1
|
Poudel K, Vithiananthan T, Kim JO, Tsao H. Recent progress in cancer vaccines and nanovaccines. Biomaterials 2025; 314:122856. [PMID: 39366184 DOI: 10.1016/j.biomaterials.2024.122856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
Vaccine science, nanotechnology, and immunotherapy are at the forefront of cancer treatment strategies, each offering significant potential for enhancing tumor-specific immunity and establishing long-lasting immune memory to prevent tumor recurrence. Despite the promise of these personalized and precision-based anti-cancer approaches, challenges such as immunosuppression, suboptimal immune activation, and T-cell exhaustion continue to hinder their effectiveness. The limited clinical success of cancer vaccines often stems from difficulties in identifying effective antigens, efficiently targeting immune cells, lymphoid organs, and the tumor microenvironment, overcoming immune evasion, enhancing immunogenicity, and avoiding lysosomal degradation. However, numerous studies have demonstrated that integrating nanotechnology with immunotherapeutic strategies in vaccine development can overcome these challenges, leading to potent antitumor immune responses and significant progress in the field. This review highlights the critical components of cancer vaccine and nanovaccine strategies for immunomodulatory antitumor therapy. It covers general vaccine strategies, types of vaccines, antigen forms, nanovaccine platforms, challenges faced, potential solutions, and key findings from preclinical and clinical studies, along with future perspectives. To fully unlock the potential of cancer vaccines and nanovaccines, precise immunological monitoring during early-phase trials is essential. This approach will help identify and address obstacles, ultimately expanding the available options for patients who are resistant to conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Kishwor Poudel
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tulasi Vithiananthan
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Hensin Tsao
- Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Vecchiotti D, Clementi L, Cornacchia E, Di Vito Nolfi M, Verzella D, Capece D, Zazzeroni F, Angelucci A. Evidence of the Link between Stroma Remodeling and Prostate Cancer Prognosis. Cancers (Basel) 2024; 16:3215. [PMID: 39335188 PMCID: PMC11430343 DOI: 10.3390/cancers16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.
Collapse
Affiliation(s)
- Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Letizia Clementi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Emanuele Cornacchia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
3
|
Medina S, Brockman AA, Cross CE, Hayes MJ, Mobley BC, Mistry AM, Chotai S, Weaver KD, Thompson RC, Chambless LB, Ihrie RA, Irish JM. IL-8 Instructs Macrophage Identity in Lateral Ventricle Contacting Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587030. [PMID: 38585888 PMCID: PMC10996638 DOI: 10.1101/2024.03.29.587030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Adult IDH-wildtype glioblastoma (GBM) is a highly aggressive brain tumor with no established immunotherapy or targeted therapy. Recently, CD32+ HLA-DRhi macrophages were shown to have displaced resident microglia in GBM tumors that contact the lateral ventricle stem cell niche. Since these lateral ventricle contacting GBM tumors have especially poor outcomes, identifying the origin and role of these CD32+ macrophages is likely critical to developing successful GBM immunotherapies. Here, we identify these CD32+ cells as M_IL-8 macrophages and establish that IL-8 is sufficient and necessary for tumor cells to instruct healthy macrophages into CD32+ M_IL-8 M2 macrophages. In ex vivo experiments with conditioned medium from primary human tumor cells, inhibitory antibodies to IL-8 blocked the generation of CD32+ M_IL-8 cells. Finally, using a set of 73 GBM tumors, IL-8 protein is shown to be present in GBM tumor cells in vivo and especially common in tumors contacting the lateral ventricle. These results provide a mechanistic origin for CD32+ macrophages that predominate in the microenvironment of the most aggressive GBM tumors. IL-8 and CD32+ macrophages should now be explored as targets in combination with GBM immunotherapies, especially for patients whose tumors present with radiographic contact with the ventricular-subventricular zone stem cell niche.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Asa A Brockman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Claire E Cross
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madeline J Hayes
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Akshitkumar M Mistry
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Silky Chotai
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle D Weaver
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reid C Thompson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lola B Chambless
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Gurunathan S, Thangaraj P, Wang L, Cao Q, Kim JH. Nanovaccines: An effective therapeutic approach for cancer therapy. Biomed Pharmacother 2024; 170:115992. [PMID: 38070247 DOI: 10.1016/j.biopha.2023.115992] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Cancer vaccines hold considerable promise for the immunotherapy of solid tumors. Nanomedicine offers several strategies for enhancing vaccine effectiveness. In particular, molecular or (sub) cellular vaccines can be delivered to the target lymphoid tissues and cells by nanocarriers and nanoplatforms to increase the potency and durability of antitumor immunity and minimize negative side effects. Nanovaccines use nanoparticles (NPs) as carriers and/or adjuvants, offering the advantages of optimal nanoscale size, high stability, ample antigen loading, high immunogenicity, tunable antigen presentation, increased retention in lymph nodes, and immunity promotion. To induce antitumor immunity, cancer vaccines rely on tumor antigens, which are administered in the form of entire cells, peptides, nucleic acids, extracellular vesicles (EVs), or cell membrane-encapsulated NPs. Ideal cancer vaccines stimulate both humoral and cellular immunity while overcoming tumor-induced immune suppression. Herein, we review the key properties of nanovaccines for cancer immunotherapy and highlight the recent advances in their development based on the structure and composition of various (including synthetic and semi (biogenic) nanocarriers. Moreover, we discuss tumor cell-derived vaccines (including those based on whole-tumor-cell components, EVs, cell membrane-encapsulated NPs, and hybrid membrane-coated NPs), nanovaccine action mechanisms, and the challenges of immunocancer therapy and their translation to clinical applications.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India.
