMOMP and PBS), suggesting a Cm stimulation. In parallel, rMOMP-specific Th1 (IgG2a and IgG2b) and Th2 (IgG1) serum, mucosal, serum avidity, and neutralizing antibodies were more elevated in SC than in IM-p mice. Overall, the homologous SC prime-boost immunization of mice induced enhanced cellular and antibody responses with better protection against a genital challenge compared to the heterologous IM-p.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Timothy E Egbo
- US Army Medical Research Institute of Infectious Diseases, Unit 8900, DPO, AE, Box 330, 09831, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM). CONICET. AV. Cordoba 2351, Universidad de Buenos Aires, Buenos Aires, C1120AAR, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, 1627 Harris Way, Alabama State University, Montgomery AL, 36104, United States
| |
Collapse
|
2
|
Armitage CW, O'Meara CP, Bryan ER, Kollipara A, Trim LK, Hickey D, Carey AJ, Huston WM, Donnelly G, Yazdani A, Blumberg RS, Beagley KW. IgG exacerbates genital chlamydial pathology in females by enhancing pathogenic CD8 + T cell responses. Scand J Immunol 2024; 99:e13331. [PMID: 38441219 PMCID: PMC10909563 DOI: 10.1111/sji.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 03/07/2024]
Abstract
Chlamydia trachomatis infections are an important sexually transmitted infection that can lead to inflammation, scarring and hydrosalpinx/infertility. However, infections are commonly clinically asymptomatic and do not receive treatment. The underlying cause of asymptomatic immunopathology remains unknown. Here, we demonstrate that IgG produced during male infection enhanced the incidence of immunopathology and infertility in females. Human endocervical cells expressing the neonatal Fc Receptor (FcRn) increased translocation of human IgG-opsonized C. trachomatis. Using total IgG purified from infected male mice, we opsonized C. muridarum and then infected female mice, mimicking sexual transmission. Following infection, IgG-opsonized Chlamydia was found to transcytose the epithelial barrier in the uterus, where it was phagocytosed by antigen-presenting cells (APCs) and trafficked to the draining lymph nodes. APCs then expanded both CD4+ and CD8+ T cell populations and caused significantly more infertility in female mice infected with non-opsonized Chlamydia. Enhanced phagocytosis of IgG-opsonized Chlamydia significantly increased pro-inflammatory signalling and T cell proliferation. As IgG is transcytosed by FcRn, we utilized FcRn-/- mice and observed that shedding kinetics of Chlamydia were only affected in FcRn-/- mice infected with IgG-opsonized Chlamydia. Depletion of CD8+ T cells in FcRn-/- mice lead to a significant reduction in the incidence of infertility. Taken together, these data demonstrate that IgG seroconversion during male infection can amplify female immunopathology, dependent on FcRn transcytosis, APC differentiation and enhanced CD8 T cell responses.
Collapse
Affiliation(s)
- Charles W. Armitage
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Connor P. O'Meara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Drop Bio Ltd, School of Biotechnology and Biomolecular Sciences (BABS)University of New South WalesSydneyNew South WalesAustralia
| | - Emily R. Bryan
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Avinash Kollipara
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Logan K. Trim
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Danica Hickey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Alison J. Carey
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Wilhelmina M. Huston
- School of Life SciencesUniversity of Technology (UTS) SydneyUltimoNew South WalesAustralia
| | - Gavin Donnelly
- Queensland Fertility Group (QFG)BrisbaneQueenslandAustralia
| | - Anusch Yazdani
- Queensland Fertility Group (QFG)BrisbaneQueenslandAustralia
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of MedicineBrigham & Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Kenneth W. Beagley
- Centre for Immunology and Infection Control and School of Biomedical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| |
Collapse
|
3
|
Lorenzen E, Contreras V, Olsen AW, Andersen P, Desjardins D, Rosenkrands I, Juel HB, Delache B, Langlois S, Delaugerre C, Joubert C, Dereuddre-Bosquet N, Bébéar C, De Barbeyrac B, Touati A, McKay PF, Shattock RJ, Le Grand R, Follmann F, Dietrich J. Multi-component prime-boost Chlamydia trachomatis vaccination regimes induce antibody and T cell responses and accelerate clearance of infection in a non-human primate model. Front Immunol 2022; 13:1057375. [PMID: 36505459 PMCID: PMC9726737 DOI: 10.3389/fimmu.2022.1057375] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua fascicularis) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis-specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis-specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.
