1
|
Pan J, Pany S, Martinez-Carrasco R, Fini ME. Differential Efficacy of Small Molecules Dynasore and Mdivi-1 for the Treatment of Dry Eye Epitheliopathy or as a Countermeasure for Nitrogen Mustard Exposure of the Ocular Surface. J Pharmacol Exp Ther 2024; 388:506-517. [PMID: 37442618 PMCID: PMC10801785 DOI: 10.1124/jpet.123.001697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023] Open
Abstract
The ocular surface comprises the wet mucosal epithelia of the cornea and conjunctiva, the associated glands, and the overlying tear film. Epitheliopathy is the common pathologic outcome when the ocular surface is subjected to oxidative stress. Whether different stresses act via the same or different mechanisms is not known. Dynasore and dyngo-4a, small molecules developed to inhibit the GTPase activity of classic dynamins DNM1, DNM2, and DNM3, but not mdivi-1, a specific inhibitor of DNM1L, protect corneal epithelial cells exposed to the oxidant tert-butyl hydroperoxide (tBHP). Here we report that, while dyngo-4a is the more potent inhibitor of endocytosis, dynasore is the better cytoprotectant. Dynasore also protects corneal epithelial cells against exposure to high salt in an in vitro model of dysfunctional tears in dry eye. We now validate this finding in vivo, demonstrating that dynasore protects against epitheliopathy in a mouse model of dry eye. Knockdown of classic dynamin DNM2 was also cytoprotective against tBHP exposure, suggesting that dynasore's effect is at least partially on target. Like tBHP and high salt, exposure of corneal epithelial cells to nitrogen mustard upregulated the unfolded protein response and inflammatory markers, but dynasore did not protect against nitrogen mustard exposure. In contrast, mdivi-1 was cytoprotective. Interestingly, mdivi-1 did not inhibit the nitrogen mustard-induced expression of inflammatory cytokines. We conclude that exposure to tBHP or nitrogen mustard, two different oxidative stress agents, cause corneal epitheliopathy via different pathologic pathways. SIGNIFICANCE STATEMENT: Results presented in this paper, for the first time, implicate the dynamin DNM2 in ocular surface epitheliopathy. The findings suggest that dynasore could serve as a new topical treatment for dry eye epitheliopathy and that mdivi-1 could serve as a medical countermeasure for epitheliopathy due to nitrogen mustard exposure, with potentially increased efficacy when combined with anti-inflammatory agents and/or UPR modulators.
Collapse
Affiliation(s)
- Jinhong Pan
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - Satyabrata Pany
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - Rafael Martinez-Carrasco
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| | - M Elizabeth Fini
- New England Eye Center, Tufts Medical Center and Department of Ophthalmology, Tufts University School of Medicine (J.P., S.P., R.M.-C., M.E.F.) and Program in Pharmacology and Drug Development, Tufts Graduate School of Biomedical Sciences (M.E.F.), Tufts University, Boston, Massachusetts
| |
Collapse
|
2
|
Afacan B, Ilhan HA, Köse T, Emingil G. Gingival crevicular fluid galectin-3 and interleukin-1 beta levels in stage 3 periodontitis with grade B and C. Clin Oral Investig 2023:10.1007/s00784-023-04991-7. [PMID: 37017753 DOI: 10.1007/s00784-023-04991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 03/28/2023] [Indexed: 04/06/2023]
Abstract
OBJECTIVES This study aims to evaluate GCF Galectin-3 and Interleukin-1 beta (IL-β) levels in different grades (B and C) of stage 3 periodontitis, concurrently, and also to investigate their discriminative efficiencies in periodontal diseases. MATERIALS AND METHODS A total of 80 systemically healthy and non-smoker individuals, 20 stage 3 grade C (S3GC) periodontitis 20 stage 3 grade B (S3GB) periodontitis, 20 gingivitis, and 20 periodontally healthy were enrolled. Clinical periodontal parameters were recorded and GCF Galectin-3 and IL-1β total amounts were measured by ELISA. Receiver operating characteristics curve was used for estimating the area under the curve (AUC). RESULTS Galectin-3 and IL-1β were detected in all participants. Both periodontitis groups had significantly higher GCF Galectin-3 total amounts than periodontally healthy controls (p <0.05). S3GC periodontitis group had also significantly higher GCF Galectin-3 levels than gingivitis group (p <0.05). GCF IL-1β levels in periodontitis groups were higher than gingivitis and periodontally healthy groups (p <0.05). Galectin-3 exhibited an AUC value of 0.89 with 95% sensitivity to discriminate S3GC periodontitis from periodontal health, an AUC value of 0.87 with 80% sensitivity to discriminate S3GC periodontitis versus gingivitis, while an AUC value of 0.85 with 95% sensitivity to discriminate S3GB periodontitis from healthy controls. CONCLUSIONS GCF Galectin-3 levels are involved in the pathogenesis of periodontal diseases. Galectin-3 showed excellent diagnostic performances to discriminate S3GB and S3GC periodontitis from periodontal health and gingivitis. CLINICAL RELEVANCE The present findings suggest that GCF Galectin-3 levels may be useful in the diagnosis of the periodontal diseases.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey.
