1
|
Vázquez-Coto D, Kimball C, Albaiceta GM, Amado-Rodríguez L, García-Clemente M, Gómez J, Coto E, Pandey JP. Immunoglobulin genes and severity of COVID-19. Immunogenetics 2024; 76:213-217. [PMID: 38602517 PMCID: PMC11087305 DOI: 10.1007/s00251-024-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
There is tremendous interindividual and interracial variability in the outcome of SARS-CoV-2 infection, suggesting the involvement of host genetic factors. Here, we investigated whether IgG allotypes GM (γ marker) 3 and GM 17, genetic markers of IgG1, contributed to the severity of COVID-19. IgG1 plays a pivotal role in response against SARS-CoV-2 infection. We also investigated whether these GM alleles synergistically/epistatically with IGHG3 and FCGR2A alleles-which have been previously implicated in COVID-19-modulated the extent of COVID-19 severity. The study population consisted of 316 COVID-19 patients who needed treatment in the intensive care unit of Hospital Universitario Central de Asturias. All individuals were genotyped for GM 3/17, IGHG3 hinge length, and FCGR2A rs1801274 A/G polymorphisms. Among the 316 critical patients, there were 86 deaths. The risk of death among critical patients was significantly higher in subjects with GM 17 (IgG1) and short hinge length (IgG3). GM 17-carriers were at almost three-fold higher risk of death than non-carriers (p < 0.001; OR = 2.86, CI 1.58-5.16). Subjects with short hinge length of IgG3 had a two-fold higher risk of death than those with medium hinge length (p = 0.01; OR = 2.16, CI 1.19-3.90). GM 3/3 and IGHG3 (MM) genotypes were less frequent among death vs. survivors (9% vs 36%, p < 0.001) and associated with protective effect (OR = 0.18, 95% CI = 0.08-0.39). This is the first report implicating IgG1 allotypes in COVID-19-spurred death. It needs to be replicated in an independent study population.
Collapse
Affiliation(s)
- Daniel Vázquez-Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Christine Kimball
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Guillermo M Albaiceta
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Amado-Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Marta García-Clemente
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Universidad de Oviedo, Oviedo, Spain
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Juan Gómez
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Oviedo, Spain.
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.
- Universidad de Oviedo, Oviedo, Spain.
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
2
|
de Groot NG, Heijmans CM, van der Wiel MK, Bruijnesteijn J, Bontrop RE. The KIR repertoire of a West African chimpanzee population is characterized by limited gene, allele, and haplotype variation. Front Immunol 2023; 14:1308316. [PMID: 38149259 PMCID: PMC10750417 DOI: 10.3389/fimmu.2023.1308316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction The killer cell immunoglobulin-like receptors (KIR) play a pivotal role in modulating the NK cell responses, for instance, through interaction with major histocompatibility complex (MHC) class I molecules. Both gene systems map to different chromosomes but co-evolved during evolution. The human KIR gene family is characterized by abundant allelic polymorphism and copy number variation. In contrast, our knowledge of the KIR repertoire in chimpanzees is limited to 39 reported alleles, with no available population data. Only three genomic KIR region configurations have been mapped, and seventeen additional ones were deduced by genotyping. Methods Previously, we documented that the chimpanzee MHC class I repertoire has been skewed due to an ancient selective sweep. To understand the depth of the sweep, we set out to determine the full-length KIR transcriptome - in our MHC characterized pedigreed West African chimpanzee cohort - using SMRT sequencing (PacBio). In addition, the genomic organization of 14 KIR haplotypes was characterized by applying a Cas9-mediated enrichment approach in concert with long-read sequencing by Oxford Nanopore Technologies. Results In the cohort, we discovered 35 undescribed and 15 already recorded Patr-KIR alleles, and a novel hybrid KIR gene. Some KIR transcripts are subject to evolutionary conserved alternative splicing events. A detailed insight on the KIR region dynamics (location and order of genes) was obtained, however, only five new KIR region configurations were detected. The population data allowed to investigate the distribution of the MHC-C1 and C2-epitope specificity of the inhibitory lineage III KIR repertoire, and appears to be skewed towards C2. Discussion Although the KIR region is known to evolve fast, as observed in other primate species, our overall conclusion is that the genomic architecture and repertoire in West African chimpanzees exhibit only limited to moderate levels of variation. Hence, the ancient selective sweep that affected the chimpanzee MHC class I region may also have impacted the KIR system.