Collapse
Affiliation(s)
- Emma Lorenzen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Anja W. Olsen
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Peter Andersen
- Novo Nordisk Foundation, Infectious Disease, Hellerup, Denmark
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Ida Rosenkrands
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Helene Bæk Juel
- Novo Nordisk Foundation, Center for Basic Metabolic Research, Copenhagen, Denmark
| | - Benoit Delache
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sebastien Langlois
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Constance Delaugerre
- Laboratory of Virology, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris, Université de Paris, Paris Cité, Paris, France
| | - Christophe Joubert
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Cécile Bébéar
- Bordeaux University Hopsital, Bacteriology Department, National Reference Centre for bacterial Sexually Transmitted Infections, Bordeaux, France
| | - Bertille De Barbeyrac
- Bordeaux University Hopsital, Bacteriology Department, National Reference Centre for bacterial Sexually Transmitted Infections, Bordeaux, France
| | - Arabella Touati
- Bordeaux University Hopsital, Bacteriology Department, National Reference Centre for bacterial Sexually Transmitted Infections, Bordeaux, France
| | - Paul F. McKay
- Department of Medicine, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Robin J. Shattock
- Department of Medicine, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frank Follmann
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Jes Dietrich
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark,*Correspondence: Jes Dietrich,
| |
Collapse
|
4
|
Ardizzone CM, Albritton HL, Lillis RA, Bagnetto CEL, Shen L, Cavacini LA, Kozlowski PA, Quayle AJ. Human genital antibody-mediated inhibition of Chlamydia trachomatis infection and evidence for ompA genotype-specific neutralization. PLoS One 2021; 16:e0258759. [PMID: 34662351 PMCID: PMC8523062 DOI: 10.1371/journal.pone.0258759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
The endocervix, the primary site of Chlamydia trachomatis (Ct) infection in women, has a unique repertoire of locally synthesized IgG and secretory IgA (SIgA) with contributions from serum IgG. Here, we assessed the ability of genital and serum-derived IgG and IgA from women with a recent positive Ct test to neutralize Ct elementary bodies (EBs) and inhibit inclusion formation in vitro in human endocervical epithelial cells. We also determined if neutralization was influenced by the major outer membrane protein (MOMP) of the infecting strain, as indicated by ompA gene sequencing and genotyping. At equivalent low concentrations of Ct EB (D/UW-3/Cx + E/UW-5/Cx)-specific antibody, genital-derived IgG and IgA and serum IgA, but not serum IgG, significantly inhibited inclusion formation, with genital IgA being most effective, followed by genital IgG, then serum IgA. The well-characterized Ct genotype D strain, D/UW-3/Cx, was neutralized by serum-derived IgG from patients infected with genotype D strains, genital IgG from patients infected with genotype D or E strains, and by genital IgA from patients infected with genotype D, E, or F strains. Additionally, inhibition of D/UW-3/Cx infection by whole serum, rather than purified immunoglobulin, was associated with levels of serum EB-specific IgG rather than the genotype of infecting strain. In contrast, a Ct genotype Ia clinical isolate, Ia/LSU-56/Cx, was neutralized by whole serum in a genotype and genogroup-specific manner, and inhibition also correlated with EB-specific IgG concentrations in serum. Taken together, these data suggest that (i) genital IgA most effectively inhibits Ct infection in vitro, (ii) human antibody-mediated inhibition of Ct infection is significantly influenced by the ompA genotype of the infecting strain, (iii) the genital antibody repertoire develops or matures differently compared to systemic antibody, and (iv) ompA genotype-specificity of inhibition of infection by whole serum can be overcome by high concentrations of Ct-specific IgG.