| | - Harika Atmaca Ilhan
- Department of Biology, Section of Molecular Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
3
|
Bhattacharya S, Zhang M, Hu W, Qi T, Heisterkamp N. Targeting disordered-structured domain interactions in Galectin-3 based on NMR and enhanced MD. Biophys J 2022; 121:4342-4357. [PMID: 36209362 PMCID: PMC9703043 DOI: 10.1016/j.bpj.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Intrinsically disordered regions (IDRs) are common and important functional domains in many proteins. However, IDRs are difficult to target for drug development due to the lack of defined structures that would facilitate the identification of possible drug-binding pockets. Galectin-3 is a carbohydrate-binding protein of which overexpression has been implicated in a wide variety of disorders, including cancer and inflammation. Apart from its carbohydrate-recognition/binding domain (CRD), Galectin-3 also contains a functionally important disordered N-terminal domain (NTD) that contacts the C-terminal domain (CTD) and could be a target for drug development. To overcome challenges involved in inhibitor design due to lack of structure and the highly dynamic nature of the NTD, we used a protocol combining nuclear magnetic resonance data from recombinant Galectin-3 with accelerated molecular dynamics (MD) simulations. This approach identified a pocket in the CTD with which the NTD makes frequent contact. In accordance with this model, mutation of residues L131 and L203 in this pocket caused loss of Galectin-3 agglutination ability, signifying the functional relevance of the cavity. In silico screening was used to design candidate inhibitory peptides targeting the newly discovered cavity, and experimental testing of only three of these yielded one peptide that inhibits the agglutination promoted by wild-type Galectin-3. NMR experiments further confirmed that this peptide indeed binds to a cavity in the CTD, not within the actual CRD. Our results show that it is possible to apply a combination of MD simulations and NMR experiments to precisely predict the binding interface of a disordered domain with a structured domain, and furthermore use this predicted interface for designing inhibitors. This procedure can potentially be extended to many other targets in which similar IDR interactions play a vital functional role.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Integrative Genomics Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California
| | - Weidong Hu
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, California
| | - Tong Qi
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, California.
