1
|
Sosa-Díaz E, Reyes-Gopar H, de Anda-Jáuregui G, Hernández-Lemus E. Single-Cell Analysis Dissects the Effects of Vitamin D on Genetic Senescence Signatures Across Murine Tissues. Nutrients 2025; 17:429. [PMID: 39940287 PMCID: PMC11820085 DOI: 10.3390/nu17030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 02/14/2025] Open
Abstract
Background/Objectives: Vitamin D (VD) plays a crucial role in age-related diseases, and its influence on cellular senescence (CS) could help clarify its function in aging. Considering VD's pleiotropic effects and the heterogeneity of CS. Methods: we utilized single-cell RNA sequencing (scRNA-seq) to explore these dynamics across multiple tissues. We analyzed three murine tissue datasets (bone, prostate, and skin) obtained from public repositories, enriching for senescence gene signatures. We then inferred gene regulatory networks (GRNs) at the tissue and cell-type levels and performed two cell communication analyses: one for senescent cells and another for interactions between senescent and non-senescent cells. Results: VD supplementation significantly decreased senescence scores in the skin (p = 3.96×10-134) and prostate (p=1.56×10-34). GRN analysis of the prostate revealed an altered macrophage-fibroblast regulatory relationship. In bone, distinct aging-related modules emerged for different bone lineages. In skin, contrary differentiation patterns between suprabasal and basal cells were observed. The main VD-modulated pathways were involved in inflammation, extracellular matrix remodeling, protein metabolism, and translation. VD reduced fibroblast-macrophage interactions in the prostate and skin but increased overall cellular crosstalk in bone. Conclusions: Our findings demonstrate that VD alleviates CS burden across tissues by modulating inflammation and metabolic processes and promoting differentiation. Key aging-related genes modulated by VD were linked to anabolism and cellular differentiation, suggesting VD's potential for therapeutic interventions targeting age-related diseases.
Collapse
Affiliation(s)
- Emilio Sosa-Díaz
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (E.S.-D.); (H.R.-G.)
| | - Helena Reyes-Gopar
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (E.S.-D.); (H.R.-G.)
| | - Guillermo de Anda-Jáuregui
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (E.S.-D.); (H.R.-G.)
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Investigadores por Mexico, Conahcyt, Mexico City 03940, Mexico
| | - Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City 14610, Mexico; (E.S.-D.); (H.R.-G.)
- Center for Complexity Sciences, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Potì F, Scalera E, Feuerborn R, Fischer J, Arndt L, Varga G, Pardali E, Seidl MD, Fobker M, Liebisch G, Hesse B, Lukasz AH, Rossaint J, Kehrel BE, Rosenbauer F, Renné T, Christoffersen C, Simoni M, Burkhardt R, Nofer JR. Sphingosine 1-phosphate receptor 1signaling in macrophages reduces atherosclerosis in LDL receptor-deficient mice. JCI Insight 2024; 9:e158127. [PMID: 39531328 PMCID: PMC11665566 DOI: 10.1172/jci.insight.158127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lysosphingolipid with antiatherogenic properties, but mechanisms underlying its effects remain unclear. We here investigated atherosclerosis development in cholesterol-rich diet-fed LDL receptor-deficient mice with high or low overexpression levels of S1P receptor 1 (S1P1) in macrophages. S1P1-overexpressing macrophages showed increased activity of transcription factors PU.1, interferon regulatory factor 8 (IRF8), and liver X receptor (LXR) and were skewed toward an M2-distinct phenotype characterized by enhanced production of IL-10, IL-1RA, and IL-5; increased ATP-binding cassette transporter A1- and G1-dependent cholesterol efflux; increased expression of MerTK and efferocytosis; and reduced apoptosis due to elevated B cell lymphoma 6 and Maf bZIP B. A similar macrophage phenotype was observed in mice administered S1P1-selective agonist KRP203. Mechanistically, the enhanced PU.1, IRF8, and LXR activity in S1P1-overexpressing macrophages led to downregulation of the cAMP-dependent PKA and activation of the signaling cascade encompassing protein kinases AKT and mTOR complex 1 as well as the late endosomal/lysosomal adaptor MAPK and mTOR activator 1. Atherosclerotic lesions in aortic roots and brachiocephalic arteries were profoundly or moderately reduced in mice with high and low S1P1 overexpression in macrophages, respectively. We conclude that S1P1 signaling polarizes macrophages toward an antiatherogenic functional phenotype and countervails the development of atherosclerosis in mice.