Collapse
Affiliation(s)
- Caleb M. Ardizzone
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Rebecca A. Lillis
- Division of Infectious Diseases, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Caitlyn E. L. Bagnetto
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Lisa A. Cavacini
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| |
Collapse
|
5
|
Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021; 12:660932. [PMID: 33936096 PMCID: PMC8081181 DOI: 10.3389/fimmu.2021.660932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Skyla A. Duncan
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Lula Smith
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
6
|
Verma R, Sahu R, Dixit S, Duncan SA, Giambartolomei GH, Singh SR, Dennis VA. The Chlamydia M278 Major Outer Membrane Peptide Encapsulated in the Poly(lactic acid)-Poly(ethylene glycol) Nanoparticulate Self-Adjuvanting Delivery System Protects Mice Against a Chlamydia muridarum Genital Tract Challenge by Stimulating Robust Systemic and Local Mucosal Immune Responses. Front Immunol 2018; 9:2369. [PMID: 30374357 PMCID: PMC6196261 DOI: 10.3389/fimmu.2018.02369] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that our PPM chlamydial nanovaccine [a biodegradable co-polymeric PLA-PEG (poly(lactic acid)-poly(ethylene glycol))-encapsulated M278 peptide (derived from the major outer membrane protein (MOMP) of Chlamydia)] exploits the caveolin-mediated endocytosis pathway for endosomal processing and MHC class II presentation to immune-potentiate Chlamydia-specific CD4+ T-cell immune effector responses. In the present study, we employed the Chlamydia muridarum mouse infection model to evaluate the protective efficacy of PPM against a genital tract challenge. Our results show that mice immunized with PPM were significantly protected against a homologous genital tract challenge evidently by reduced vaginal bacterial loads. Protection of mice correlated with enhanced Chlamydia-specific adaptive immune responses predominated by IFN-γ along with CD4+ T-cells proliferation and their differentiation to CD4+ memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) T-cell phenotypes. We observed the elevation of M278- and MOMP-specific serum antibodies with high avidity in the ascending order IgG1 > IgG2b > IgG2a. A key finding was the elevated mucosal IgG1 and IgA antibody titers followed by an increase in MOMP-specific IgA after the challenge. The Th1/Th2 antibody titer ratios (IgG2a/IgG1 and IgG2b/IgG1) revealed that PPM evoked a Th2-directed response, which skewed to a Th1-dominated antibody response after the bacterial challenge of mice. In addition, PPM immune sera neutralized the infectivity of C. muridarum in McCoy cells, suggesting the triggering of functional neutralizing antibodies. Herein, we reveal for the first time that subcutaneous immunization with the self-adjuvanting biodegradable co-polymeric PPM nanovaccine immune-potentiated robust CD4+ T cell-mediated immune effector responses; a mixed Th1 and Th2 antibody response and local mucosal IgA to protect mice against a chlamydial genital tract challenge.