| |
Collapse
|
4
|
The Expression of IL-1β Correlates with the Expression of Galectin-3 in the Tissue at the Maternal-Fetal Interface during the Term and Preterm Labor. J Clin Med 2022; 11:jcm11216521. [PMID: 36362749 PMCID: PMC9656499 DOI: 10.3390/jcm11216521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The inflammatory processes that occur at the maternal−fetal interface are considered one of the factors that are responsible for preterm birth. The pro-inflammatory roles of the Gal-3-induced activation of NLRP3 inflammasome and the consecutive production of IL-1β have been described in several acute and chronic inflammatory diseases, but the role of this inflammatory axis in parturition has not been studied. The aim of this study was to analyze the protein expression of Gal-3, NLRP3, and IL-1β in the decidua, villi, and fetal membranes, and to analyze their mutual correlation and correlation with the clinical parameters of inflammation in preterm birth (PTB) and term birth (TB). The study included 40 women that underwent a preterm birth (gestational age of 25.0−36.6) and histological chorioamnionitis (PTB) and control subjects, 22 women that underwent a term birth (gestational age of 37.0−41.6) without histological chorioamnionitis (TB). An analysis of the tissue sections that were stained with anti- Gal-3, -NLRP3, and -IL-1β antibodies was assessed by three independent investigators. The expression levels of Gal-3 and IL-1β were significantly higher (p < 0.001) in the decidua, villi, and fetal membranes in the PTB group when they compared to those of the TB group, while there was no difference in the expression of NLRP3. A further analysis revealed that there was no correlation between the protein expression of NLRP3 and the expression of Gal-3 and IL-1β, but there was a correlation between the expression of Gal-3 and IL-1β in decidua (R = 0.401; p = 0.008), villi (R = 0.301; p = 0.042) and the fetal membranes (R = 0.428; p = 0.002) in both of the groups, PTB and TB. In addition, the expression of Gal-3 and IL-1β in decidua and the fetal membranes was in correlation with the parameters of inflammation in the maternal and fetal blood (C-reactive protein, leukocyte number, and fibrinogen). The strong correlation between the expression of Gal-3 and IL-1β in the placental and fetal tissues during labor indicates that Gal-3 may participate in the regulation of the inflammatory processes in the placenta, leading to increased production of IL-1β, a cytokine that plays the main role in both term and preterm birth.
Collapse
|
5
|
Galectin-3 Is a Crucial Immunological Disease Marker in Patients with Fungal Keratitis. DISEASE MARKERS 2022; 2022:1380560. [PMID: 35845133 PMCID: PMC9286934 DOI: 10.1155/2022/1380560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022]
Abstract
Fungal keratitis, one of the most common infectious eye diseases in China, often results in a poor prognosis due to a delayed diagnosis and the insufficiency of effective therapy. There is an urgent need to identify specific biomarkers for the disease. In this study, we screened out tear proteins in patients with fungal keratitis by microsphere-based immunoassay analysis. Levels of cytokine expression were determined in both human corneal epithelial cell models in vitro and the corneas of patients by western blot, quantitative polymerase chain reaction (qPCR), and immunofluorescence analysis. Neutrophil activation was examined by flow cytometry analysis. The relationship between the cytokine expression and neutrophils was evaluated by immunofluorescence costaining and correlation analysis. These results demonstrated that the galectin-3 expression level was increased in both cell model and patient samples at the early and late stages of fungal keratitis. The neutrophils were significantly activated during the disease course of fungal keratitis. Meanwhile, colocalization and a positive correlation between galectin-3 and neutrophils were observed, suggesting that galectin-3 may play a crucial role in the recruitment of neutrophils and immune regulation of fungal keratitis. In conclusion, galectin-3 could be a key disease marker implying a beneficial immune response in the pathogenesis of fungal keratitis, which might be a target of therapeutic strategy in the future.
Collapse
|
6
|
Soares LC, Al-Dalahmah O, Hillis J, Young CC, Asbed I, Sakaguchi M, O’Neill E, Szele FG. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells 2021; 10:3047. [PMID: 34831271 PMCID: PMC8618878 DOI: 10.3390/cells10113047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Galectin-3 (Gal-3) is an evolutionarily conserved and multifunctional protein that drives inflammation in disease. Gal-3's role in the central nervous system has been less studied than in the immune system. However, recent studies show it exacerbates Alzheimer's disease and is upregulated in a large variety of brain injuries, while loss of Gal-3 function can diminish symptoms of neurodegenerative diseases such as Alzheimer's. Several novel molecular pathways for Gal-3 were recently uncovered. It is a natural ligand for TREM2 (triggering receptor expressed on myeloid cells), TLR4 (Toll-like receptor 4), and IR (insulin receptor). Gal-3 regulates a number of pathways including stimulation of bone morphogenetic protein (BMP) signaling and modulating Wnt signalling in a context-dependent manner. Gal-3 typically acts in pathology but is now known to affect subventricular zone (SVZ) neurogenesis and gliogenesis in the healthy brain. Despite its myriad interactors, Gal-3 has surprisingly specific and important functions in regulating SVZ neurogenesis in disease. Gal-1, a similar lectin often co-expressed with Gal-3, also has profound effects on brain pathology and adult neurogenesis. Remarkably, Gal-3's carbohydrate recognition domain bears structural similarity to the SARS-CoV-2 virus spike protein necessary for cell entry. Gal-3 can be targeted pharmacologically and is a valid target for several diseases involving brain inflammation. The wealth of molecular pathways now known further suggest its modulation could be therapeutically useful.
