1
|
Arkiya S, Hesampour A, Esrafili A, Arasteh J. Effect of chitosan nanogels loaded with vancomycin and gamma interferon on TNF-α gene expression in macrophage cell line activated with methicillin-resistant Staphylococcus aureus (MRSA). IRANIAN JOURNAL OF MICROBIOLOGY 2024; 16:614-623. [PMID: 39534300 PMCID: PMC11551651 DOI: 10.18502/ijm.v16i5.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Background and Objectives Staphylococcus aureus is an opportunistic pathogen that frequently leads to asymptomatic infections. Methicillin-resistant strains (MRSA) pose a significant threat as they are resistant to most commonly used antibiotics, complicating treatment efforts. This study aimed to develop chitosan nanogels loaded with vancomycin and IFN-γ and to assess the expression of the TNF-α gene in a cell line infected with MRSA. Materials and Methods Following the synthesis and confirmation of the chitosan nanogels, vancomycin and IFN-γ were incorporated into these nanogels. The synthesis was validated using DLS, FTIR, TEM, and SEM. Subsequently, the anti-bacterial efficacy of the nanogels was assessed. Finally, four groups of cell lines were designed: control, MRSA, chitosan nanogels and IFN-γ-vancomycin chitosan nanogels. After infection of the groups (except control) with MRSA, 5 μg/mL of nanogels, and nanogels (drug and IFN-γ) were added to groups 3 and 4, respectively. Then the expression of TNF-α gene in each group was analyzed by RT-PCR at 6 and 24 hours. Results At pH 6.5 and 7.4, the MIC of 1 μg/mL was obtained for free vancomycin, whereas that of IFN-γ-vancomycin nanogels at both pHs was respectively 8 and 64 μg/mL. The IC50 of chitosan nanogels and nanogels loaded with vancomycin-IFN-γ on RAW264.7 cells were 2.37 and 4.15 μg/mL in 24 hours, respectively. In group 4 in comparison to the MRSA group, TNF-α expression decreased significantly following 24 hours. Conclusion Loading of vancomycin and IFN-γ in the chitosan nanogel can reduce TNF-α gene expression on MRSA infected cell lines.
Collapse
Affiliation(s)
- Sahar Arkiya
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ardeshir Hesampour
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Arasteh
- Department of Biology, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
3
|
Suárez Vázquez TA, López López N, Salinas Carmona MC. MASTer cell: chief immune modulator and inductor of antimicrobial immune response. Front Immunol 2024; 15:1360296. [PMID: 38638437 PMCID: PMC11024470 DOI: 10.3389/fimmu.2024.1360296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 04/20/2024] Open
Abstract
Mast cells have long been recognized for their involvement in allergic pathology through the immunoglobulin E (IgE)-mediated degranulation mechanism. However, there is growing evidence of other "non-canonical" degranulation mechanisms activated by certain pathogen recognition receptors. Mast cells release several mediators, including histamine, cytokines, chemokines, prostaglandins, and leukotrienes, to initiate and enhance inflammation. The chemical nature of activating stimuli influences receptors, triggering mechanisms for the secretion of formed and new synthesized mediators. Mast cells have more than 30 known surface receptors that activate different pathways for direct and indirect activation by microbes. Different bacterial strains stimulate mast cells through various ligands, initiating the innate immune response, which aids in clearing the bacterial burden. Mast cell interactions with adaptative immune cells also play a crucial role in infections. Recent publications revealed another "non-canonical" degranulation mechanism present in tryptase and chymase mast cells in humans and connective tissue mast cells in mice, occurring through the activation of the Mas-related G protein-coupled receptor (MRGPRX2/b2). This receptor represents a new therapeutic target alongside antibiotic therapy. There is an urgent need to reconsider and redefine the biological role of these MASTer cells of innate immunity, extending beyond their involvement in allergic pathology.
Collapse
Affiliation(s)
| | | | - Mario César Salinas Carmona
- Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
4
|
He S, Lai D, Ma C, Meng C, Cai C, Chen Q, Gu C, Qiu Q. hsa_circ_0087100/hsa-miR-6743-5p affects Th1 cell differentiation by regulating STAT1 in diabetic retinopathy. Epigenomics 2024; 16:427-444. [PMID: 38410923 DOI: 10.2217/epi-2023-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Objective: To elucidate the role of the competitive endogenous RNA (ceRNA) network in immune infiltration of diabetic retinopathy (DR). Methods: We obtained differentially expressed (DE) circRNAs, miRNAs and mRNAs from the Gene Expression Omnibus database. Then, we identified immune infiltration by CIBERSORT and single-sample gene set enrichment analysis and discovered co-expression genes by weighted gene co-expression network analysis. Furthermore, STAT1-mediated Th1 differentiation was determined in DR cell models, DR patients and DR mouse models. Results: hsa_circ_0087100/hsa-miR-6743-5p/STAT1 was involved in immune infiltration of Th1 cells. Aberrant expression of the ceRNA network and STAT1-mediated Th1 differentiation was thus verified in vitro and in vivo. Conclusion: hsa_circ_0087100/hsa-miR-6743-5p/STAT1 may affect Th1 cell differentiation in DR.