Collapse
Affiliation(s)
- Richa Verma
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Rajnish Sahu
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Skyla A Duncan
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Guillermo H Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R Singh
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| | - Vida A Dennis
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
7
|
Nyari S, Khan SA, Rawlinson G, Waugh CA, Potter A, Gerdts V, Timms P. Vaccination of koalas (Phascolarctos cinereus) against Chlamydia pecorum using synthetic peptides derived from the major outer membrane protein. PLoS One 2018; 13:e0200112. [PMID: 29953523 PMCID: PMC6023247 DOI: 10.1371/journal.pone.0200112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/18/2018] [Indexed: 11/18/2022] Open
Abstract
Chlamydia pecorum is a mucosal infection, which causes debilitating disease of the urinary tract, reproductive tract and ocular sites of koalas (Phascolarctos cinereus). While antibiotics are available for treatment, they are detrimental to the koalas' gastrointestinal tract microflora leaving the implementation of a vaccine as an ideal option for the long-term management of koala populations. We have previously reported on the successes of an anti-chlamydial recombinant major outer membrane protein (rMOMP) vaccine however, recombinant protein based vaccines are not ideal candidates for scale up from the research level to small-medium production level for wider usage. Peptide based vaccines are a promising area for vaccine development, because peptides are stable, cost effective and easily produced. In this current study, we assessed, for the first time, the immune responses to a synthetic peptide based anti-chlamydial vaccine in koalas. Five healthy male koalas were vaccinated with two synthetic peptides derived from C. pecorum MOMP and another five healthy male koalas were vaccinated with full length recombinant C. pecorum MOMP (genotype G). Systemic (IgG) and mucosal (IgA) antibodies were quantified and pre-vaccination levels compared to post-vaccination levels (12 and 26 weeks). MOMP-peptide vaccinated koalas produced Chlamydia-specific IgG and IgA antibodies, which were able to recognise not only the genotype used in the vaccination, but also MOMPs from several other koala C. pecorum genotypes. In addition, IgA antibodies induced at the ocular site not only recognised recombinant MOMP protein but also, whole native chlamydial elementary bodies. Interestingly, some MOMP-peptide vaccinated koalas showed a stronger and more sustained vaccine-induced mucosal IgA antibody response than observed in MOMP-protein vaccinated koalas. These results demonstrate that a synthetic MOMP peptide based vaccine is capable of inducing a Chlamydia-specific antibody response in koalas and is a promising candidate for future vaccine development.
Collapse
Affiliation(s)
- Sharon Nyari
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Shahneaz Ali Khan
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Galit Rawlinson
- Lone Pine Koala Sanctuary, Fig Tree Pocket, Queensland, Australia
| | - Courtney A. Waugh
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew Potter
- Vaccine and Infectious Disease Organisation–International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organisation–International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, Canada
| | - Peter Timms
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
8
|
Turula H, Wobus CE. The Role of the Polymeric Immunoglobulin Receptor and Secretory Immunoglobulins during Mucosal Infection and Immunity. Viruses 2018; 10:E237. [PMID: 29751532 PMCID: PMC5977230 DOI: 10.3390/v10050237] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The gastrointestinal tract houses millions of microbes, and thus has evolved several host defense mechanisms to keep them at bay, and prevent their entry into the host. One such mucosal surface defense is the secretion of secretory immunoglobulins (SIg). Secretion of SIg depends on the polymeric immunoglobulin receptor (pIgR), which transports polymeric Ig (IgA or IgM) from the basolateral surface of the epithelium to the apical side. Upon reaching the luminal side, a portion of pIgR, called secretory component (SC) is cleaved off to release Ig, forming SIg. Through antigen-specific and non-specific binding, SIg can modulate microbial communities and pathogenic microbes via several mechanisms: agglutination and exclusion from the epithelial surface, neutralization, or via host immunity and complement activation. Given the crucial role of SIg as a microbial scavenger, some pathogens also evolved ways to modulate and utilize pIgR and SIg to facilitate infection. This review will cover the regulation of the pIgR/SIg cycle, mechanisms of SIg-mediated mucosal protection as well as pathogen utilization of SIg.
Collapse
Affiliation(s)
- Holly Turula
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Neutrophils Are Central to Antibody-Mediated Protection against Genital Chlamydia. Infect Immun 2017; 85:IAI.00409-17. [PMID: 28739831 PMCID: PMC5607418 DOI: 10.1128/iai.00409-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022] Open
Abstract
Determining the effector populations involved in humoral protection against genital chlamydia infection is crucial to development of an effective chlamydial vaccine. Antibody has been implicated in protection studies in multiple animal models, and we previously showed that the passive transfer of immune serum alone does not confer immunity in the mouse. Using the Chlamydia muridarum model of genital infection, we demonstrate a protective role for both Chlamydia-specific immunoglobulin G (IgG) and polymorphonuclear neutrophils and show the importance of an antibody/effector cell interaction in mediating humoral immunity. While neutrophils were found to contribute significantly to antibody-mediated protection in vivo, natural killer (NK) cells were dispensable for protective immunity. Furthermore, gamma interferon (IFN-γ)-stimulated primary peritoneal neutrophils (PPNs) killed chlamydiae in vitro in an antibody-dependent manner. The results from this study support the view that an IFN-γ-activated effector cell population cooperates with antibody to protect against genital chlamydia and establish neutrophils as a key effector cell in this response.