Collapse
Affiliation(s)
- Luana C. Soares
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Osama Al-Dalahmah
- Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - James Hillis
- Massachusets General Hospital, Harvard Medical School, 15 Parkman Street, Boston, MA 02114, USA;
| | - Christopher C. Young
- Department of Neurological Surgery, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA;
| | - Isaiah Asbed
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| | - Masanori Sakaguchi
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Eric O’Neill
- Department of Oncology, University of Oxford, Oxford OX1 3QX, UK;
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, South Parks Road, Oxford OX1 3QX, UK; (L.C.S.); (I.A.)
| |
Collapse
|
7
|
Diagnostic Significance of Serum Galectin-3 in Hospitalized Patients with COVID-19-A Preliminary Study. Biomolecules 2021; 11:biom11081136. [PMID: 34439802 PMCID: PMC8393726 DOI: 10.3390/biom11081136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 12/26/2022] Open
Abstract
Severe coronavirus disease 2019 (COVID-19) is associated with hyperinflammation leading to organ injury, including respiratory failure. Galectin-3 was implicated in innate immunological response to infections and in chronic fibrosis. The aim of our preliminary study was the assessment of the diagnostic utility of serum galectin-3 in patients with COVID-19. The prospective observational study included adult patients admitted with active COVID-19 and treated in tertiary hospital between June and July 2020. The diagnosis was confirmed by the quantitative detection of nucleic acid of severe acute respiratory syndrome coronavirus 2 in nasopharyngeal swabs. Galectin-3 was measured by enzyme immunoassay in serum samples obtained during the first five days of hospital stay. We included 70 patients aged 25 to 73 years; 90% had at least one comorbidity. During the hospital stay, 32.9% were diagnosed with COVID-19 pneumonia and 12.9% required treatment in the intensive care unit (ICU). Serum galectin-3 was significantly increased in patients who developed pneumonia, particularly those who required ICU admission. Positive correlations were found between galectin-3 and inflammatory markers (interleukin-6, C-reactive protein, ferritin, pentraxin-3), a marker of endothelial injury (soluble fms-like tyrosine kinase-1), and a range of tissue injury markers. Serum galectin-3 enabled the diagnosis of pneumonia with moderate diagnostic accuracy and the need for ICU treatment with high diagnostic accuracy. Our findings strengthen the hypothesis that galectin-3 may be involved in severe COVID-19. Further studies are planned to confirm the preliminary results and to verify possible associations of galectin-3 with long-term consequences of COVID-19, including pulmonary fibrosis.