Collapse
Affiliation(s)
- Natasja G. de Groot
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Corrine M.C. Heijmans
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Marit K.H. van der Wiel
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Jesse Bruijnesteijn
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Ronald E. Bontrop
- Comparative Genetics and Refinement, Biomedical Primate Research Centre, Rijswijk, Netherlands
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
3
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Anti-Cytomegalovirus Therapy: Whether and When to Initiate, Those Are the Questions. Pharmaceuticals (Basel) 2022; 15:ph15070797. [PMID: 35890096 PMCID: PMC9325238 DOI: 10.3390/ph15070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
Cytomegalovirus (CMV) reactivation in patients with autoimmune bullous disease (AIBD) or severe drug eruption treated with immunosuppressive therapy was traditionally thought to be merely an epiphenomenon of the underlying immunosuppression. However, a detailed review of the clinical course of these patients revealed that CMV reactivation occurs upon rapid immune recovery, which is termed immune reconstitution inflammatory syndrome (IRIS), and that the timely initiation of anti-CMV therapy, when combined with maintenance doses of immunosuppressive agents, contributes to a rapid resolution of severe infectious complications thought to be refractory to conventional immunosuppressive therapies and unrelated to CMV reactivation. Thus, CMV reactivation resulting in fatal outcomes (CMV-IRIS) can be prevented by the timely detection of CMV DNA or antigens in the blood and by rapidly starting anti-CMV therapy while maintaining immunosuppressive therapy. Anti-CMV therapy is highly recommended for patients with CMV-IRIS or severe drug eruption who have risk factors for CMV reactivation resulting in fatal outcomes.
Collapse
|
5
|
Deciphering the Potential Coding of Human Cytomegalovirus: New Predicted Transmembrane Proteome. Int J Mol Sci 2022; 23:ijms23052768. [PMID: 35269907 PMCID: PMC8911422 DOI: 10.3390/ijms23052768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
CMV is a major cause of morbidity and mortality in immunocompromised individuals that will benefit from the availability of a vaccine. Despite the efforts made during the last decade, no CMV vaccine is available. An ideal CMV vaccine should elicit a broad immune response against multiple viral antigens including proteins involved in virus-cell interaction and entry. However, the therapeutic use of neutralizing antibodies targeting glycoproteins involved in viral entry achieved only partial protection against infection. In this scenario, a better understanding of the CMV proteome potentially involved in viral entry may provide novel candidates to include in new potential vaccine design. In this study, we aimed to explore the CMV genome to identify proteins with putative transmembrane domains to identify new potential viral envelope proteins. We have performed in silico analysis using the genome sequences of nine different CMV strains to predict the transmembrane domains of the encoded proteins. We have identified 77 proteins with transmembrane domains, 39 of which were present in all the strains and were highly conserved. Among the core proteins, 17 of them such as UL10, UL139 or US33A have no ascribed function and may be good candidates for further mechanistic studies.