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641 021, Tamil Nadu, India
| | - Lin Wang
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Qilong Cao
- Research and Development Department, Qingdao Haier Biotech Co., Ltd., Qingdao, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
5
|
Abstract
The host immune system possesses an intrinsic ability to target and kill cancer cells in a specific and adaptable manner that can be further enhanced by cancer immunotherapy, which aims to train the immune system to boost the antitumor immune response. Several different categories of cancer immunotherapy have emerged as new standard cancer therapies in the clinic, including cancer vaccines, immune checkpoint inhibitors, adoptive T cell therapy, and oncolytic virus therapy. Despite the remarkable survival benefit for a subset of patients, the low response rate and immunotoxicity remain the major challenges for current cancer immunotherapy. Over the last few decades, nanomedicine has been intensively investigated with great enthusiasm, leading to marked advancements in nanoparticle platforms and nanoengineering technology. Advances in nanomedicine and immunotherapy have also led to the emergence of a nascent research field of nano-immunotherapy, which aims to realize the full therapeutic potential of immunotherapy with the aid of nanomedicine. In particular, nanocarriers present an exciting opportunity in immuno-oncology to boost the activity, increase specificity, decrease toxicity, and sustain the antitumor efficacy of immunological agents by potentiating immunostimulatory activity and favorably modulating pharmacological properties. This review discusses the potential of nanocarriers for cancer immunotherapy and introduces preclinical studies designed to improve clinical cancer immunotherapy modalities using nanocarrier-based engineering approaches. It also discusses the potential of nanocarriers to address the challenges currently faced by immuno-oncology as well as the challenges for their translation to clinical applications.
Collapse
Affiliation(s)
- Isra Rana
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jaeeun Oh
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Juwon Baig
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Jeong Hyun Moon
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea
| | - Sejin Son
- Department of Biological Sciences, Inha University, Incheon, 22212, South Korea.
- Department of Biological Sciences and Bioengineering, Inha University/Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, South Korea.
| | - Jutaek Nam
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
6
|
Wang X, Yang Y, Zhang G, Tang CY, Law WC, Yu C, Wu X, Li S, Liao Y. NIR-Cleavable and pH-Responsive Polymeric Yolk-Shell Nanoparticles for Controlled Drug Release. Biomacromolecules 2023; 24:2009-2021. [PMID: 37104701 DOI: 10.1021/acs.biomac.2c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Responsive drug release and low toxicity of drug carriers are important for designing controlled release systems. Here, a double functional diffractive o-nitrobenzyl, containing multiple electron-donating groups as a crosslinker and methacrylic acid (MAA) as a monomer, was used to decorate upconversion nanoparticles (UCNPs) to produce robust poly o-nitrobenzyl@UCNP nanocapsules using the distillation-precipitation polymerization and templating method. Poly o-nitrobenzyl@UCNP nanocapsules with a robust yolk-shell structure exhibited near-infrared (NIR) light-/pH-responsive properties. When the nanocapsules were exposed to 980 nm NIR irradiation, the loaded drug was efficiently released by altering the shell of the nanocapsules. The photodegradation kinetics of the poly o-nitrobenzyl@UCNP nanocapsules were studied. The anticancer drug, doxorubicin hydrochloride (DOX), was loaded at pH 8.0 with a loading efficiency of 13.2 wt %. The Baker-Lonsdale model was used to determine the diffusion coefficients under different release conditions to facilitate the design of dual-responsive drug release devices or systems. Additionally, cytotoxicity studies showed that the drug release of DOX could be efficiently triggered by NIR to kill cancer cells in a controlled manner.