Collapse
|
8
|
Akkaya HÜ, Yılmaz HE, Narin F, Sağlam M. Evaluation of galectin-3, peptidylarginine deiminase-4 and tumor necrosis factor-α levels in gingival crevicular fluid for periodontal health, gingivitis and stage III grade C periodontitis: A pilot study. J Periodontol 2021; 93:80-88. [PMID: 33913157 DOI: 10.1002/jper.21-0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Comparing the gingival crevicular fluid (GCF) levels of galectin-3, peptidylarginine deiminase 4 (PAD4) and tumor necrosis factor-alpha (TNF-α) in individuals with stage III grade C periodontitis and gingivitis and with healthy periodontium was the purpose of this clinical research. METHODS Sixty systemically healthy and non-smoker individuals consisting of stage III grade C periodontitis (group S3P/n = 20), gingivitis (group G/n = 20), and periodontally healthy (group HP/n = 20) were recruited for this research. Clinical parameters such as probing depth, clinical attachment level, gingival index, plaque index, and bleeding on probing were recorded in periodontal charts. Enzyme-linked immunosorbent assay method was used in evaluating the GCF levels of galectin-3, PAD4, and TNF-α for study groups. RESULTS The GCF galectin-3 total amount was highest in group S3P compared with group G and group HP (P <0.05). Its total amount was also higher in group G compared with group HP (P <0.05). The GCF PAD4 total amount was higher in group S3P compared with group HP (P <0.05) but was similar with group G (P >0.05). Its total amounts were also similar in group G and group HP (P >0.05). The GCF TNF-α total amounts were similar in group S3P and group G (P >0.05) but significantly greater than the group HP (P ˂0.05). The GCF galectin-3, PAD4, and TNF-α concentrations were lower in the group S3P and group G compared with the group HP (P <0.05). There were significant positive correlations between GCF galectin-3 total amount and all clinical parameters (P ˂0.01) and also between GCF galectin-3 and TNF-α total amounts (P ˂0.01). There was no correlation between PAD4 and clinical parameters, or between PAD4 and TNF-α (P >0.05). CONCLUSIONS Galectin-3 and PAD4 may be involved in the periodontal disease pathogenesis considering the elevated levels of these molecules in periodontal disease. These biomarkers may be used in the diagnosis of periodontal diseases.
Collapse
Affiliation(s)
- Hazal Üstünel Akkaya
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| | - Huriye Erbak Yılmaz
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University, Izmir, Turkey.,Dokuz Eylül University Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Figen Narin
- Department of Medical Biochemistry, School of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Mehmet Sağlam
- Department of Periodontology, Faculty of Dentistry, Izmir Katip Çelebi University, Izmir, Turkey
| |
Collapse
|
9
|
Niu Y, Lin J, Li C, Peng X, Jiang N, Xu Q, Yin M, Lin H, Gu L, Zhao G. Galectin-3 plays an important pro-inflammatory role in A. fumigatus keratitis by recruiting neutrophils and activating p38 in neutrophils. Int Immunopharmacol 2021; 97:107706. [PMID: 33933850 DOI: 10.1016/j.intimp.2021.107706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To determine the role of galectin-3 (Gal-3) in cornea infected by Aspergillus fumigatus (A. fumigatus). METHODS Gal-3 was tested in normal and infected corneas of C57BL/6 mice. Mice corneas were pretreated with or without rmGal-3 or Gal-3 siRNA and infected with A. fumigatus. Recombinant mouse (rm) Gal-3 stimulated polymorphonuclear neutrophilic leukocytes (PMNs). PMNs were stimulated with 75% ethanol-killed A. fumigatus with or without pretreatment of Gal-3 siRNA. Disease severity was documented by clinical score and photographs with a slit lamp. PCR, Western blot, and ELISA tested expression of Gal-3, interleukin (IL)-1β, IL-6, macrophage inflammatory protein 2 (MIP-2) and p-p38. PMNs infiltration was assessed by flow cytometry and myeloperoxidase (MPO) assay. RESULTS Gal-3 expression was significantly elevated by A. fumigatus in mice corneas. rmGal-3 treatment increased clinical scores, PMNs infiltration, and cytokines expression, which were decreased by Gal-3 siRNA treatment. In PMNs, Gal-3 expression was also significantly increased by A. fumigatus. The rmGal-3 treatment upregulated proinflammatory cytokines secretion and p-p38 expression, which was significantly inhibited by Gal-3 siRNA. CONCLUSION These data proved that A. fumigatus increased Gal-3 expression and elevated disease clinical scores, PMNs infiltration and cytokines expression through Gal-3. In PMNs, A. fumigatus upregulated IL-1β and IL-6 secretion through the Gal-3 / p38 pathway.