Collapse
Affiliation(s)
- Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science & Photomedicine, Shanghai Engineering Center for Precise Diagnosis & Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science & Photomedicine, Shanghai Engineering Center for Precise Diagnosis & Treatment of Eye Diseases, Shanghai, PR China
| | - Chenggong Ma
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China
| | - Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science & Photomedicine, Shanghai Engineering Center for Precise Diagnosis & Treatment of Eye Diseases, Shanghai, PR China
| | - Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science & Photomedicine, Shanghai Engineering Center for Precise Diagnosis & Treatment of Eye Diseases, Shanghai, PR China
| | - Qian Chen
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science & Photomedicine, Shanghai Engineering Center for Precise Diagnosis & Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
5
|
Yu D, Lu Z, Nie F, Chong Y. Integrins regulation of wound healing processes: insights for chronic skin wound therapeutics. Front Cell Infect Microbiol 2024; 14:1324441. [PMID: 38505290 PMCID: PMC10949986 DOI: 10.3389/fcimb.2024.1324441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Integrins are heterodimers composed of non-covalently associated alpha and beta subunits that mediate the dynamic linkage between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs and are involved in different physiological and pathological molecular responses in vivo. Wound healing is an important process in the recovery from traumatic diseases and consists of three overlapping phases: inflammation, proliferation, and remodeling. Integrin regulation acts throughout the wound healing process to promote wound healing. Prolonged inflammation may lead to failure of wound healing, such as wound chronicity. One of the main causes of chronic wound formation is bacterial colonization of the wound. In this review, we review the role of integrins in the regulation of wound healing processes such as angiogenesis and re-epithelialization, as well as the role of integrins in mediating bacterial infections during wound chronicity, and the challenges and prospects of integrins as therapeutic targets for infected wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
6
|
Behrens EM, de Benedetti F. Anti-Interferon-γ Therapy for Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:573-582. [PMID: 39117840 DOI: 10.1007/978-3-031-59815-9_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A vast body of evidence provides support to a central role of exaggerated production of interferon-γ (IFN-γ) in causing hypercytokinemia and signs and symptoms of hemophagocytic lymphohistiocytosis (HLH). In this chapter, we will describe briefly the roles of IFN-γ in innate and adaptive immunity and in host defense, summarize results from animal models of primary HLH and secondary HLH with particular emphasis on targeted therapeutic approaches, review data on biomarkers associated with activation of the IFN-γ pathway, and discuss initial efficacy and safety results of IFN-γ neutralization in humans.
Collapse
Affiliation(s)
- Edward M Behrens
- Division of Rheumatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of neopterin in rheumatic diseases. Front Immunol 2023; 14:1271383. [PMID: 37799718 PMCID: PMC10548830 DOI: 10.3389/fimmu.2023.1271383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Introduction Novel biomarkers of inflammation and oxidative stress might enhance the early recognition, management, and clinical outcomes of patients with rheumatic diseases (RDs). We assessed the available evidence regarding the pathophysiological role of neopterin, the oxidation product of 7,8-dihydroneopterin, a pteridine generated in macrophages activated by interferon-γ, by conducting a systematic review and meta-analysis of studies reporting its concentrations in biological fluids in RD patients and healthy controls. Methods We searched electronic databases for relevant articles published between inception and 31 August 2023. The risk of bias and the certainty of evidence were assessed using the Joanna Briggs Institute Critical Appraisal Checklist and the Grades of Recommendation, Assessment, Development and Evaluation Working Group system, respectively. Results In 37 studies, when compared to healthy controls, RD patients had significantly higher concentrations of neopterin both in plasma or serum (standard mean difference, SMD=1.31, 95% CI 1.01 to 1.61; p<0.001; moderate certainty of evidence) and in the urine (SMD=1.65, 95% CI 0.86 to 2.43, p<0.001; I2 = 94.2%, p<0.001; low certainty of evidence). The results were stable in sensitivity analysis. There were non-significant associations in meta-regression and subgroup analysis between the effect size and age, male to female ratio, year of publication, sample size, RD duration, C-reactive protein, erythrocyte sedimentation rate, specific type of RD, presence of connective tissue disease, analytical method used, or biological matrix investigated (plasma vs. serum). By contrast, the effect size was significantly associated with the geographical area in studies assessing serum or plasma and with the type of RD in studies assessing urine. Discussion Pending additional studies that also focus on early forms of disease, our systematic review and meta-analysis supports the proposition that neopterin, a biomarker of inflammation and oxidative stress, can be useful for the identification of RDs. (PROSPERO registration number: CRD42023450209). Systematic review registration PROSPERO, identifier CRD42023450209.