Collapse
Affiliation(s)
- Xiaotao Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yebin Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Gaowen Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Chak-Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Cong Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xuanqi Wu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yonggui Liao
- Key Laboratory for Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Sharma S, Mahajan SD, Chevli K, Schwartz SA, Aalinkeel R. Nanotherapeutic Approach to Delivery of Chemo- and Gene Therapy for Organ-Confined and Advanced Castration-Resistant Prostate Cancer. Crit Rev Ther Drug Carrier Syst 2023; 40:69-100. [PMID: 37075068 PMCID: PMC11007628 DOI: 10.1615/critrevtherdrugcarriersyst.2022043827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Treatments for late-stage prostate cancer (CaP) have not been very successful. Frequently, advanced CaP progresses to castration-resistant prostate cancer (CRPC), with 50#37;-70% of patients developing bone metastases. CaP with bone metastasis-associated clinical complications and treatment resistance presents major clinical challenges. Recent advances in the formulation of clinically applicable nanoparticles (NPs) have attracted attention in the fields of medicine and pharmacology with applications to cancer and infectious and neurological diseases. NPs have been rendered biocompatible, pose little to no toxicity to healthy cells and tissues, and are engineered to carry large therapeutic payloads, including chemo- and genetic therapies. Additionally, if required, targeting specificity can be achieved by chemically coupling aptamers, unique peptide ligands, or monoclonal antibodies to the surface of NPs. Encapsulating toxic drugs within NPs and delivering them specifically to their cellular targets overcomes the problem of systemic toxicity. Encapsulating highly labile genetic therapeutics such as RNA within NPs provides a protective environment for the payload during parenteral administration. The loading efficiencies of NPs have been maximized while the controlled their therapeutic cargos has been released. Theranostic ("treat and see") NPs have developed combining therapy with imaging capabilities to provide real-time, image-guided monitoring of the delivery of their therapeutic payloads. All of these NP accomplishments have been applied to the nanotherapy of late-stage CaP, offering a new opportunity for a previously dismal prognosis. This article gives an update on current developments in the use of nanotechnology for treating late-stage, castration-resistant CaP.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Kent Chevli
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
8
|
Johnson CS, Cook LM. Osteoid cell-derived chemokines drive bone-metastatic prostate cancer. Front Oncol 2023; 13:1100585. [PMID: 37025604 PMCID: PMC10070788 DOI: 10.3389/fonc.2023.1100585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
One of the greatest challenges in improving prostate cancer (PCa) survival is in designing new therapies to effectively target bone metastases. PCa regulation of the bone environment has been well characterized; however, bone-targeted therapies have little impact on patient survival, demonstrating a need for understanding the complexities of the tumor-bone environment. Many factors contribute to creating a favorable microenvironment for prostate tumors in bone, including cell signaling proteins produced by osteoid cells. Specifically, there has been extensive evidence from both past and recent studies that emphasize the importance of chemokine signaling in promoting PCa progression in the bone environment. Chemokine-focused strategies present promising therapeutic options for treating bone metastasis. These signaling pathways are complex, with many being produced by (and exerting effects on) a plethora of different cell types, including stromal and tumor cells of the prostate tumor-bone microenvironment. This review highlights an underappreciated molecular family that should be interrogated for treatment of bone metastatic prostate cancer (BM-PCa).
Collapse
Affiliation(s)
- Catherine S. Johnson
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE, United States
| | - Leah M. Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Leah M. Cook,
| |
Collapse
|
9
|
Jiang Y, Fan M, Yang Z, Liu X, Xu Z, Liu S, Feng G, Tang S, Li Z, Zhang Y, Chen S, Yang C, Law WC, Dong B, Xu G, Yong KT. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci 2022; 10:6862-6892. [PMID: 36222758 DOI: 10.1039/d2bm01001a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gene therapy has shown great potential in the treatment of many diseases by downregulating the expression of certain genes. The development of gene vectors as a vehicle for gene therapy has greatly facilitated the widespread clinical application of nucleic acid materials (DNA, mRNA, siRNA, and miRNA). Currently, both viral and non-viral vectors are used as delivery systems of nucleic acid materials for gene therapy. However, viral vector-based gene therapy has several limitations, including immunogenicity and carcinogenesis caused by the exogenous viral vectors. To address these issues, non-viral nanocarrier-based gene therapy has been explored for superior performance with enhanced gene stability, high treatment efficiency, improved tumor-targeting, and better biocompatibility. In this review, we discuss various non-viral vector-mediated gene therapy approaches using multifunctional biodegradable or non-biodegradable nanocarriers, including polymer-based nanoparticles, lipid-based nanoparticles, carbon nanotubes, gold nanoparticles (AuNPs), quantum dots (QDs), silica nanoparticles, metal-based nanoparticles and two-dimensional nanocarriers. Various strategies to construct non-viral nanocarriers based on their delivery efficiency of targeted genes will be introduced. Subsequently, we discuss the cellular uptake pathways of non-viral nanocarriers. In addition, multifunctional gene therapy based on non-viral nanocarriers is summarized, in which the gene therapy can be combined with other treatments, such as photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy and chemotherapy. We also provide a comprehensive discussion of the biological toxicity and safety of non-viral vector-based gene therapy. Finally, the present limitations and challenges of non-viral nanocarriers for gene therapy in future clinical research are discussed, to promote wider clinical applications of non-viral vector-based gene therapy.