Collapse
|
10
|
Albritton HL, Kozlowski PA, Lillis RA, McGowin CL, Siren JD, Taylor SN, Ibana JA, Buckner LR, Shen L, Quayle AJ. A novel whole-bacterial enzyme linked-immunosorbant assay to quantify Chlamydia trachomatis specific antibodies reveals distinct differences between systemic and genital compartments. PLoS One 2017; 12:e0183101. [PMID: 28797112 PMCID: PMC5552291 DOI: 10.1371/journal.pone.0183101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/29/2017] [Indexed: 11/19/2022] Open
Abstract
Chlamydia trachomatis (CT) is the leading sexually transmitted bacterial infection. The continued global burden of CT infection strongly predicates the need for a vaccine to supplement current chlamydial control programs. The correlates of protection against CT are currently unknown, but they must be carefully defined to guide vaccine design. The localized nature of chlamydial infection in columnar epithelial cells of the genital tract necessitates investigation of immunity at the site of infection. The purpose of this study was to develop a sensitive whole bacterial enzyme-linked immunosorbent assay (ELISA) to quantify and compare CT-specific IgG and IgA in sera and genital secretions from CT-infected women. To achieve this, elementary bodies (EBs) from two of the most common genital serovars (D and E) were attached to poly-L-lysine-coated microtiter plates with glutaraldehyde. EB attachment and integrity were verified by the presence of outer membrane antigens and the absence of bacterial cytoplasmic antigens. EB-specific IgG and IgA standards were developed by pooling sera with high titers of CT-specific antibodies from infected women. Serum, endocervical and vaginal secretions, and endocervical cytobrush specimens from CT-infected women were used to quantify CT-specific IgG and IgA which were then normalized to total IgG and IgA, respectively. Analyses of paired serum and genital samples revealed significantly higher proportions of EB-specific antibodies in genital secretions compared to sera. Cervical and vaginal secretions and cytobrush specimens had similar proportions of EB-specific antibodies, suggesting any one of these genital sampling techniques could be used to quantify CT-specific antibodies when appropriate normalization methodologies are implemented. Overall, these results illustrate the need to investigate genital tract CT antibody responses, and our assay provides a useful quantitative tool to assess natural immunity in defined clinical groups and CT vaccine trials.
Collapse
Affiliation(s)
- Hannah L. Albritton
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Rebecca A. Lillis
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Chris L. McGowin
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Julia D. Siren
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Stephanie N. Taylor
- Department of Medicine, Division of Infectious Diseases, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Joyce A. Ibana
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- Institute of Biology, University of the Philippines Diliman, Quezon City, National Capital Region, Philippines
| | - Lyndsey R. Buckner
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
| | - Alison J. Quayle
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States of America
- * E-mail:
| |
Collapse
|
11
|
Immunization of a wild koala population with a recombinant Chlamydia pecorum Major Outer Membrane Protein (MOMP) or Polymorphic Membrane Protein (PMP) based vaccine: New insights into immune response, protection and clearance. PLoS One 2017; 12:e0178786. [PMID: 28575080 PMCID: PMC5456371 DOI: 10.1371/journal.pone.0178786] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022] Open
Abstract
We assessed the effects of two different single-dose anti-Chlamydia pecorum (C. pecorum) vaccines (containing either Major Outer Membrane Protein (3MOMP) or Polymorphic Membrane Protein (Pmp) as antigens) on the immune response of a group of wild koalas. Both vaccines elicited a systemic humoral response as seen by the production of anti-chlamydial IgG antibodies in more than 90% of vaccinated koalas. A mucosal immune response was also observed, with an increase in Chlamydia-specific mucosal IgG and/or IgA antibodies in some koalas post-vaccination. Both vaccines elicited a cell-mediated immune response as measured by the production of the cytokines IFN-γ and IL-17 post-vaccination. To determine the level of protection provided by the vaccines under natural conditions we assessed C. pecorum infection loads and chlamydial disease status of all vaccinated koalas pre- and post-vaccination, compared to a non-vaccinated