Collapse
Affiliation(s)
- Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
8
|
Garcia-Rodriguez KM, Goenka A, Thomson DD, Bahri R, Tontini C, Salcman B, Hernandez-Pando R, Bulfone-Paus S. Bacillus Calmette-Guérin-Induced Human Mast Cell Activation Relies on IL-33 Priming. Int J Mol Sci 2022; 23:7549. [PMID: 35886897 PMCID: PMC9320129 DOI: 10.3390/ijms23147549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccine is an attenuated strain of Mycobacterium bovis that provides weak protection against tuberculosis (TB). Mast cells (MCs) are tissue-resident immune cells strategically that serve as the first line of defence against pathogenic threats. In this study, we investigated the response of human MCs (hMCs) to BCG. We found that naïve hMCs exposed to BCG did not secrete cytokines, degranulate, or support the uptake and intracellular growth of bacteria. Since we could show that in hMCs IL-33 promotes the transcription of host-pathogen interaction, cell adhesion and activation genes, we used IL-33 for cell priming. The treatment of hMCs with IL-33, but not IFN-γ, before BCG stimulation increased IL-8, MCP-1 and IL-13 secretion, and induced an enhanced expression of the mycobacteria-binding receptor CD48. These effects were comparable to those caused by the recombinant Mycobacterium tuberculosis (Mtb) 19-KDa lipoprotein. Finally, stimulation of hMCs with IL-33 incremented MC-BCG interactions. Thus, we propose that IL-33 may improve the immunogenicity of BCG vaccine by sensitising hMCs.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
- School of Materials, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TH, UK;
| | - Darren D. Thomson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
- MRC Centre for Medical Mycology, University of Exeter, Exeter EX4 4PY, UK
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition “Salvador Zubirán”, Mexico City 14080, Mexico;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (K.M.G.-R.); (D.D.T.); (R.B.); (C.T.); (B.S.)
| |
Collapse
|
9
|
So-In C, Sunthamala N. Treatment efficacy of Thunbergia laurifolia, Curcuma longa, Garcinia mangostana, and Andrographis paniculata extracts in Staphylococcus aureus-induced rabbit dermatitis model. Vet World 2022; 15:188-197. [PMID: 35369604 PMCID: PMC8924391 DOI: 10.14202/vetworld.2022.188-197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Dermatitis is a soft-tissue infection caused by Staphylococcus aureus. The recurrence of inflammatory skin is linked to clinical manifestations. Anti-inflammatory cytokines, which are essential for tissue damage, are released by bacteria through skin tissues. Oxidative stress causes inflammatory cells to necrotize and reduces their antioxidant profile, resulting in toxic damage to surrounding tissues. Although studies on the antibacterial effects of Thunbergia laurifolia Lindl., Curcuma longa L., Garcinia mangostana L., and Andrographis paniculata (Burm.). Bacterial infection of S. aureus have been conducted, most of these studies have been in vitro and were not related to the rabbit model. In addition, anti-inflammatory and antioxidant studies need to be evaluated. Thus, this study aims to compare the antibacterial, anti-inflammatory, and antioxidant properties of four local herbs with a standard antibiotic in S. aureus-induced rabbit dermatitis model. Materials and Methods: The skin of New Zealand white rabbits were artificially wounded using a sterile blade and then infected with S. aureus. The rabbits were divided into seven groups, each with three rabbits (Total 21 rabbits): The first group was the no infection group (no infection and no treatment with scarification), the second group was the no treatment group (S. aureus infection of the wound but no treatment), and the other five treated groups were T. laurifolia, C. longa, G. mangostana, A. paniculata, and bacitracin cream, all of which involved wound infection and treatments. The treatment lasted for 7 days. The antibacterial, anti-inflammatory, and antioxidant properties after treatment were measured. Results: The efficacy of T. laurifolia, C. longa, G. mangostana, and A. paniculata was similar to that of an antioxidant and free radical scavenging property. The bacterial infection process gradually reduced the activities of antioxidant systems (i.e., enzymatic levels and gene expressions) and total glutathione. However, the activities of the antioxidant system were steadily increased when treated with herbal extracts. During bacterial invasion of the skin, the concentration of thiobarbituric acid reactive molecules, the level of lipid peroxidation, and the expression of anti-inflammatory cytokine genes were increased. All these were decreased when herbal extracts were used to treat the lesion. Conclusion: It can be concluded that T. laurifolia, C. longa, G. mangostana, and A. paniculate extract have antibacterial, anti-inflammatory, and antioxidant properties and are effective antibacterial agents. G. mangostana is the most effective herbal extract for antidermatitis and has the potential to be used as an alternative topical treatment.
Collapse
Affiliation(s)
- Charinya So-In
- Department of Veterinary Technology, Faculty of Agricultural Technology, Kalasin University, Kalasin 46000, Thailand
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand
| |
Collapse
|
10
|
Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol 2021; 17:678-691. [PMID: 34611329 DOI: 10.1038/s41584-021-00694-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine with multiple effects on the inflammatory response and on innate and adaptive immunity. Overproduction of IFNγ underlies several, potentially fatal, hyperinflammatory or immune-mediated diseases. Several data from animal models and/or from translational research in patients point to a role of IFNγ in hyperinflammatory diseases, such as primary haemophagocytic lymphohistiocytosis, various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome, and cytokine release syndrome, all of which are often managed by rheumatologists or in consultation with rheumatologists. Given the effects of IFNγ on B cells and T follicular helper cells, a role for IFNγ in systemic lupus erythematosus pathogenesis is emerging. To improve our understanding of the role of IFNγ in human disease, IFNγ-related biomarkers that are relevant for the management of hyperinflammatory diseases are progressively being identified and studied, especially because circulating levels of IFNγ do not always reflect its overproduction in tissue. These biomarkers include STAT1 (specifically the phosphorylated form), neopterin and the chemokine CXCL9. IFNγ-neutralizing agents have shown efficacy in the treatment of primary haemophagocytic lymphohistiocytosis in clinical trials and initial promising results have been obtained in various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome. In clinical practice, there is a growing body of evidence supporting the usefulness of circulating CXCL9 levels as a biomarker reflecting IFNγ production.