Collapse
Affiliation(s)
- Francesco Potì
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Enrica Scalera
- Department of Food and Drug, University of Parma, Parma, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Renata Feuerborn
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Josephine Fischer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Lilli Arndt
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Children’s Hospital Münster, Münster, Germany
| | - Evangelia Pardali
- Department of Cardiology, University Hospital Münster, Münster, Germany
- Pharvaris GmbH, Zug, Switzerland
| | - Matthias D. Seidl
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Manfred Fobker
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Bettina Hesse
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Alexander H. Lukasz
- Division of General Internal Medicine, Nephrology, and Rheumatology, Department of Medicine D, and
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Beate E. Kehrel
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster, Münster, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Jerzy-Roch Nofer
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
- Central Laboratory Facility, University Hospital Münster, Münster, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute for Laboratory Medicine, Marien-Hospital, Niels-Stensen-Kliniken, Osnabrück, Germany
| |
Collapse
|
3
|
Kwak D, Bradley PB, Subbotina N, Ling S, Teitz-Tennenbaum S, Osterholzer JJ, Sisson TH, Kim KK. CD36/Lyn kinase interactions within macrophages promotes pulmonary fibrosis in response to oxidized phospholipid. Respir Res 2023; 24:314. [PMID: 38098035 PMCID: PMC10722854 DOI: 10.1186/s12931-023-02629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFβ. Finally, the pathway linking oxPL uptake and TGFβ expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.
Collapse
Affiliation(s)
- Doyun Kwak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Patrick B Bradley
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Natalia Subbotina
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Song Ling
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Seagal Teitz-Tennenbaum
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
- Pulmonary Section, Department of Medicine, VA Ann Arbor Health System, Ann Arbor, MI, 48105, USA
| | - Thomas H Sisson
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA
| | - Kevin K Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB 4061, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Zhu M, Bai L, Liu X, Peng S, Xie Y, Bai H, Yu H, Wang X, Yuan P, Ma R, Lin J, Wu L, Huang M, Li Y, Luo Y. Silence of a dependence receptor CSF1R in colorectal cancer cells activates tumor-associated macrophages. J Immunother Cancer 2022; 10:jitc-2022-005610. [PMID: 36600555 PMCID: PMC9730427 DOI: 10.1136/jitc-2022-005610] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colony-stimulating factor 1 receptor (CSF1R), a classic tyrosine kinase receptor, has been identified as a proto-oncogene in multiple cancers. The CSF1/CSF1R axis is essential for the survival and differentiation of M2-phenotype tumor-associated macrophages (M2 TAMs). However, we found here that the CSF1R expression was abnormally down-regulated in colorectal cancer (CRC), and its biological functions and underlying mechanisms have become elusive in CRC progression. METHODS The expression of class III receptor tyrosine kinases in CRC and normal intestinal mucosa was accessed using The Cancer Genome Atlas and Gene Expression Omnibus datasets and was further validated by our tested cohort. CSF1R was reconstructed in CRC cells to identify its biological functions in vitro and in vivo. We compared CSF1R expression and methylation differences between CRC cells and macrophages. Furthermore, a co-culture system was used to mimic a competitive mechanism between CSF1R-overexpressed CRC cells and M2-like macrophages. We utilized a CSF1R inhibitor PLX3397 to ablate M2 TAMs and evaluated its efficacy on CRC treatment in animal models. RESULTS We found here that the CSF1R is silenced in CRC, and the reintroduced expression of the receptor in CRC cells can be cleaved by caspases and constrain tumor growth in vitro and in vivo, functioning as a tumor suppressor gene. We further identified CSF1R as a novel dependence receptor, which has the potential to act as either a tumor suppressor gene or an oncogene, depending on its activated state. In CRC tumors, CSF1R expression is enriched in TAMs, and its expression is associated with poor prognosis in patients ith CRC. In a co-culture system, CRC cells expressing CSF1R compete with M2-like macrophages for CSF1R ligands, resulting in a decrease in CSF1R activation and cell proliferation in macrophages. Blocking CSF1R by PLX3397 could deplete M2 TAMs and augments CD8+ T cell infiltration, effectively inhibiting tumor growth and metastasis and improving responses to chemotherapy and immunotherapy. CONCLUSION Our findings revealed that CSF1R is a novel identified dependence receptor silenced in CRC. The silence abalienates its ligands to stimulate CSF1R expressed on M2 TAMs, which is an appealing therapeutic target for M2 TAM depletion and CRC treatment.