Collapse
Affiliation(s)
- Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Miaozhuang Fan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhenxu Yang
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shikang Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Gang Feng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shuo Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Zhengzheng Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Yibin Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Shilin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Biqin Dong
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia. .,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia.,The Biophotonics and Mechanobioengineering Laboratory, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
10
|
Upregulation of PARG in prostate cancer cells suppresses their malignant behavior and downregulates tumor-promoting genes. Biomed Pharmacother 2022; 153:113504. [PMID: 36076593 DOI: 10.1016/j.biopha.2022.113504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/03/2023] Open
Abstract
Post-translational modification of nuclear proteins through the addition of poly(ADP-ribose) (pADPr) moieties is upregulated in many metastatic cancers, where the high levels of pADPr have often been associated with poor cancer prognosis. Although the inhibitors of poly(ADP-ribose) polymerases (PARPs) have been utilized as potent anti-cancer agents, their efficacy in clinical trials varied among patient groups and has often been unpredictable. Such outcome cannot be interpreted solely by the inability to keep PARP-driven DNA repair in check. The focus of studies on PARP-driven tumorigenesis have recently been shifted toward PARP-dependent regulation of transcription. Here we utilized the controlled overexpression of poly(ADP-ribose) glycohydrolase (PARG), a sole pADPr-degrading enzyme, to investigate pADPr-dependent gene regulation in prostate cancer PC-3 cells. We demonstrated that PARG upregulation reduces pADPr levels and inhibits the expression of genes in key tumor-promoted pathways, including TNFα/NF-kB, IL6/STAT3, MYC, and KRAS signaling, the genes involved in inflammation response, especially chemokines, and endothelial-mesenchymal transition. The observed effect of PARG on transcription was consistent across all tested prostate cancer cell lines and correlates with PARG-induced reduction of clonogenic potential of PC-3 cells in vitro and a significant growth inhibition of PC-3-derived tumors in nude mice in vivo.
Collapse
|
11
|
Ansari MA, Thiruvengadam M, Venkidasamy B, Alomary MN, Salawi A, Chung IM, Shariati MA, Rebezov M. Exosome-based nanomedicine for cancer treatment by targeting inflammatory pathways: Current status and future perspectives. Semin Cancer Biol 2022; 86:678-696. [PMID: 35452820 DOI: 10.1016/j.semcancer.2022.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Cancer is one of the dreadful diseases worldwide. Surgery, radiation and chemotherapy, are the three basic standard modes of cancer treatment. However, difficulties in cancer treatment are increasing due to immune escape, spreading of cancer to other places, and resistance of cancer cells to therapies. Various signaling mechanisms, including PI3K/Akt/mTOR, RAS, WNT/β-catenin, TGF-beta, and notch pathways, are involved in cancer resistance. The adaptive inflammatory response is the initial line of defence against infection. However, chronic inflammation can lead to tumorigenesis, malignant transformation, tumor growth, invasion, and metastasis. The most commonly dysregulated inflammatory pathways linked to cancer include NF-κB, MAPK, JAK-STAT, and PI3K/AKT. To overcome major hurdles in cancer therapy, nanomedicine is receiving much attention due to its role as a vehicle for delivering chemotherapeutic agents that specifically target tumor sites. Several biocompatible nanocarriers including polymer and inorganic nanoparticles, liposomes, micellar nanoparticles, nanotubes, and exosomes have been extensively studied. Exosome has been reported as an important potential sytem that could be effectively used as a bioinspired, bioengineered, and biomimetic drug delivery solution considering its toxicity, immunogenicity, and rapid clearance by the mononuclear phagocyte system. Exosome-mimetic vesicles are receiving much interest for developing nano-sized delivery systems. In this review, exosomes in detail as well as certain other nanocarriers, and their potential therapeutic roles in cancer therapy has been thoroughly discussed. Additionally, we also reviewed on oncogenic and tumor suppressor proteins, inflammation, and their associated signaling pathways and their interference by exosomes based nanomedicine.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Baskar Venkidasamy
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Mohammad N Alomary
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Mohammad Ali Shariati
- Research Department, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Maksim Rebezov
- Department of Scientific Advisers, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., Moscow 109316, Russian Federation
| |
Collapse
|
12
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
13
|
Akkın S, Varan G, Bilensoy E. A Review on Cancer Immunotherapy and Applications of Nanotechnology to Chemoimmunotherapy of Different Cancers. Molecules 2021; 26:3382. [PMID: 34205019 PMCID: PMC8199882 DOI: 10.3390/molecules26113382] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Clinically, different approaches are adopted worldwide for the treatment of cancer, which still ranks second among all causes of death. Immunotherapy for cancer treatment has been the focus of attention in recent years, aiming for an eventual antitumoral effect through the immune system response to cancer cells both prophylactically and therapeutically. The application of nanoparticulate delivery systems for cancer immunotherapy, which is defined as the use of immune system features in cancer treatment, is currently the focus of research. Nanomedicines and nanoparticulate macromolecule delivery for cancer therapy is believed to facilitate selective cytotoxicity based on passive or active targeting to tumors resulting in improved therapeutic efficacy and reduced side effects. Today, with more than 55 different nanomedicines in the market, it is possible to provide more effective cancer diagnosis and treatment by using nanotechnology. Cancer immunotherapy uses the body's immune system to respond to cancer cells; however, this may lead to increased immune response and immunogenicity. Selectivity and targeting to cancer cells and tumors may lead the way to safer immunotherapy and nanotechnology-based delivery approaches that can help achieve the desired success in cancer treatment.