Collapse
|
11
|
Willows S, Kulka M. Harnessing the Power of Mast Cells in unconventional Immunotherapy Strategies and Vaccine Adjuvants. Cells 2020; 9:cells9122713. [PMID: 33352850 PMCID: PMC7766453 DOI: 10.3390/cells9122713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Mast cells are long-lived, granular, myeloid-derived leukocytes that have significant protective and repair functions in tissues. Mast cells sense disruptions in the local microenvironment and are first responders to physical, chemical and biological insults. When activated, mast cells release growth factors, proteases, chemotactic proteins and cytokines thereby mobilizing and amplifying the reactions of the innate and adaptive immune system. Mast cells are therefore significant regulators of homeostatic functions and may be essential in microenvironmental changes during pathogen invasion and disease. During infection by helminths, bacteria and viruses, mast cells release antimicrobial factors to facilitate pathogen expulsion and eradication. Mast cell-derived proteases and growth factors protect tissues from insect/snake bites and exposure to ultraviolet radiation. Finally, mast cells release mediators that promote wound healing in the inflammatory, proliferative and remodelling stages. Since mast cells have such a powerful repertoire of functions, targeting mast cells may be an effective new strategy for immunotherapy of disease and design of novel vaccine adjuvants. In this review, we will examine how certain strategies that specifically target and activate mast cells can be used to treat and resolve infections, augment vaccines and heal wounds. Although these strategies may be protective in certain circumstances, mast cells activation may be deleterious if not carefully controlled and any therapeutic strategy using mast cell activators must be carefully explored.
Collapse
Affiliation(s)
- Steven Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada;
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, AB T6G 2M9, Canada;
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-641-1687
| |
Collapse
|
12
|
Ferreira-Duarte AP, Pinheiro-Torres AS, Takeshita WM, Gushiken VO, Roncalho-Buck IA, Anhê GF, DeSouza IA. Airway exposure to Staphylococcal enterotoxin type B (SEB) enhances the number and activity of bone marrow neutrophils via the release of multiple cytokines. Int Immunopharmacol 2019; 78:106009. [PMID: 31771815 DOI: 10.1016/j.intimp.2019.106009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 10/25/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND The lung infections by Staphylococcus aureus are strongly associated with its ability to produce enterotoxins. However, little is known about the mechanisms underlying trafficking of bone marrow (BM) neutrophils during airway inflammation induced by Staphylococcal enterotoxin B (SEB). We therefore aimed to investigate the effects of mouse airways SEB exposure on BM neutrophil counts and its adhesive properties as well as on the release of cytokines/chemokines that orchestrate BM neutrophils trafficking to lung tissue. METHODS Male BALB/c mice were intranasally exposed to SEB (1 µg), and at 4, 16 and 24 h thereafter, BM, circulating blood, bronchoalveolar lavage (BAL) fluid and lung tissue were collected. BM neutrophils adhesion, MAC-1 and LFA1-α expressions (by flow cytometry) as well as measurement of cytokine and/or chemokines levels were assayed after SEB-airway exposure. RESULTS Prior exposure to SEB promoted a marked influx of neutrophils to BAL and lung tissue, which was accompanied by increased counts of BM immature neutrophils and blood neutrophilia. BM neutrophil expressions of LFA1-α and MAC-1 were unchanged by SEB exposure whereas a significant enhancement of adhesion properties to VCAM-1 was observed. The early phase of airway SEB exposure was accompanied by high levels of GM-CSF, G-CSF, IFN-γ, TNF-α and KC/CXCL1, while the latter phase by the equilibrated actions of SDF1-α and MIP-2. CONCLUSION Mouse airways exposure to SEB induces BM cytokines/chemokines release and their integrated actions enhance the adhesion of BM neutrophils leading to acute lung injury.
Collapse
Affiliation(s)
- A P Ferreira-Duarte
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai (São Paulo), Brazil
| | - A S Pinheiro-Torres
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai (São Paulo), Brazil
| | - W M Takeshita
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai (São Paulo), Brazil
| | - V O Gushiken
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai (São Paulo), Brazil
| | - I A Roncalho-Buck
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai (São Paulo), Brazil
| | - G F Anhê
- Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - I A DeSouza
- Department of Biology and Physiology, Faculty of Medicine of Jundiai (FMJ), Jundiai (São Paulo), Brazil.
| |
Collapse
|
13
|
Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. Human eosinophils and mast cells: Birds of a feather flock together. Immunol Rev 2019; 282:151-167. [PMID: 29431215 DOI: 10.1111/imr.12638] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the origin of the phrase "birds of a feather flock together" is unclear, it has been in use for centuries and is typically employed to describe the phenomenon that people with similar tastes or interests tend to seek each other out and congregate together. In this review, we have co-opted this phrase to compare innate immune cells of related origin, the eosinophil and mast cell, because they very often accumulate together in tissue sites under both homeostatic and inflammatory conditions. To highlight overlapping yet distinct features, their hematopoietic development, cell surface phenotype, mediator release profiles and roles in diseases have been compared and contrasted. What emerges is a sense that these two cell types often interact with each other and their tissue environment to provide synergistic contributions to a variety of normal and pathologic immune responses.