Collapse
Affiliation(s)
- Mingxuan Zhu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liangliang Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxia Liu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shaoyong Peng
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yumo Xie
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hong Bai
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Yuan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Ma
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinxin Lin
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Meijin Huang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingjie Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China,Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Integrative analysis of DNA methylation and gene expression reveals key molecular signatures in acute myocardial infarction. Clin Epigenetics 2022; 14:46. [PMID: 35346355 PMCID: PMC8958792 DOI: 10.1186/s13148-022-01267-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Backgrounds Acute myocardial infarction (AMI) has been one of the most fatal diseases among all types of heart diseases due to its rapid onset and high rates of fatality. Understanding accurately how multi-omics molecular features change at the early stage of AMI is crucial for its treatment. Currently, the changes involved in DNA methylation modification and gene expression of multiple genes have remained unexplored. Results We used the RNA-seq and MeDIP-seq on heart tissues from AMI mouse models at series of time points (Sham, AMI 10-min, 1-h, 6-h, 24-h and 72-h), to comprehensively describe the transcriptome and genome-wide DNA methylation changes at above time points. We identified 18814, 18614, 23587, 26018 and 33788 differential methylation positions (DMPs) and 123, 135, 731, 1419 and 2779 differentially expressed genes (DEGs) at 10-min, 1-h, 6-h, 24-h and 72-h AMI, respectively, compared with the sham group. Remarkably, the 6-h AMI with the drastic changes of DEGs and a large number of enriched functional pathways in KEGG may be the most critical stage of AMI process. The 4, 9, 40, 26, and 183 genes were further identified at each time point, based on the negative correlation (P < 0.05) between the differential mRNA expression and the differential DNA methylation. The mRNA and the promoter methylation expressions of five genes (Ptpn6, Csf1r, Col6a1, Cyba, and Map3k14) were validated by qRT-PCR and BSP methods, and the mRNA expressions were further confirmed to be regulated by DNA methylation in cardiomyocytes in vitro. Conclusions Our findings profiled the molecular variations from the perspective of DNA methylation in the early stage of AMI and provided promising epigenetic-based biomarkers for the early clinical diagnosis and therapeutic targets of AMI. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01267-x.
Collapse
|
6
|
Lyu T, Zhang B, Li M, Jiao X, Song Y. Research progress on exosomes derived from mesenchymal stem cells in hematological malignancies. Hematol Oncol 2021; 39:162-169. [PMID: 32869900 PMCID: PMC8246925 DOI: 10.1002/hon.2793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are a subset of multifunctional stem cells with self-renewal and multidirectional differentiation properties that play a pivotal role in tumor progression. MSCs are reported to exert biological functions by secreting specialized vesicles, known as exosomes, with tumor cells. Exosomes participate in material and information exchange between cells and are crucial in multiple physiological and pathological processes. This study provides a comprehensive overview of the roles, mechanisms of action and sources of MSC exosomes in hematological malignancies, and different tumor types.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Binglei Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mengjia Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xueli Jiao
- Department of Hematology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Sajjanar B, Trakooljul N, Wimmers K, Ponsuksili S. DNA methylation analysis of porcine mammary epithelial cells reveals differentially methylated loci associated with immune response against Escherichia coli challenge. BMC Genomics 2019; 20:623. [PMID: 31366318 PMCID: PMC6670134 DOI: 10.1186/s12864-019-5976-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epigenetic changes such as cytosine (CpG) DNA methylations regulate gene expression patterns in response to environmental cues including infections. Microbial infections induce DNA methylations that play a potential role in modulating host-immune response. In the present study, we sought to determine DNA methylation changes induced by the mastitis causing Escherichia coli (E. coli) in porcine mammary epithelial cells (PMEC). Two time points (3 h and 24 h) were selected based on specific transcriptomic changes during the early and late immune responses, respectively. Results DNA methylation analysis revealed 561 and 898 significant (P < 0.01) differentially methylated CpG sites at 3 h and 24 h after E. coli challenge in PMEC respectively. These CpG sites mapped to genes that have functional roles in innate and adaptive immune responses. Significantly, hypomethylated CpG sites were found in the promoter regions of immune response genes such as SDF4, SRXN1, CSF1 and CXCL14. The quantitative transcript estimation indicated higher expression associated with the DNA CpG methylation observed in these immune response genes. Further, E. coli challenge significantly reduced the expression levels of DNMT3a, a subtype of de novo DNA methylation enzyme, in PMEC indicating the probable reason for the hypomethylation observed in the immune response genes. Conclusions Our study revealed E. coli infection induced DNA methylation loci in the porcine genome. The differentially methylated CpGs were identified in the regulatory regions of genes that play important role in immune response. These results will help to understand epigenetic mechanisms for immune regulation during coliform mastitis in pigs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5976-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basavaraj Sajjanar
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196, Dummerstorf, Germany.