Collapse
|
6
|
Royston L, Isnard S, Lin J, Routy JP. Cytomegalovirus as an Uninvited Guest in the Response to Vaccines in People Living with HIV. Viruses 2021; 13:v13071266. [PMID: 34209711 PMCID: PMC8309982 DOI: 10.3390/v13071266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
In stark contrast to the rapid development of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an effective human immunodeficiency virus (HIV) vaccine is still lacking. Furthermore, despite virologic suppression and CD4 T-cell count normalization with antiretroviral therapy (ART), people living with HIV (PLWH) still exhibit increased morbidity and mortality compared to the general population. Such differences in health outcomes are related to higher risk behaviors, but also to HIV-related immune activation and viral coinfections. Among these coinfections, cytomegalovirus (CMV) latent infection is a well-known inducer of long-term immune dysregulation. Cytomegalovirus contributes to the persistent immune activation in PLWH receiving ART by directly skewing immune response toward itself, and by increasing immune activation through modification of the gut microbiota and microbial translocation. In addition, through induction of immunosenescence, CMV has been associated with a decreased response to infections and vaccines. This review provides a comprehensive overview of the influence of CMV on the immune system, the mechanisms underlying a reduced response to vaccines, and discuss new therapeutic advances targeting CMV that could be used to improve vaccine response in PLWH.
Collapse
Affiliation(s)
- Léna Royston
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research, Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | - Stéphane Isnard
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Canadian Institutes of Health Research, Canadian HIV Trials Network, Vancouver, BC V6Z 1Y6, Canada
| | - John Lin
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC H4A 3J1, Canada; (L.R.); (S.I.); (J.L.)
- Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Division of Hematology, McGill University Health Centre, Montréal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
7
|
Potential Impact of Human Cytomegalovirus Infection on Immunity to Ovarian Tumours and Cancer Progression. Biomedicines 2021; 9:biomedicines9040351. [PMID: 33808294 PMCID: PMC8065684 DOI: 10.3390/biomedicines9040351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common, and life-threatening gynaecological cancer affecting females. Almost 75% of all OC cases are diagnosed at late stages, where the 5-year survival rate is less than 30%. The aetiology of the disease is still unclear, and there are currently no screening method nor effective treatment strategies for the advanced disease. A growing body of evidence shows that human cytomegalovirus (HCMV) infecting more than 50% of the world population, may play a role in inducing carcinogenesis through its immunomodulatory activities. In healthy subjects, the primary HCMV infection is essentially asymptomatic. The virus then establishes a life-long chronic latency primarily in the hematopoietic progenitor cells in the bone marrow, with periodic reactivation from latency that is often characterized by high levels of circulating pro-inflammatory cytokines. Currently, infection-induced chronic inflammation is considered as an essential process for OC progression and metastasis. In line with this observation, few recent studies have identified high expressions of HCMV proteins on OC tissue biopsies that were associated with poor survival outcomes. Active HCMV infection in the OC tumour microenvironment may thus directly contribute to OC progression. In this review, we highlight the potential impact of HCMV infection-induced immunomodulatory effects on host immune responses to OC that may promote OC progression.
Collapse
|
8
|
Gambino CM, Accardi G, Aiello A, Caruso C, Carru C, Gioia BG, Guggino G, Rizzo S, Zinellu A, Ciaccio M, Candore G. Uncoupling Protein 2 as genetic risk factor for systemic lupus erythematosus: association with malondialdehyde levels and intima media thickness. Minerva Cardioangiol 2020; 68:609-618. [DOI: 10.23736/s0026-4725.20.05225-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Blunt MD, Khakoo SI. Activating killer cell immunoglobulin-like receptors: Detection, function and therapeutic use. Int J Immunogenet 2020; 47:1-12. [PMID: 31755661 DOI: 10.1111/iji.12461] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) have a central role in the control of natural killer (NK) cell function. The functions of the activating KIRs, as compared to those of the inhibitory KIR, have been more difficult to define due to difficulties in antibody-mediated identification and their apparent low affinities for HLA class I. Immunogenetic studies have shown associations of activating KIRs with the outcome of autoimmune diseases, pregnancy-associated disorders, infectious diseases and cancers. Activating KIR are thus thought to have important roles in the control of natural killer cell functions and their role in disease. In this review, we discuss current knowledge on activating KIR, their ligands and, their roles in the pathogenesis and potential therapy of human diseases.