Collapse
Affiliation(s)
- Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey;
| | - Gamze Varan
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, 06100 Ankara, Turkey;
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey;
| |
Collapse
|
14
|
Korbecki J, Kojder K, Kapczuk P, Kupnicka P, Gawrońska-Szklarz B, Gutowska I, Chlubek D, Baranowska-Bosiacka I. The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors-A Review of Literature. Int J Mol Sci 2021; 22:ijms22020843. [PMID: 33467722 PMCID: PMC7830156 DOI: 10.3390/ijms22020843] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/26/2022] Open
Abstract
Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors—CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. First, we present basic information on the effect of these chemoattractant cytokines on cancer processes. We then discuss the effect of hypoxia-induced changes on CXC chemokine expression on the angiogenesis, lymphangiogenesis and recruitment of various cells to the tumor niche, including myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), regulatory T cells (Tregs) and tumor-infiltrating lymphocytes (TILs). Finally, the review summarizes data on the use of drugs targeting the CXC chemokine system in cancer therapies.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Klaudyna Kojder
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland;
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Barbara Gawrońska-Szklarz
- Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland;
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; (J.K.); (P.K.); (P.K.); (D.C.)
- Correspondence: ; Tel.: +48-914661515
| |
Collapse
|
15
|
Harshman LC, Wang XV, Hamid AA, Santone G, Drake CG, Carducci MA, DiPaola RS, Fichorova RN, Sweeney CJ. Impact of baseline serum IL-8 on metastatic hormone-sensitive prostate cancer outcomes in the Phase 3 CHAARTED trial (E3805). Prostate 2020; 80:1429-1437. [PMID: 32949185 PMCID: PMC7606809 DOI: 10.1002/pros.24074] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND The immunosuppressive cytokine interleukin- 8 (IL-8), produced by tumor cells and some myeloid cells, promotes inflammation, angiogenesis, and metastasis. In our discovery work, elevated serum IL-8 at androgen deprivation therapy (ADT) initiation portended worse overall survival (OS). Leveraging serum samples from the phase 3 CHAARTED trial of patients treated with ADT +/- docetaxel for metastatic hormone-sensitive prostate cancer (mHSPC), we validated these findings. METHODS Two hundred and thirty-three patients had serum samples drawn within 28 days of ADT initiation. The samples were assayed using the same Mesoscale Multiplex ELISA platform employed in the discovery cohort. After adjusting for performance status, disease volume, and de novo/metachronous metastases, multivariable Cox proportional hazards models assessed associations between IL-8 as continuous and binary variables on OS and time to castration-resistant prostate cancer (CRPC). The median IL-8 level (9.3 pg/ml) was the a priori binary cutpoint. Fixed-effects meta-analyses of the discovery and validation sets were performed. RESULTS Higher IL-8 levels were prognostic for shorter OS (continuous: hazard ratio [HR] 2.2, 95% confidence interval [CI]: 1.4-3.6, p = .001; binary >9.3: HR 1.7, 95% CI: 1.2-2.4, p = .007) and time to CRPC (continuous: HR 2.3, 95% CI: 1.6-3.3, p < .001; binary: HR 1.8, 95% CI: 1.3-2.5, p < .001) and independent of docetaxel use, disease burden, and time of metastases. Meta-analysis including the discovery cohort, also showed that binary IL-8 levels >9.3 pg/ml from patients treated with ADT alone was prognostic for poorer OS (HR 1.8, 95% CI: 1.2-2.7, p = .007) and shorter time to CRPC (HR 1.4, 95% CI: 0.99-1.9, p = .057). CONCLUSIONS In the phase 3 CHAARTED study of men with mHSPC at ADT initiation, elevated IL-8 portended worse survival and shorter time to castration-resistant prostate cancer independent of docetaxel administration, metastatic burden, and metachronous versus de novo metastatic presentation. These findings support targeting IL-8 as a strategy to improve mHSPC outcomes.
Collapse
Affiliation(s)
- Lauren C. Harshman
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Harvard Medical School. Boston, MA
| | - X. Victoria Wang
- Dana-Farber Cancer Institute, Department of Data Sciences Boston, MA
| | - Anis A. Hamid
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Harvard Medical School. Boston, MA
| | | | - Charles G. Drake
- Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | | | | | | | - Christopher J. Sweeney
- Dana-Farber Cancer Institute, Lank Center for Genitourinary Oncology, Harvard Medical School. Boston, MA
| |
Collapse
|
16
|
Bulmahn JC, Kutscher HL, Cwiklinski K, Schwartz SA, Prasad PN, Aalinkeel R. A Multimodal Theranostic Nanoformulation That Dramatically Enhances Docetaxel Efficacy Against Castration Resistant Prostate Cancer. J Pharm Sci 2020; 109:2874-2883. [PMID: 32534879 DOI: 10.1016/j.xphs.2020.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
In this work, a multifunctional hierarchical nanoformulation composed of biodegradable chitosan (CS) coated poly (lactic-co-glycolic acid) (PLGA) nanocarriers loaded with docetaxel (Doc) and interleukin-8 (IL-8) small interfering RNA (siRNA) electrostatically bound to upconversion nanoparticles (UCNPs), is developed to treat castration-resistant prostate cancer (CRPC). This theranostic nanoformulation facilitates simultaneous delivery of chemotherapy and gene therapy, as well as a bimodal optical and magnetic resonance imaging agent that could enable image-guided combination therapy. Poly-d-lysine coated NaYF4; Yb20%, Er2%@NaYF4; Gd50% core@shell UCNPs are effective siRNA transfection agents, and Er3+ doping provides upconversion imaging capabilities, while Gd3+ doping enables magnetic resonance contrast enhancement. These properties are maintained upon encapsulation in PLGA-CS. PLGA-CS nanocarriers containing Doc and UCNP-siRNA are 235 ± 5 nm with a zeta potential of +17 ± 4 meV, and have a high Doc encapsulation efficiency of 57 ± 6%. Compared to free Doc, this PLGA-CS nanoformulation containing Doc and UCNP-siRNA exhibits a dramatic decrease in IC50 of ~14,000 fold (p < 0.001) through combination therapy in human PC-3 prostate cancer cells. This biocompatible, multimodal, theranostic nanoformulation demonstrates paradigm-shifting enhancement in anticancer activity over free Doc, with unique potential for use in image-guided combination therapy to treat CRPC.