| |
Collapse
|
8
|
Feng Y, Xu Q, Yang Y, Shi W, Meng W, Zhang H, He X, Sun M, Chen Y, Zhao J, Guo Z, Xiao K. The therapeutic effects of bone marrow-derived mesenchymal stromal cells in the acute lung injury induced by sulfur mustard. Stem Cell Res Ther 2019; 10:90. [PMID: 30867053 PMCID: PMC6416968 DOI: 10.1186/s13287-019-1189-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/11/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background Sulfur mustard (SM) is a notorious chemical warfare agent that can cause severe acute lung injury (ALI), in addition to other lesions. Currently, effective medical countermeasures for SM are lacking. Bone marrow-derived mesenchymal stromal cells (BMSCs) possess self-renewal and multipotent differentiation capacity. BMSCs can also migrate to inflammation and injury sites and exert anti-inflammatory and tissue repair functions. Here, we report the curative effect of BMSCs on SM-induced ALI in a mouse model. Methods Mice BMSCs were injected into mice via the tail vein 24 h after SM exposure. The distribution of BMSCs in mice was detected by fluorescence imaging. The therapeutic potential of BMSCs was evaluated by the calculating survival rate. The effects of BMSCs on lung tissue injury and repair assessment were examined by staining with H&E and measuring the lung wet/dry weight ratio, BALF protein level, and respiratory function. The effects of BMSCs on the infiltration and phenotypic alteration of inflammatory cells were analyzed by immunohistochemistry and flow cytometry. The levels of chemokines and inflammatory cytokines were examined using the Luminex Performance Assay and ELISA. RNA interference, western blotting, and ELISA were applied to explore the role of the TLR4 signaling pathway in the anti-inflammatory effects of BMSCs. The extent of tissue repair was analyzed by ELISA, western blotting, and immunohistochemistry. Results Fluorescence imaging indicated that the lung is the major target organ of BMSCs after injection. The injection of BMSCs significantly improved the survival rate (p < 0.05), respiratory function, and related lung damage indexes (wet/dry weight ratio, total proteins in BALF, etc.) in mice. BMSC administration also reduced the level of pro-inflammatory cytokines, chemokines, and inflammatory cell infiltration, as well as affected the balances of M1/M2 and Th17/Treg. Furthermore, solid evidence regarding the effects of BMSCs on the increased secretion of various growth factors, the differentiation of alveolar epithelial cells, and the enhancement of cell barrier functions was also observed. Conclusion BMSCs displayed protective effects against SM-induced ALI by alleviating inflammation and promoting tissue repair. The present study provides a strong experimental basis in a mouse model and suggests possible application for future cell therapy. Electronic supplementary material The online version of this article (10.1186/s13287-019-1189-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongwei Feng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qingqiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Yuyan Yang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Wenwen Shi
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Wenqi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Hao Zhang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Xiaowen He
- Origincell Technology Group Co., Ltd., 1118 Halei Rd, Shanghai, 201203, China
| | - Mingxue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Yongchun Chen
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Jie Zhao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhenhong Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai, 200433, China.
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|