Collapse
Affiliation(s)
- Matthew D Blunt
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
10
|
Di Bona D, Pandey JP, Aiello A, Bilancia M, Candore G, Caruso C, Colomba C, Duro G, Ligotti ME, Macchia L, Rizzo S, Accardi G. The immunoglobulin γ marker 17 allotype and KIR/HLA genes prevent the development of chronic hepatitis B in humans. Immunology 2019; 159:178-182. [PMID: 31613998 DOI: 10.1111/imm.13133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 01/02/2023] Open
Abstract
Hepatitis B virus (HBV) infection causes a self-limiting disease in most individuals. However, < 10% of infected subjects develop a chronic disease. Genetic host variability of polymorphic genes at the interface of innate and acquired immunity, such as killer immunoglobulin-like receptors (KIR), their human leucocyte antigen (HLA) and IgG allotypes (GM), could explain this different clinical picture. We previously showed a protective role of the KIR2DL3 gene for the development of chronic hepatitis B (CHB), and a detrimental role of the KIR ligand groups, HLA-A-Bw4 and HLA-C2. We have expanded the previous analysis genotyping patients for GM23 and GM3/17 allotypes. The comparison of the patients with CHB with those who resolved HBV infection showed that the presence of GM17 allele virtually eliminated the risk of developing CHB (OR, 0·03; 95% CI, 0·004-0·16; P < 0·0001). In addition, the combination of GM17, KIR2DL3, HLA-A-Bw4 and HLA-C2 was highly sensitive to predict the outcome of HBV infection.
Collapse
Affiliation(s)
- Danilo Di Bona
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Bari, Italy
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Massimo Bilancia
- Dipartmento Jonico in Sistemi Giuridici ed Economici del Mediterraneo: società, ambiente, culture, Università di Bari Aldo Moro, Bari, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Claudia Colomba
- Dipartimento di Scienze per la Promozione della Salute e Materno-Infantile 'G. D'Alessandro', Università di Palermo, Palermo, Italy
| | - Giovanni Duro
- Istituto di Biomedicina ed Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Luigi Macchia
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Bari, Italy
| | - Sergio Rizzo
- Unità Operativa di Medicina Trasfusionale, AOUP, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
11
|
Suárez NM, Musonda KG, Escriva E, Njenga M, Agbueze A, Camiolo S, Davison AJ, Gompels UA. Multiple-Strain Infections of Human Cytomegalovirus With High Genomic Diversity Are Common in Breast Milk From Human Immunodeficiency Virus-Infected Women in Zambia. J Infect Dis 2019; 220:792-801. [PMID: 31050737 PMCID: PMC6667993 DOI: 10.1093/infdis/jiz209] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/01/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In developed countries, human cytomegalovirus (HCMV) is a major pathogen in congenitally infected and immunocompromised individuals, where multiple-strain infection appears linked to disease severity. The situation is less documented in developing countries. In Zambia, breast milk is a key route for transmitting HCMV and carries higher viral loads in human immunodeficiency virus (HIV)-infected women. We investigated HCMV strain diversity. METHODS High-throughput sequence datasets were generated from 28 HCMV-positive breast milk samples donated by 22 mothers (15 HIV-infected and 7 HIV-negative) at 4-16 weeks postpartum, then analyzed by genome assembly and novel motif-based genotyping in 12 hypervariable HCMV genes. RESULTS Among the 20 samples from 14 donors (13 HIV-infected and one HIV-negative) who yielded data meeting quality thresholds, 89 of the possible 109 genotypes were detected, and multiple-strain infections involving up to 5 strains per person were apparent in 9 HIV-infected women. Strain diversity was extensive among individuals but conserved compartmentally and longitudinally within them. Genotypic linkage was maintained within hypervariable UL73/UL74 and RL12/RL13/UL1 loci for virus entry and immunomodulation, but not between genes more distant from each other. CONCLUSIONS Breast milk from HIV-infected women contains multiple HCMV strains of high genotypic complexity and thus constitutes a major source for transmitting viral diversity.