Collapse
Affiliation(s)
- Piper A Robida
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pier Giorgio Puzzovio
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hadas Pahima
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
14
|
Kolonitsiou F, Papadimitriou-Olivgeris M, Spiliopoulou A, Drougka E, Jelastopulu E, Anastassiou ED, Spiliopoulou I. Methicillin-Resistant Staphylococcus aureus ST80 Induce Lower Cytokine Production by Monocytes as Compared to Other Sequence Types. Front Microbiol 2019; 9:3310. [PMID: 30687287 PMCID: PMC6333658 DOI: 10.3389/fmicb.2018.03310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) remains an important cause of nosocomial and community-associated infections due to its ability to produce toxins and evade host's immune responses. The aim of the present study was to investigate the association of monocytes immune response in terms of cytokines produced after inoculation with different MRSA clones. Thirty-one clinical MRSA strains were selected on the basis of clonal types, accessory gene regulator (agr) groups and toxin genes carriage. Isolates were identified as S. aureus by Gram stain, catalase, coagulase production and PCR for nuc gene. The presence of mecA, lukS/lukF-PV (Panton-Valentine Leukocidin) and tst (Toxic Shock Syndrome Toxin-1) genes, as well as, the determination of agr groups was performed by PCR. Clonality was investigated by means of multi-locus sequence typing (MLST). Peripheral blood mononuclear cells were stimulated with live bacterial cells for 45 min at a ratio of 1:10. Cells were incubated for 10 h and supernatants were collected. The levels of Tumor Necrosis Factor alpha (TNFa), IL-1b, IL-8, IL-6, IL-12p40, IL-10, interferon-gamma (IFN-γ) and IL-2, were measured by Human Cytokine Multiplex Immunoassay kit. Thirteen strains were tst and 12 lukS/lukF-PV-positive. Seven strains belonged to ST80 and ST225, five to ST30 and ST239, while the remaining seven isolates were grouped together as "other." Strains belonging to ST80 induced statistically lower levels of TNFa, IL-1b, IL-8, IL-6, IL-10, IFN-γ, and IL-2. PVL-positive strains classified into ST80 clone induced statistically lower concentrations of most cytokines as compared to PVL-positive strains belonging to other clones, tst-positive strains and toxin-negative ones. Strains of agr3 group belonging to ST80 induced statistically lower concentrations of most tested cytokines as compared to agr3 strains not-belonging to ST80, agr2 or agr1. This low induction of immune response by MRSA ST80 cannot be attributed to the presence of neither lukS/lukF-PV nor agr3.
Collapse
Affiliation(s)
- Fevronia Kolonitsiou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | | | | | - Eleanna Drougka
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Eleni Jelastopulu
- Department of Public Health, School of Medicine, University of Patras, Patras, Greece
| | | | - Iris Spiliopoulou
- Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
15
|
Liu T, Xiao P, Li R, She R, Tian J, Wang J, Mao J, Yin J, Shi R. Increased Mast Cell Activation in Mongolian Gerbils Infected by Hepatitis E Virus. Front Microbiol 2018; 9:2226. [PMID: 30333798 PMCID: PMC6175998 DOI: 10.3389/fmicb.2018.02226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, mechanism study of hepatitis E virus (HEV) infection has attracted an increasing attention because of the growing rate of the acute hepatitis caused by the virus over the world. As an important initiate in the inflammation, mast cells (MCs) play a critical role in maintaining a healthy physiology. However, the function of the MCs in the acute hepatitis caused by HEV is still unclear. In the present study, mongolian gerbils infected by HEV were used as an animal model to evaluate the role of MCs in the HEV infection. The positive ELISA and RT-PCR results showed the gerbils was successfully infected with HEV. The number of mast cell in the liver and the small intestine in the infected animals were growing higher significantly than the control group. In addition, higher expression of the tryptase and 5-HT in the liver and the intestine detected by immunohistochemical method and western blot also indicate the activation of MCs in the infection. These results suggest that MCs play an important role in the hepatitis E.