Collapse
Affiliation(s)
- Julia C Bulmahn
- Institute for Lasers, Photonics and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, New York 14203; Department of Anesthesiology, University at Buffalo, The State University of New York, Buffalo, New York 14203
| | - Katherine Cwiklinski
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, New York 14203
| | - Stanley A Schwartz
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, New York 14203
| | - Paras N Prasad
- Institute for Lasers, Photonics and Biophotonics, Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260.
| | - Ravikumar Aalinkeel
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, State University of New York at Buffalo, Clinical Translational Research Center, Buffalo, New York 14203
| |
Collapse
|
17
|
Bikfalvi A, Billottet C. The CC and CXC chemokines: major regulators of tumor progression and the tumor microenvironment. Am J Physiol Cell Physiol 2020; 318:C542-C554. [PMID: 31913695 DOI: 10.1152/ajpcell.00378.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chemokines are a family of soluble cytokines that act as chemoattractants to guide the migration of cells, in particular of immune cells. However, chemokines are also involved in cell proliferation, differentiation, and survival. Chemokines are associated with a variety of human diseases including chronic inflammation, immune dysfunction, cancer, and metastasis. This review discusses the expression of CC and CXC chemokines in the tumor microenvironment and their supportive and inhibitory roles in tumor progression, angiogenesis, metastasis, and tumor immunity. We also specially focus on the diverse roles of CXC chemokines (CXCL9-11, CXCL4 and its variant CXCL4L1) and their two chemokine receptor CXCR3 isoforms, CXCR3-A and CXCR3-B. These two distinct isoforms have divergent roles in tumors, either promoting (CXCR3-A) or inhibiting (CXCR3-B) tumor progression. Their effects are mediated not only directly in tumor cells but also indirectly via the regulation of angiogenesis and tumor immunity. A full comprehension of their mechanisms of action is critical to further validate these chemokines and their receptors as biomarkers or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Andreas Bikfalvi
- INSERM U1029, Pessac, France.,University of Bordeaux, Pessac, France
| | | |
Collapse
|
18
|
IL8 Expression Is Associated with Prostate Cancer Aggressiveness and Androgen Receptor Loss in Primary and Metastatic Prostate Cancer. Mol Cancer Res 2019; 18:153-165. [DOI: 10.1158/1541-7786.mcr-19-0595] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/20/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022]
|
19
|
The role of prostatic inflammation in the development and progression of benign and malignant diseases. Curr Opin Urol 2018; 27:99-106. [PMID: 27906778 DOI: 10.1097/mou.0000000000000369] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW To evaluate the role of prostatic inflammation in the development and progression of benign and malignant prostatic diseases. RECENT FINDINGS Preclinical studies demonstrate that the activation of a chronic inflammatory prostatic response plays an important role in the pathogenesis and progression of benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Approximately 40-70% of patients with BPH-related lower urinary tract symptoms harbour chronic inflammation at pathologic evaluation. These individuals should be considered at increased risk of symptom progression and acute urinary retention. Although currently available drugs approved for the treatment of BPH do not have an anti-inflammatory activity, the development of novel molecules that target the inflammatory pathway represents a promising area in the pharmacological treatment of BPH. Preclinical evidences support a potential role of chronic prostatic inflammation in the malignant transformation of prostatic cells. However, clinical investigations on the association between prostatic inflammation and the risk of PCa report conflicting results. SUMMARY Men with BPH-related lower urinary tract symptoms and chronic prostatic inflammation should be considered at increased risk of symptom progression and acute urinary retention during follow-up. Although preclinical studies provide a biological rationale for the relationship between inflammation and the risk of PCa, clinical investigations report conflicting results and the direct relationship between inflammation and malignant transformation in the human prostate is still debated.