cohort from the same habitat. The MOMP vaccinated koalas that were infected on the day of vaccination showed significant clearance of their infection at 6 months post-vaccination. In contrast, the number of new infections in the PMP vaccine was similar to the control group, with some koalas progressing to disease. Genotyping of the ompA gene from the C. pecorum strains infecting the vaccinated animals, identified genetic variants of ompA-F genotype and a new genotype ompA-O. We found that those animals that were the least well protected became infected with strains of C. pecorum not covered by the vaccine. In conclusion, a single dose vaccine formulated with either recombinant PmpG or MOMP can elicit both cell-mediated and humoral (systemic and mucosal) immune responses, with the MOMP vaccine showing clearance of infection in all infected koalas. Although the capability of our vaccines to stimulate an adaptive response and be protective needs to be fully evaluated, this work illustrates the necessity to combine epitopes most relevant to a large panel of variable strains with an efficient adjuvant.
Collapse
|
12
|
Safety and immunogenicity of a prototype anti-Chlamydia pecorum recombinant protein vaccine in lambs and pregnant ewes. Vaccine 2017; 35:3461-3465. [PMID: 28528762 DOI: 10.1016/j.vaccine.2017.03.091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/09/2017] [Accepted: 03/30/2017] [Indexed: 01/16/2023]
Abstract
Arthritis and kerato-conjunctivitis caused by Chlamydia pecorum in lambs are difficult to diagnose and treat. We tested the ability of a prototype C. pecorum vaccine (SC-vaccine), comprised of C. pecorum major outer membrane protein (MOMP-G) and polymorphic membrane protein G (PmpG), to trigger a Chlamydia-specific humoral and cell-mediated immune response in lambs and pregnant ewes. Vaccinations with the SC-vaccine (one and two injections) were very well tolerated by all ewes and lambs. Although the overall immune responses of ewes to SC-vaccination was poor, their lambs showed stronger antigen-specific immune response than lambs from control vaccine ewes. SC-vaccination in lambs triggered production of systemic anti-MOMP-G and anti-PmpG IgG antibodies and secretory IgA in the ocular mucosa. Double vaccination caused statistically significant increases in the height and duration of the humoral response. Antigen-specific IFN-γ was produced in the peripheral blood mononuclear cells of vaccinated lambs.
Collapse
|
13
|
Wern JE, Sorensen MR, Olsen AW, Andersen P, Follmann F. Simultaneous Subcutaneous and Intranasal Administration of a CAF01-Adjuvanted Chlamydia Vaccine Elicits Elevated IgA and Protective Th1/Th17 Responses in the Genital Tract. Front Immunol 2017; 8:569. [PMID: 28567043 PMCID: PMC5434101 DOI: 10.3389/fimmu.2017.00569] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022] Open
Abstract
The selection of any specific immunization route is critical when defining future vaccine strategies against a genital infection like Chlamydia trachomatis (C.t.). An optimal Chlamydia vaccine needs to elicit mucosal immunity comprising both neutralizing IgA/IgG antibodies and strong Th1/Th17 responses. A strategic tool to modulate this immune profile and mucosal localization of vaccine responses is to combine parenteral and mucosal immunizations routes. In this study, we investigate whether this strategy can be adapted into a two-visit strategy by simultaneous subcutaneous (SC) and nasal immunization. Using a subunit vaccine composed of C.t. antigens (Ags) adjuvanted with CAF01, a Th1/Th17 promoting adjuvant, we comparatively evaluated Ag-specific B and T cell responses and efficacy in mice following SC and simultaneous SC and nasal immunization (SIM). We found similar peripheral responses with regard to interferon gamma and IL-17 producing Ag-specific splenocytes and IgG serum levels in both vaccine strategies but in addition, the SIM protocol also led to Ag-specific IgA responses and increased B and CD4+ T cells in the lung parenchyma, and in lower numbers also in the genital tract (GT). Following vaginal infection with C.t., we observed that SIM immunization gave rise to an early IgA response and IgA-secreting plasma cells in the GT in contrast to SC immunization, but we were not able to detect more rapid recruitment of mucosal T cells. Interestingly, although SIM vaccination in general improved mucosal immunity we observed no improved efficacy against genital infection compared to SC, a finding that warrants for further investigation. In conclusion, we demonstrate a novel vaccination strategy that combines systemic and mucosal immunity in a two-visit strategy.