Collapse
Affiliation(s)
- Tianlong Liu
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Peng Xiao
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Ruiwen Li
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Dingzhou, China
| | - Ruiping She
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jijing Tian
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyuan Wang
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingjing Mao
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Yin
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihan Shi
- Laboratory of Veterinary Pathology and Public Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Ghimire L, Paudel S, Jin L, Baral P, Cai S, Jeyaseelan S. NLRP6 negatively regulates pulmonary host defense in Gram-positive bacterial infection through modulating neutrophil recruitment and function. PLoS Pathog 2018; 14:e1007308. [PMID: 30248149 PMCID: PMC6171945 DOI: 10.1371/journal.ppat.1007308] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/04/2018] [Accepted: 08/29/2018] [Indexed: 12/27/2022] Open
Abstract
Gram-positive bacteria, including Staphylococcus aureus are endemic in the U.S., which cause life-threatening necrotizing pneumonia. Neutrophils are known to be critical for clearance of S. aureus infection from the lungs and extrapulmonary organs. Therefore, we investigated whether the NLRP6 inflammasome regulates neutrophil-dependent host immunity during pulmonary S. aureus infection. Unlike their wild-type (WT) counterparts, NLRP6 knockout (KO) mice were protected against pulmonary S. aureus infection as evidenced by their higher survival rate and lower bacterial burden in the lungs and extrapulmonary organs. In addition, NLRP6 KO mice displayed increased neutrophil recruitment following infection, and when neutrophils were depleted the protective effect was lost. Furthermore, neutrophils from the KO mice demonstrated enhanced intracellular bacterial killing and increased NADPH oxidase-dependent ROS production. Intriguingly, we found higher NK cell-mediated IFN-γ production in KO mouse lungs, and treatment with IFN-γ was found to enhance the bactericidal ability of WT and KO neutrophils. The NLRP6 KO mice also displayed decreased pyroptosis and necroptosis in the lungs following infection. Blocking of pyroptosis and necroptosis in WT mice resulted in increased survival, reduced bacterial burden in the lungs, and attenuated cytokine production. Taken together, these novel findings show that NLRP6 serves as a negative regulator of neutrophil-mediated host defense during Gram-positive bacterial infection in the lungs through regulating both neutrophil influx and function. These results also suggest that blocking NLRP6 to augment neutrophil-associated bacterial clearance should be considered as a potential therapeutic intervention strategy for treatment of S. aureus pneumonia.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- Female
- Host-Pathogen Interactions/immunology
- Humans
- Inflammasomes/immunology
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Lung/immunology
- Lung/microbiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Infiltration/immunology
- Pneumonia, Necrotizing/immunology
- Pneumonia, Necrotizing/microbiology
- Pneumonia, Staphylococcal/immunology
- Pneumonia, Staphylococcal/microbiology
- Pyroptosis/immunology
- Reactive Oxygen Species/metabolism
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Staphylococcus aureus/immunology
- Up-Regulation
Collapse
Affiliation(s)
- Laxman Ghimire
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Sagar Paudel
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Liliang Jin
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Pankaj Baral
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Shanshan Cai
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
| | - Samithamby Jeyaseelan
- Lung Biology Laboratory, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University (LSU), Baton Rouge, LA, United States of America
- Section of Pulmonary and Critical Care, Department of Medicine, LSU Health Science Center, New Orleans, LA, United States of America
| |
Collapse
|
17
|
Ferreira-Duarte AP, Pinheiro-Torres AS, Anhê GF, Condino-Neto A, Antunes E, DeSouza IA. MHC Class II Activation and Interferon-γ Mediate the Inhibition of Neutrophils and Eosinophils by Staphylococcal Enterotoxin Type A (SEA). Front Cell Infect Microbiol 2017; 7:518. [PMID: 29322036 PMCID: PMC5733477 DOI: 10.3389/fcimb.2017.00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
Staphylococcal enterotoxins are classified as superantigens that act by linking T-cell receptor with MHC class II molecules, which are expressed on classical antigen-presenting cells (APC). Evidence shows that MHC class II is also expressed in neutrophils and eosinophils. This study aimed to investigate the role of MHC class II and IFN-γ on chemotactic and adhesion properties of neutrophils and eosinophils after incubation with SEA. Bone marrow (BM) cells obtained from BALB/c mice were resuspended in culture medium, and incubated with SEA (3–30 ng/ml; 1–4 h), after which chemotaxis and adhesion were evaluated. Incubation with SEA significantly reduced the chemotactic and adhesive responses in BM neutrophils activated with IL-8 (200 ng/ml). Likewise, SEA significantly reduced the chemotactic and adhesive responses of BM eosinophils activated with eotaxin (300 ng/ml). The inhibitory effects of SEA on cell chemotaxis and adhesion were fully prevented by prior incubation with an anti-MHC class II blocking antibody (2 μg/ml). SEA also significantly reduced the intracellular Ca2+ levels in IL-8- and eotaxin-activated BM cells. No alterations of MAC-1, VLA4, and LFA-1α expressions were observed after SEA incubation. In addition, SEA elevated by 3.5-fold (P < 0.05) the INF-γ levels in BM cells. Incubation of BM leukocytes with IFN-γ (10 ng/ml, 2 h) reduced both neutrophil and eosinophil chemotaxis and adhesion, which were prevented by prior incubation with anti-MHC class II antibody (2 μg/ml). In conclusion, SEA inhibits neutrophil and eosinophil by MHC class II-dependent mechanism, which may be modulated by concomitant release of IFN-γ.