Collapse
|
20
|
Sass SN, Ramsey KD, Egan SM, Wang J, Cortes Gomez E, Gollnick SO. Tumor-associated myeloid cells promote tumorigenesis of non-tumorigenic human and murine prostatic epithelial cell lines. Cancer Immunol Immunother 2018; 67:873-883. [PMID: 29502208 PMCID: PMC5951898 DOI: 10.1007/s00262-018-2143-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/26/2018] [Indexed: 11/29/2022]
Abstract
The etiology of prostate cancer is poorly understood, but it is a multi-step process that has been linked to environmental factors that induce inflammation within the gland. Glands of prostate cancer patients frequently contain multiple zones of disease at various stages of progression. The factors that drive disease progression from an indolent benign stage to aggressive disease are not well-defined. Prostate inflammation and carcinoma are associated with high levels of myeloid cell infiltration; these cells are linked to disease progression in other cancers, but their role in prostate cancer is unclear. To determine whether myeloid cells contribute to prostate cancer progression, the ability of prostate tumor-associated CD11b+ cells (TAMC) to drive prostate epithelial cell tumorigenesis was tested. Co-culture of CD11b+ TAMC with non-tumorigenic genetically primed prostate epithelial cells resulted in stable transformation and induction of tumorigenesis. RNA sequencing identified the IL-1α pathway as a potential molecular mechanism responsible for tumor promotion by TAMC. Inhibition of IL-1α delayed growth of TAMC-induced tumors. Further analysis showed that IL-1α inhibition led to decreased angiogenesis within tumors, suggesting that IL-1α promotes prostate tumor progression, potentially through augmentation of angiogenesis.
Collapse
Affiliation(s)
- Stephanie N Sass
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Kimberley D Ramsey
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Shawn M Egan
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sandra O Gollnick
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA.
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Sts, Buffalo, NY, 14263, USA.
| |
Collapse
|
21
|
Elucidating the Role of CD84 and AHR in Modulation of LPS-Induced Cytokines Production by Cruciferous Vegetable-Derived Compounds Indole-3-Carbinol and 3,3'-Diindolylmethane. Int J Mol Sci 2018; 19:ijms19020339. [PMID: 29364159 PMCID: PMC5855561 DOI: 10.3390/ijms19020339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Modulation of the immune system by cancer protective food bioactives has preventive and therapeutic importance in prostate cancer, but the mechanisms remain largely unclear. The current study tests the hypothesis that the diet-derived cancer protective compounds, indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM), affect the tumor microenvironment by regulation of inflammatory responses in monocytes and macrophages. We also ask whether I3C and DIM act through the aryl hydrocarbon (AHR)-dependent pathway or the signaling lymphocyte activation molecule (SLAM) family protein CD84-mediated pathway. The effect of I3C and DIM was examined using the human THP-1 monocytic cell in its un-differentiated (monocyte) and differentiated (macrophage) state. We observed that I3C and DIM inhibited lipopolysaccharide (LPS) induction of IL-1β mRNA and protein in the monocyte form but not the macrophage form of THP-1. Interestingly, CD84 mRNA but not protein was inhibited by I3C and DIM. AHR siRNA knockdown experiments confirmed that the inhibitory effects of I3C and DIM on IL-1β as well as CD84 mRNA are regulated through AHR-mediated pathways. Additionally, the AHR ligand appeared to differentially regulate other LPS-induced cytokines expression. Hence, cross-talk between AHR and inflammation-mediated pathways, but not CD84-mediated pathways, in monocytes but not macrophages may contribute to the modulation of tumor environments by I3C and DIM in prostate cancer.
Collapse
|
22
|
Wang Y, Liu J, Jiang Q, Deng J, Xu F, Chen X, Cheng F, Zhang Y, Yao Y, Xia Z, Xu X, Su X, Huang M, Dai L, Yang Y, Zhang S, Yu D, Zhao RC, Wei Y, Deng H. Human Adipose-Derived Mesenchymal Stem Cell-Secreted CXCL1 and CXCL8 Facilitate Breast Tumor Growth By Promoting Angiogenesis. Stem Cells 2017; 35:2060-2070. [DOI: 10.1002/stem.2643] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/27/2017] [Accepted: 05/12/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Junli Liu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Qingyuan Jiang
- Department of Obstetrics; Sichuan Provincial Hospital for Women and Children; Chengdu People's Republic of China
| | - Jie Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Fen Xu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Xiaolei Chen
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Fuyi Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Yujing Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Yunqi Yao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Zhemin Xia
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Xia Xu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Meijuan Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
- Department of Thoracic Oncology; Cancer Center, West China Hospital, Sichuan University; Chengdu People's Republic of China
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Shuang Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering; Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and PeKing Union Medical College; Beijing People's Republic of China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center of Biotherapy
| |
Collapse
|
23
|
Peng Y, Zhang R, Kong L, Shen Y, Xu D, Zheng F, Liu J, Wu Q, Jia B, Zhang J. Ginsenoside Rg3 inhibits the senescence of prostate stromal cells through down-regulation of interleukin 8 expression. Oncotarget 2017; 8:64779-64792. [PMID: 29029391 PMCID: PMC5630291 DOI: 10.18632/oncotarget.17616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/18/2017] [Indexed: 02/07/2023] Open
Abstract