Collapse
Affiliation(s)
- Jeanette Erbo Wern
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Maria Rathmann Sorensen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institute, Copenhagen, Denmark
| |
Collapse
|
14
|
Shaw JH, Behar AR, Snider TA, Allen NA, Lutter EI. Comparison of Murine Cervicovaginal Infection by Chlamydial Strains: Identification of Extrusions Shed In vivo. Front Cell Infect Microbiol 2017; 7:18. [PMID: 28217555 PMCID: PMC5289954 DOI: 10.3389/fcimb.2017.00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections (STIs) and preventable blindness. Untreated, asymptomatic infection as well as frequent re-infection are common and may drive pelvic inflammatory disease, ectopic pregnancy, and infertility. In vivo models of chlamydial infection continue to be instrumental in progress toward a vaccine and further elucidating the pathogenesis of this intracellular bacterium, however significant gaps in our understanding remain. Chlamydial host cell exit occurs via two mechanisms, lysis and extrusion, although the latter has yet to be reported in vivo and its biological role is unclear. The objective of this study was to investigate whether chlamydial extrusions are shed in vivo following infection with multiple strains of Chlamydia. We utilized an established C3H/HeJ murine cervicovaginal infection model with C. trachomatis serovars D and L2 and the Chlamydia muridarum strain MoPn to monitor the (i) time course of infection and mode of host cell exit, (ii) mucosal and systemic immune response to infection, and (iii) gross and histopathology following clearance of active infection. The key finding herein is the first identification of chlamydial extrusions shed from host cells in an in vivo model. Extrusions, a recently appreciated mode of host cell exit and potential means of dissemination, had been previously observed solely in vitro. The results of this study demonstrate that chlamydial extrusions exist in vivo and thus warrant further investigation to determine their role in chlamydial pathogenesis.
Collapse
Affiliation(s)
- Jennifer H Shaw
- Department of Integrative Biology, Oklahoma State University Stillwater, OK, USA
| | - Amanda R Behar
- Department of Microbiology and Molecular Genetics, Oklahoma State University Stillwater, OK, USA
| | - Timothy A Snider
- Department of Veterinary Pathobiology, Oklahoma State University Stillwater, OK, USA
| | - Noah A Allen
- Department of Integrative Biology, Oklahoma State University Stillwater, OK, USA
| | - Erika I Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University Stillwater, OK, USA
| |
Collapse
|
15
|
Virdi V, Juarez P, Boudolf V, Depicker A. Recombinant IgA production for mucosal passive immunization, advancing beyond the hurdles. Cell Mol Life Sci 2016; 73:535-45. [PMID: 26511868 PMCID: PMC11108522 DOI: 10.1007/s00018-015-2074-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/26/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023]
Abstract
Vaccination is a successful strategy to proactively develop immunity to a certain pathogen, but most vaccines fail to trigger a specific immune response at the mucosal surfaces, which are the first port of entry for infectious agents. At the mucosal surfaces, the predominant immunoglobulin is secretory IgA (SIgA) that specifically neutralizes viruses and prevents bacterial colonization. Mucosal passive immunization, i.e. the application of pathogen-specific SIgAs at the mucosae, can be an effective alternative to achieve mucosal protection. However, this approach is not straightforward, mainly because SIgAs are difficult to obtain from convalescent sources, while recombinant SIgA production is challenging due to its complex structure. This review provides an overview of manufacturing difficulties presented by the unique structural diversity of SIgAs, and the innovative solutions being explored for SIgA production in mammalian and plant expression systems.