Collapse
Affiliation(s)
- Ana P Ferreira-Duarte
- Department of Biology and Physiology, Faculty of Medicine of Jundiai, Jundiai, Brazil
| | | | - Gabriel F Anhê
- Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - Antônio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Edson Antunes
- Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - Ivani A DeSouza
- Department of Biology and Physiology, Faculty of Medicine of Jundiai, Jundiai, Brazil
| |
Collapse
|
18
|
Oldford SA, Salsman SP, Portales-Cervantes L, Alyazidi R, Anderson R, Haidl ID, Marshall JS. Interferon α2 and interferon γ induce the degranulation independent production of VEGF-A and IL-1 receptor antagonist and other mediators from human mast cells. IMMUNITY INFLAMMATION AND DISEASE 2017; 6:176-189. [PMID: 29235261 PMCID: PMC5818443 DOI: 10.1002/iid3.211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 11/20/2017] [Indexed: 01/05/2023]
Abstract
Background Mast cells are resident immune effector cells, often studied in the context of allergic disease. Found in substantial numbers at sites of potential infection they are increased at sites of angiogenesis and can be pivotal for the sensing and clearance of a variety of pathogens. Interferons (IFNs) are cytokines that are critical for host defence against intracellular pathogens. Increased levels of IFNs are observed during viral infection and in autoimmune diseases. IFNs are also widely used therapeutically and have been examined in the therapy of severe asthma. Objective To define the selective human mast cell cytokine and chemokine response following activation with type I or type II IFN's. Methods The ability of both IFNα2 and IFNγ to induce cytokine production by human cord blood‐derived mast cells was examined in vitro. Cytokine and chemokine production at 6 and 24 h was assessed by multiplex protein analysis. Degranulation was assessed by β‐hexosaminidase release. Mast cells were also treated with reovirus or respiratory syncytial virus and their production of CXCL10, IL‐1 receptor antagonist (IL‐1Ra), and vascular endothelial growth factor (VEGF) examined after 24 h. Results In addition to increased expression of classical IFN response genes, such as CXCL10, small but significant increases in CCL5 and IL‐17 production were observed following IFN activation. Notably, human mast cells produced both VEGF and IL‐1Ra in a dose dependent manner. These responses occurred in the absence of mast cell degranulation by a mechanism consistent with classical IFN signaling. Both reovirus and respiratory syncytial virus infection of mast cells, were also associated with IFN‐dependent IL‐1Ra expression. Conclusion and Clinical Relevance Our findings demonstrate that IFNs have profound impact on cytokine and chemokine expression by human mast cells, alone or in the context of viral infection. Mast cell VEGF and IL‐1Ra responses to IFNs could impact the regulation of local inflammatory responses and subsequent tissue remodeling.
Collapse
Affiliation(s)
- Sharon A Oldford
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada
| | - Suzanne P Salsman
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Liliana Portales-Cervantes
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Raidan Alyazidi
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Faculty of Medicine, Department of Pediatrics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Robert Anderson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Canadian Center for Vaccinology, IWK Health Centre, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ian D Haidl
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean S Marshall
- Dalhousie Inflammation Group, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
19
|
Garcia-Rodriguez KM, Goenka A, Alonso-Rasgado MT, Hernández-Pando R, Bulfone-Paus S. The Role of Mast Cells in Tuberculosis: Orchestrating Innate Immune Crosstalk? Front Immunol 2017; 8:1290. [PMID: 29089945 PMCID: PMC5650967 DOI: 10.3389/fimmu.2017.01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis causes more annual deaths globally than any other infectious disease. However, progress in developing novel vaccines, diagnostics, and therapies has been hampered by an incomplete understanding of the immune response to Mycobacterium tuberculosis (Mtb). While the role of many immune cells has been extensively explored, mast cells (MCs) have been relatively ignored. MCs are tissue resident cells involved in defense against bacterial infections playing an important role mediating immune cell crosstalk. This review discusses specific interactions between MCs and Mtb, their contribution to both immunity and disease pathogenesis, and explores their role in orchestrating other immune cells against infections.
Collapse
Affiliation(s)
- Karen M. Garcia-Rodriguez
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Anu Goenka
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
| | - Maria T. Alonso-Rasgado
- Faculty of Science and Engineering, School of Materials, University of Manchester, Manchester, United Kingdom
| | - Rogelio Hernández-Pando
- Departamento de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubiran”, Mexico City, Mexico
| | - Silvia Bulfone-Paus
- Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester, United Kingdom
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Hodille E, Cuerq C, Badiou C, Bienvenu F, Steghens JP, Cartier R, Bes M, Tristan A, Plesa A, Le VTM, Diep BA, Lina G, Dumitrescu O. Delta Hemolysin and Phenol-Soluble Modulins, but Not Alpha Hemolysin or Panton-Valentine Leukocidin, Induce Mast Cell Activation. Front Cell Infect Microbiol 2016; 6:180. [PMID: 28018862 PMCID: PMC5149515 DOI: 10.3389/fcimb.2016.00180] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
Mast cells are located at host interfaces, such as the skin, and contribute to the first-line defense against pathogens by releasing soluble mediators, including those that induce itching and scratching behavior. Here, we show that delta-hemolysin (Hld) and phenol soluble modulins (PSMs) PSMα1 and PSMα3, but not alpha-hemolysin (Hla) or Panton-Valentine leukocidin (PVL), induce dose-dependent tryptase, and lactate dehydrogenase (LDH) release by the HMC-1 human mast cell line. Using supernatants from isogenic strains, we verified that tryptase and LDH release was Hld- and PSMα-dependent. PSMα1 and Hld production was detected in 65 and 17% of human Staphylococcus aureus-infected skin abscess specimens, respectively, but they were produced in vitro by all clinical isolates. The results suggest that Hld and PSM-α1 produced in vivo during S. aureus skin infections induce the release of mast cell mediators responsible for itching and scratching behavior, which may enhance skin to skin transmission of S. aureus via the hands. As Hld and PSMs are upregulated by accessory gene regulator (agr), their association may contribute to the elective transmission of S. aureus strains with a functional agr system.