Senescent stromal cells support the development of prostate cancer and are considered potential therapeutic targets. This research evaluated the regulatory effects of ginsenoside Rg3 on the senescence of prostatic stromal cells pre-incubated in medium supplemented with 0.5% fetal bovine serum. The results revealed that ginsenoside Rg3 decreased the number of stromal cells positively stained with a senescent cell marker (senescence-associated β-galactosidase). Ginsenoside Rg3 also increased the viability of stromal cells and promoted cell cycle transition from G0/G1 to S phase, as well as inhibited the carcinoma-associated fibroblast-like phenotype in prostate stromal cells, through the up-regulation of smooth muscle cell markers SM22 and smooth muscle myosin heavy chain. Conditioned medium collected from stromal cells treated with ginsenoside Rg3 exhibited an attenuated effect on the promotion of prostate cancer cell migration compared with conditioned medium from stromal cells without Rg3 treatment. Down-regulation of interleukin 8 (IL-8) in a dose- and time-dependent manner was observed in ginsenoside Rg3-treated stromal cells, and over-expression or addition of IL-8 reversed the anti-senescence role of Rg3 in prostate stromal cells. Furthermore, ginsenoside Rg3 down-regulated IL-8 expression by decreasing the reactive oxygen species level in prostatic stromal cells and reducing the transcriptional activity of IL-8 promoter by damping the transcription factors C/EBP β and p65 binding to IL-8 promoter. Our research revealed that ginsenoside Rg3 was able to inhibit prostate stromal cell senescence by down-regulating IL-8 expression. The results suggest a potential value for ginsenoside Rg3 in prostate cancer treatment through the targeting of pro-carcinogenic senescent stromal cells.
Collapse
Affiliation(s)
- Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ran Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Lingfei Kong
- Department of Biochemistry and Molecular Biology, College of Life Science, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Yongmei Shen
- Department of Biochemistry and Molecular Biology, College of Life Science, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Da Xu
- Department of Pharmaceutics, School of Pharmacy, Rutgers University, New Brunswick, New Jersey, USA
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianwei Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, College of Life Science, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Bioactive Materials Key Lab of Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
24
|
Polymers in the Co-delivery of siRNA and Anticancer Drugs for the Treatment of Drug-resistant Cancers. Top Curr Chem (Cham) 2017; 375:24. [DOI: 10.1007/s41061-017-0113-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 01/24/2017] [Indexed: 12/20/2022]
|
25
|
Ferrari D, Malavasi F, Antonioli L. A Purinergic Trail for Metastases. Trends Pharmacol Sci 2016; 38:277-290. [PMID: 27989503 DOI: 10.1016/j.tips.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/14/2023]
Abstract
Nucleotides and nucleosides have emerged as important modulators of tumor biology. Recently acquired evidence shows that, when these molecules are released by cancer cells or surrounding tissues, they act as potent prometastatic factors, favoring tumor cell migration and tissue colonization. Therefore, nucleotides and nucleosides should be considered as a new class of prometastatic factors. In this review, we focus on the prometastatic roles of nucleotides and discuss future applications of purinergic signaling modulation in view of antimetastatic therapies.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Fabio Malavasi
- Laboratory of Immunogenetics and CeRMS, Department of Medical Sciences, University of Torino and Transplant Immunology, Città della Salute e della Scienza, Torino, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
26
|
Saadatpour Z, Bjorklund G, Chirumbolo S, Alimohammadi M, Ehsani H, Ebrahiminejad H, Pourghadamyari H, Baghaei B, Mirzaei HR, Sahebkar A, Mirzaei H, Keshavarzi M. Molecular imaging and cancer gene therapy. Cancer Gene Ther 2016:cgt201662. [PMID: 27857058 DOI: 10.1038/cgt.2016.62] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
Gene therapy is known as one of the most advanced approaches for therapeutic prospects ranging from tackling genetic diseases to combating cancer. In this approach, different viral and nonviral vector systems such as retrovirus, lentivirus, plasmid and transposon have been designed and employed. These vector systems are designed to target different therapeutic genes in various tissues and cells such as tumor cells. Therefore, detection of the vectors containing therapeutic genes and monitoring of response to the treatment are the main issues that are commonly faced by researchers. Imaging techniques have been critical in guiding physicians in the more accurate and precise diagnosis and monitoring of cancer patients in different phases of malignancies. Imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are non-invasive and powerful tools for monitoring of the distribution of transgene expression over time and assessing patients who have received therapeutic genes. Here, we discuss most recent advances in cancer gene therapy and molecular approaches as well as imaging techniques that are utilized to detect cancer gene therapeutics and to monitor the patients' response to these therapies worldwide, particularly in Iranian Academic Medical Centers and Hospitals.Cancer Gene Therapy advance online publication, 18 November 2016; doi:10.1038/cgt.2016.62.
Collapse
Affiliation(s)
- Z Saadatpour
- Bozorgmehr Imaging Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - G Bjorklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - S Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - M Alimohammadi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ehsani
- Department of Periodontology, School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - H Ebrahiminejad
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kerman University of Medical Sciences, Kerman, Iran
| | - H Pourghadamyari
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - B Baghaei
- Department of Endodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - H R Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - A Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Keshavarzi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|