Collapse
Affiliation(s)
- Vikram Virdi
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| | - Paloma Juarez
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Veronique Boudolf
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Ann Depicker
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
16
|
Inácio ÂS, Domingues NS, Nunes A, Martins PT, Moreno MJ, Estronca LM, Fernandes R, Moreno AJM, Borrego MJ, Gomes JP, Vaz WLC, Vieira OV. Quaternary ammonium surfactant structure determines selective toxicity towards bacteria: mechanisms of action and clinical implications in antibacterial prophylaxis. J Antimicrob Chemother 2015; 71:641-54. [PMID: 26679255 DOI: 10.1093/jac/dkv405] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/02/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Broad-spectrum antimicrobial activity of quaternary ammonium surfactants (QAS) makes them attractive and cheap topical prophylactic options for sexually transmitted infections and perinatal vertically transmitted urogenital infections. Although attributed to their high affinity for biological membranes, the mechanisms behind QAS microbicidal activity are not fully understood. We evaluated how QAS structure affects antimicrobial activity and whether this can be exploited for use in prophylaxis of bacterial infections. METHODS Acute toxicity of QAS to in vitro models of human epithelial cells and bacteria were compared to identify selective and potent bactericidal agents. Bacterial cell viability, membrane integrity, cell cycle and metabolism were evaluated to establish the mechanisms involved in selective toxicity of QAS. RESULTS QAS toxicity normalized relative to surfactant critical micelle concentration showed n-dodecylpyridinium bromide (C12PB) to be the most effective, with a therapeutic index of ∼10 for an MDR strain of Escherichia coli and >20 for Neisseria gonorrhoeae after 1 h of exposure. Three modes of QAS antibacterial action were identified: impairment of bacterial energetics and cell division at low concentrations; membrane permeabilization and electron transport inhibition at intermediate doses; and disruption of bacterial membranes and cell lysis at concentrations close to the critical micelle concentration. In contrast, toxicity to mammalian cells occurs at higher concentrations and, as we previously reported, results primarily from mitochondrial dysfunction and apoptotic cell death. CONCLUSIONS Our data show that short chain (C12) n-alkyl pyridinium bromides have a sufficiently large therapeutic window to be good microbicide candidates.
Collapse
Affiliation(s)
- Ângela S Inácio
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Neuza S Domingues
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Alexandra Nunes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Patrícia T Martins
- Centro de Química de Coimbra and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Maria J Moreno
- Centro de Química de Coimbra and Departamento de Química, Universidade de Coimbra, 3004-535 Coimbra, Portugal
| | - Luís M Estronca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Rui Fernandes
- IBMC/HEMS - Instituto de Biologia Molecular e Celular/Histology and Electron Microscopy Service, Universidade do Porto, Porto, Portugal
| | | | - Maria J Borrego
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - João P Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Winchil L C Vaz
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Otília V Vieira
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
17
|
Lorenzen E, Follmann F, Bøje S, Erneholm K, Olsen AW, Agerholm JS, Jungersen G, Andersen P. Intramuscular Priming and Intranasal Boosting Induce Strong Genital Immunity Through Secretory IgA in Minipigs Infected with Chlamydia trachomatis. Front Immunol 2015; 6:628. [PMID: 26734002 PMCID: PMC4679855 DOI: 10.3389/fimmu.2015.00628] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Frank Follmann
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Sarah Bøje
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Karin Erneholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | - Anja Weinreich Olsen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| | - Jørgen Steen Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark
| | - Gregers Jungersen
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark , Copenhagen , Denmark
| | - Peter Andersen
- Department of Infectious Disease Immunology, Chlamydia Vaccine Research, Statens Serum Institut , Copenhagen , Denmark
| |
Collapse
|