Collapse
Affiliation(s)
- Nicolás M Suárez
- Medical Research Council–University of Glasgow Centre for Virus Research, United Kingdom
| | - Kunda G Musonda
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Eric Escriva
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
- Birkbeck College, University of London, United Kingdom
| | - Margaret Njenga
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Anthony Agbueze
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
- Birkbeck College, University of London, United Kingdom
| | - Salvatore Camiolo
- Medical Research Council–University of Glasgow Centre for Virus Research, United Kingdom
| | - Andrew J Davison
- Medical Research Council–University of Glasgow Centre for Virus Research, United Kingdom
| | - Ursula A Gompels
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
12
|
Aiello A, Accardi G, Candore G, Caruso C, Colomba C, Di Bona D, Duro G, Gambino CM, Ligotti ME, Pandey JP. Role of Immunogenetics in the Outcome of HCMV Infection: Implications for Ageing. Int J Mol Sci 2019; 20:ijms20030685. [PMID: 30764515 PMCID: PMC6386818 DOI: 10.3390/ijms20030685] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
The outcome of host-virus interactions is determined by a number of factors, some related to the virus, others to the host, such as environmental factors and genetic factors. Therefore, different individuals vary in their relative susceptibility to infections. Human cytomegalovirus (HCMV) is an important pathogen from a clinical point of view, as it causes significant morbidity and mortality in immunosuppressed or immunosenescent individuals, such as the transplanted patients and the elderly, respectively. It is, therefore, important to understand the mechanisms of virus infection control. In this review, we discuss recent advances in the immunobiology of HCMV-host interactions, with particular emphasis on the immunogenetic aspects (human leukocyte antigens, HLA; killer cell immunoglobulin-like receptors, KIRs; immunoglobulin genetic markers, GM allotypes) to elucidate the mechanisms underlying the complex host-virus interaction that determine various outcomes of HCMV infection. The results, which show the role of humoral and cellular immunity in the control of infection by HCMV, would be valuable in directing efforts to reduce HCMV spurred health complications in the transplanted patients and in the elderly, including immunosenescence. In addition, concerning GM allotypes, it is intriguing that, in a Southern Italian population, alleles associated with the risk of developing HCMV symptomatic infection are negatively associated with longevity.
Collapse
Affiliation(s)
- Anna Aiello
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giulia Accardi
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Giuseppina Candore
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Calogero Caruso
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Claudia Colomba
- Dipartimento di Scienze per la Promozione della Salute e Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università di Palermo, Via del Vespro 129, 90127 Palermo, Italy.
| | - Danilo Di Bona
- Dipartimento dell'Emergenza e dei Trapianti d'Organo, Università di Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giovanni Duro
- Istituto di Biomedicina e Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| | - Caterina Maria Gambino
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Mattia Emanuela Ligotti
- Sezione di Patologia Generale, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Corso Tukory 211, 90134 Palermo, Italy.
| | - Janardan P Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA.