Collapse
Affiliation(s)
- Yawen Niu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Min Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
10
|
Wesley UV, Sutton IC, Cunningham K, Jaeger JW, Phan AQ, Hatcher JF, Dempsey RJ. Galectin-3 protects against ischemic stroke by promoting neuro-angiogenesis via apoptosis inhibition and Akt/Caspase regulation. J Cereb Blood Flow Metab 2021; 41:857-873. [PMID: 33736511 PMCID: PMC7983501 DOI: 10.1177/0271678x20931137] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-stroke neurological deficits and mortality are often associated with vascular disruption and neuronal apoptosis. Galectin-3 (Gal3) is a potent pro-survival and angiogenic factor. However, little is known about its protective role in the cerebral ischemia/reperfusion (I/R) injury. We have previously shown significant up-regulation of Gal3 in the post-stroke rat brain, and that blocking of Gal3 with neutralizing antibody decreases the cerebral blood vessel density. Our current study demonstrates that intracerebral local delivery of the Gal3 into rat brain at the time of reperfusion exerts neuroprotection. Ischemic lesion volume and neuronal cell death were significantly reduced as compared with the vehicle-treated MCAO rat brains. Gal3 increased vessel density and neuronal survival after I/R in rat brains. Importantly, Gal3-treated groups showed significant improvement in motor and sensory functional recovery. Gal3 increased neuronal cell viability under in vitro oxygen-glucose deprivation conditions in association with increased phosphorylated-Akt, decreased phosphorylated-ERK1/2, and reduced caspase-3 activity. Gene expression analysis showed down regulation of pro-apoptotic and inflammatory genes including Fas-ligand, and upregulation of pro-survival and pro-angiogenic genes including Bcl-2, PECAM, and occludin. These results indicate a key role for Gal3 in neuro-vascular protection and functional recovery following ischemic stroke through modulation of angiogenic and apoptotic pathways.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Ian C Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | | | - Jacob W Jaeger
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Allan Q Phan
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - James F Hatcher
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
11
|
Hu S, Martinez-Garcia FD, Moeun BN, Burgess JK, Harmsen MC, Hoesli C, de Vos P. An immune regulatory 3D-printed alginate-pectin construct for immunoisolation of insulin producing β-cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112009. [PMID: 33812628 DOI: 10.1016/j.msec.2021.112009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022]
Abstract
Different bioinks have been used to produce cell-laden alginate-based hydrogel constructs for cell replacement therapy but some of these approaches suffer from issues with print quality, long-term mechanical instability, and bioincompatibility. In this study, new alginate-based bioinks were developed to produce cell-laden grid-shaped hydrogel constructs with stable integrity and immunomodulating capacity. Integrity and printability were improved by including the co-block-polymer Pluronic F127 in alginate solutions. To reduce inflammatory responses, pectin with a low degree of methylation was included and tested for inhibition of Toll-Like Receptor 2/1 (TLR2/1) dimerization and activation and tissue responses under the skin of mice. The viscoelastic properties of alginate-Pluronic constructs were unaffected by pectin incorporation. The tested pectin protected printed insulin-producing MIN6 cells from inflammatory stress as evidenced by higher numbers of surviving cells within the pectin-containing construct following exposure to a cocktail of the pro-inflammatory cytokines namely, IL-1β, IFN-γ, and TNF-α. The results suggested that the cell-laden construct bioprinted with pectin-alginate-Pluronic bioink reduced tissue responses via inhibiting TLR2/1 and support insulin-producing β-cell survival under inflammatory stress. Our study provides a potential novel strategy to improve long-term survival of pancreatic islet grafts for Type 1 Diabetes (T1D) treatment.
Collapse
Affiliation(s)
- Shuxian Hu
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands.
| | - Francisco Drusso Martinez-Garcia
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Brenden N Moeun
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada
| | - Janette Kay Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| | - Corinne Hoesli
- Department of Chemical Engineering, McGill University, 3610 rue University, Montreal, QC, Canada; Department of Biological and Biomedical Engineering, McGill University, 3775 rue University, Montreal, QC, Canada
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
12
|
Effects of Catalpa Alcohol From Rehmannia glutinosa on Calcium-Binding Protein, Interleukin-1β, and Galectin-3 in Synovial Tissues of Rats With Knee Osteoarthritis. Int Surg 2020. [DOI: 10.9738/intsurg-d-20-00016.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objectives
We aimed to evaluate the effects of catalpa alcohol from Rehmannia glutinosa on the expressions of calcium-binding protein (S100A12), interleukin-1β (IL-1β), and galectin-3 in the synovium of rats with early knee osteoarthritis (KOA).