Collapse
Affiliation(s)
- Elisabeth Hodille
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Lyon 1, Centre National de la Recherche Scientifique UMR5308, Ecole Normale Supérieure de LyonLyon, France; Hospices Civils de LyonLyon, France
| | - Charlotte Cuerq
- Hospices Civils de LyonLyon, France; Laboratoire de Biochimie, Centre de Biologie SudLyon, France
| | - Cédric Badiou
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Lyon 1, Centre National de la Recherche Scientifique UMR5308, Ecole Normale Supérieure de Lyon Lyon, France
| | - Françoise Bienvenu
- Hospices Civils de LyonLyon, France; Laboratoire d'Immunologie, Centre de Biologie SudLyon, France
| | - Jean-Paul Steghens
- Hospices Civils de LyonLyon, France; Laboratoire de Biochimie, Centre de Biologie SudLyon, France
| | - Régine Cartier
- Hospices Civils de LyonLyon, France; Laboratoire de Biochimie, Groupement Hospitalier EstLyon, France
| | - Michèle Bes
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Lyon 1, Centre National de la Recherche Scientifique UMR5308, Ecole Normale Supérieure de LyonLyon, France; Hospices Civils de LyonLyon, France; Centre National de Référence des StaphylocoquesBron, France
| | - Anne Tristan
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Lyon 1, Centre National de la Recherche Scientifique UMR5308, Ecole Normale Supérieure de LyonLyon, France; Hospices Civils de LyonLyon, France; Centre National de Référence des StaphylocoquesBron, France
| | - Adriana Plesa
- Hospices Civils de LyonLyon, France; Laboratoire d'hématologie, Centre de Biologie SudLyon, France
| | - Vien T M Le
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California San Francisco, CA, USA
| | - Binh A Diep
- Division of HIV, Infectious Diseases and Global Medicine, Department of Medicine, University of California San Francisco, CA, USA
| | - Gérard Lina
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Lyon 1, Centre National de la Recherche Scientifique UMR5308, Ecole Normale Supérieure de LyonLyon, France; Hospices Civils de LyonLyon, France; Centre National de Référence des StaphylocoquesBron, France
| | - Oana Dumitrescu
- Centre International de Recherche en Infectiologie, Institut National de la Santé et de la Recherche Médicale U1111, Université Lyon 1, Centre National de la Recherche Scientifique UMR5308, Ecole Normale Supérieure de LyonLyon, France; Hospices Civils de LyonLyon, France; Centre National de Référence des StaphylocoquesBron, France
| |
Collapse
|
21
|
Greenlee-Wacker MC, Nauseef WM. IFN-γ targets macrophage-mediated immune responses toward Staphylococcus aureus. J Leukoc Biol 2016; 101:751-758. [PMID: 27707882 DOI: 10.1189/jlb.4a1215-565rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 09/01/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022] Open
Abstract
Infections, especially with Staphylococcus aureus (SA), commonly cause morbidity and mortality in patients with chronic granulomatous disease (CGD), a condition characterized by a defective phagocyte oxidase. IFN-γ reduces the frequency and consequences of infection in CGD by mechanisms that remain unknown. As IFN-γ promotes bacterial killing, efferocytosis of effete polymorphonuclear neutrophils (PMN), and cytokine production in macrophages-the same macrophage effector functions that are impaired in response to SA-we hypothesized that IFN-γ may reverse these defects and thereby, augment macrophage control of SA during infection. IFN-γ primed activation of the NADPH oxidase in a time-dependent manner, enhanced killing of ingested SA independent of any effects on phagocytosis, and increased binding of SA-laden neutrophils (PMN-SA) to macrophages. However, IFN-γ did not increase the percentage of apoptotic PMN or PMN-SA internalized by macrophages. Under conditions in which viable SA were eliminated, PMN-SA primed the inflammasome for subsequent activation by silica but did not induce IL-1β production by macrophages. IFN-γ enhanced IL-6 production in response to SA or PMN-SA but did not increase inflammasome activation in response to either agonist. In summary, IFN-γ augmented direct killing of SA by macrophages, promoted engagement of PMN-SA, and enhanced macrophage-mediated cytokine responses that could collectively augment control of SA infection. Together, these findings support the hypothesis that IFN-γ improves responsiveness of macrophages to SA and provides insights into the mechanism of the clinical benefits of IFN-γ.
Collapse
Affiliation(s)
| | - William M Nauseef
- Inflammation Program and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Affairs Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
22
|
Beavers WN, Skaar EP. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus. Pathog Dis 2016; 74:ftw060. [PMID: 27354296 DOI: 10.1093/femspd/ftw060] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a ubiquitous, versatile and dangerous pathogen. It colonizes over 30% of the human population, and is one of the leading causes of death by an infectious agent. During S. aureus colonization and invasion, leukocytes are recruited to the site of infection. To combat S. aureus, leukocytes generate an arsenal of reactive species including superoxide, hydrogen peroxide, nitric oxide and hypohalous acids that modify and inactivate cellular macromolecules, resulting in growth defects or death. When S. aureus colonization cannot be cleared by the immune system, antibiotic treatment is necessary and can be effective. Yet, this organism quickly gains resistance to each new antibiotic it encounters. Therefore, it is in the interest of human health to acquire a deeper understanding of how S. aureus evades killing by the immune system. Advances in this field will have implications for the design of future S. aureus treatments that complement and assist the host immune response. In that regard, this review focuses on how S. aureus avoids host-generated oxidative stress, and discusses the mechanisms used by S. aureus to survive oxidative damage including antioxidants, direct repair of damaged proteins, sensing oxidant stress and transcriptional changes. This review will elucidate areas for studies to identify and validate future antimicrobial targets.
Collapse
Affiliation(s)
- William N Beavers
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Medical Center North, Nashville, TN 37232, USA Tennessee Valley Healthcare System, U.S. Department of Veteran Affairs, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|