| |
Collapse
|
13
|
Killer Immunoglobulin-Like Receptor 2DS2 (KIR2DS2), KIR2DL2-HLA-C1, and KIR2DL3 as Genetic Markers for Stratifying the Risk of Cytomegalovirus Infection in Kidney Transplant Recipients. Int J Mol Sci 2019; 20:ijms20030546. [PMID: 30696053 PMCID: PMC6387393 DOI: 10.3390/ijms20030546] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/10/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
Infection with cytomegalovirus (CMV) remains a major problem in kidney transplant recipients, resulting in serious infectious complications and occasionally mortality. Accumulating evidence indicates that natural killer cell immunoglobulin-like receptors (KIRs) and their ligands affect the susceptibility to various diseases, including viral infections (e.g., CMV infection). We investigated whether KIR genes and their ligands affect the occurrence of CMV infection in a group of 138 kidney transplant recipients who were observed for 720 days posttransplantation. We typed the recipients for the presence of KIR genes (human leukocyte antigen C1 [HLA-C1], HLA-C2, HLA-A, HLA-B, and HLA-DR1) by polymerase chain reaction with sequence-specific primers. The multivariate analysis revealed that the lack of KIR2DS2 (p = 0.035), the presence of KIR2DL3 (p = 0.075), and the presence of KIR2DL2–HLA-C1 (p = 0.044) were risk factors for posttransplant CMV infection. We also found that a lower estimated glomerular filtration rate (p = 0.036), an earlier time of antiviral prophylaxis initiation (p = 0.025), lymphocytopenia (p = 0.012), and pretransplant serostatus (donor-positive/recipient-negative; p = 0.042) were independent risk factors for posttransplant CMV infection. In conclusion, our findings confirm that the KIR/HLA genotype plays a significant role in anti-CMV immunity and suggest the contribution of both environmental and genetic factors to the incidence of CMV infection after kidney transplantation.
Collapse
|
14
|
Caruso C, Pandey JP, Puca AA. Genetics of exceptional longevity: possible role of GM allotypes. Immun Ageing 2018; 15:25. [PMID: 30450118 PMCID: PMC6219196 DOI: 10.1186/s12979-018-0133-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Calogero Caruso
- Department of Pathobiology and Medical Biotechnologies, Section of General Pathology, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Janardan P. Pandey
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Annibale A. Puca
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
- IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
15
|
Puca AA, Ferrario A, Maciag A, Accardi G, Aiello A, Gambino CM, Candore G, Caruso C, Namboodiri AM, Pandey JP. Association of immunoglobulin GM allotypes with longevity in long-living individuals from Southern Italy. IMMUNITY & AGEING 2018; 15:26. [PMID: 30450119 PMCID: PMC6219083 DOI: 10.1186/s12979-018-0134-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023]
Abstract
Background The aim of this study was to analyse the role of GM allotypes, i.e. the hereditary antigenic determinants expressed on immunoglobulin polypeptide chains, in the attainment of longevity. The role played by immunoglobulin allotypes in the control of immune responses is well known as well as the role of an efficient immune response in longevity achievement. So, it is conceivable that particular GM allotypes may contribute to the generation of an efficient immune response that supports successful ageing, hence longevity. Methods In order to show if GM allotypes play a role in the achievement of longevity, we typed the DNA of 95 Long-living individuals (LLIs) and 96 young control individuals (YCs) from South Italy for GM3/17 and GM23+/− alleles. Results To demonstrate the role of GM allotypes in the attainment of longevity we compared genotype and allele frequencies of GM allotypes between LLIs and YCs. A global chi-square test (3 × 2) shows that the distribution of genotypes at the GM 3/17 locus is highly significantly different in LLIs from that observed in YCs (p < 0.0001). The 2 × 2 chi-square test shows that the carriers of the GM3 allele contribute to this highly significant difference. Accordingly, GM3 allele is significantly overrepresented in LLIs. No significant differences were instead observed regarding GM23 allele. Conclusion These preliminary results show that GM3 allotype is significantly overrepresented in LLIs. To best of our knowledge, this is the first study performed to assess the role of GM allotypes in longevity. So, it should be necessary to verify the data in a larger sample of individuals to confirm GM role in the attainment of longevity.
Collapse
Affiliation(s)
- Annibale A Puca
- 1Department of Medicine and Surgery, University of Salerno, Baronissi, Italy.,2IRCCS MultiMedica, Milan, Italy
| | | | | | - Giulia Accardi
- 3Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Anna Aiello
- 3Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Caterina Maria Gambino
- 3Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Giuseppina Candore
- 3Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Calogero Caruso
- 3Department of Pathobiology and Medical Biotechnologies, University of Palermo, Corso Tukory 211, 90134 Palermo, Italy
| | - Aryan M Namboodiri
- 4Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Janardan P Pandey
- 4Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|