Methods
Fifty-two adult male Wistar rats aged 3 to 8 weeks were divided into normal control (n = 16), model (n = 12), low-dose (n = 12), and high-dose groups (n = 12). On the 10th day after modeling, 6 rats in normal control group and 6 in the other 3 groups were randomly selected. X-ray and 3-dimensional computed tomography (3D CT) images of the left knee joint were taken under live anesthesia. The joint cavity of sacrificed rats was opened to observe cartilage surface. After 28 consecutive days of administration, the synovial tissue of left knee joint was collected.
Results
The S100A12, IL-1β, and galectin-3 levels in synovial tissue were detected by immunohistochemistry and ELISA. There were articular cartilage defects in left knees. Radiologic examination showed significant joint space narrowing and hyperplasia, and 3D CT joint space value decreased (P < 0.05). The Mankins and OARSI scores of synovial histopathology were significantly different (P < 0.05). The S100A12, IL-1β, and galectin-3 levels in synovial tissue of the model group significantly exceeded those of the normal control group (P < 0.01). Compared with the model group, such levels of low-dose (P < 0.05) and high-dose groups (P < 0.01) were significantly lower.
Conclusions
The S100A12, IL-1β and galectin-3 levels in synovium tissue decreased with rising concentration of catalpa alcohol from R. glutinosa. Therefore, this drug is potentially suitable for inhibiting an inflammatory response to delay the progression of KOA.
Collapse
|
13
|
Abstract
The cornea is a transparent avascular tissue on the anterior segment of the eye responsible for providing refractive power and forming a protective barrier against the external environment. Infectious and inflammatory conditions can compromise the structure of the cornea, leading to visual impairment and blindness. Galectins are a group of β-galactoside-binding proteins expressed by immune and non-immune cells that play pivotal roles in innate and adaptive immunity. In this brief review, we discuss how different members of this family of proteins affect both pro-inflammatory and anti-inflammatory responses in the cornea, particularly in the context of infection, transplantation and wound healing. We further describe recent research showing beneficial effects of galectin-targeted therapy in corneal diseases.
Collapse
|
14
|
Mei X, Ye Z, Chang Y, Huang S, Song J, Lu F. Trichinella spiralis co-infection exacerbates Plasmodium berghei malaria-induced hepatopathy. Parasit Vectors 2020; 13:440. [PMID: 32883347 PMCID: PMC7469358 DOI: 10.1186/s13071-020-04309-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/24/2020] [Indexed: 11/11/2022] Open
Abstract
Background Although Plasmodium parasites and intestinal helminths share common endemic areas, the mechanisms of these co-infections on the host immune response remain not fully understood. Liver involvement in severe Plasmodium falciparum infections is a significant cause of morbidity and mortality. However, the effect of pre-existing Trichinella spiralis infection on the immune response and liver immune-pathogenesis in P. berghei ANKA (PbANKA)-infected mice needs to be elucidated. Methods Outbred Kunming mice were infected with T. spiralis and 9 days later were challenged with P. berghei ANKA (PbANKA), and the investigation occurred at 13 days after co-infection. Results Compared with PbANKA-mono-infected mice, T. spiralis + PbANKA-co-infected mice had similar survival rate but lower PbANKA parasitaemia; however, there were more severe hepatosplenomegaly, increased liver and spleen indexes, and increased liver pathology observed by hematoxylin and eosin staining; higher expression levels of galectin (Gal)-1, Gal-3, CD68+ macrophages, and elastase-positive neutrophils measured by immunohistochemical staining; upregulated mRNA expression levels of Gal-1, Gal-3, cytokines (interferon-gamma (IFNγ) and interleukin (IL)-6), and M1 macrophage polarization marker (inducible nitric oxide synthase (iNOS)) in the liver, and increased expression levels of Gal-1, IFNγ, IL-6, eosinophil cationic protein, eosinophil protein X, and M1 (IL-1β and iNOS) and M2 (Ym1) macrophage polarization markers in the spleen of co-infected mice detected by using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). In vitro study showed that compared with PbANKA-mono-infected mice, there were significantly increased expression levels of Gal-1, Gal-3, IL-6, IL-1β, and iNOS in the peritoneal macrophage isolated from co-infected mice detected by using qRT-PCR. Correlation analysis revealed significant positive correlations between Gal-3 and IL-1β in the peritoneal macrophages isolated from PbANKA-mono-infected mice, between Gal-3 and IFNγ in the spleen of co-infected mice, and between Gal-1 and Ym1 in the peritoneal macrophages isolated from co-infected mice. Conclusions Our data indicate that pre-existing infection of T. spiralis may suppress P. berghei parasitaemia and aggravate malaria-induced liver pathology through stimulating Gal-1 and Gal-3 expression, activating macrophages, neutrophils, and eosinophils, and promoting mediator release and cytokine production.![]()
Collapse
Affiliation(s)
- Xu Mei
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhong Ye
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Chang
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China.
| | - Jianping Song
- Artemisinin Research Center and Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Fangli Lu
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Luis J, Eastlake K, Khaw PT, Limb GA. Galectins and their involvement in ocular disease and development. Exp Eye Res 2020; 197:108120. [PMID: 32565112 DOI: 10.1016/j.exer.2020.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022]
Abstract
Galectins are carbohydrate binding proteins with high affinity to ß-galactoside containing glycoconjugates. Understanding of the functions of galectins has grown steadily over the past decade, as a result of substantial advancements in the field of glycobiology. Galectins have been shown to be versatile molecules that participate in a range of important biological systems, including inflammation, neovascularisation and fibrosis. These processes are of particular importance in ocular tissues, where a major theme of recent research has been to divert diseases away from pathways which result in loss of function into pathways of repair and regeneration. This review summarises our current understanding of galectins in the context important ocular diseases, followed by an update on current clinical studies and future directions.
Collapse
Affiliation(s)
- Joshua Luis
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom.
| | - Karen Eastlake
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| | - G Astrid Limb
- National Institute for Health Research (NIHR), Biomedical Research Centre at Moorfields Eye Hospital, NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 9EL, United Kingdom
| |
Collapse
|
16
|
Caniglia JL, Guda MR, Asuthkar S, Tsung AJ, Velpula KK. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. PeerJ 2020; 8:e9392. [PMID: 32587806 PMCID: PMC7301894 DOI: 10.7717/peerj.9392] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the causative agent of coronavirus disease 2019 (COVID-19), has been declared a global pandemic by the World Health Organization. With no standard of care for the treatment of COVID-19, there is an urgent need to identify therapies that may be effective in treatment. Recent evidence has implicated the development of cytokine release syndrome as the major cause of fatality in COVID-19 patients, with elevated levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) observed in patients. Galectin-3 (Gal-3) is an animal lectin that has been implicated in the disease process of a variety of inflammatory conditions. Inhibitors of the small molecule Gal-3 have been shown to reduce the levels of both IL-6 and TNF-α in vitro and have shown anti-inflammatory effects in vivo. Additionally, a key domain in the spike protein of β-coronaviridae, a genus which includes SARS-CoV2, is nearly identical in morphology to human Gal-3. These spike proteins are critical for the virus’ entry into host cells. Here we provide a systematic review of the available literature and an impetus for further research on the use of Gal-3 inhibitors in the treatment of COVID-19. Further, we propose a dual mechanism by which Gal-3 inhibition may be beneficial in the treatment of COVID-19, both suppressing the host inflammatory response and impeding viral attachment to host cells.
Collapse
Affiliation(s)
- John L Caniglia
- Department of Cancer Biology and Pharmacology, Neurosurgery, and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, Neurosurgery, and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, Neurosurgery, and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| | - Andrew J Tsung
- Departments of Cancer Biology and Pharmacology, Neurosurgery, and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA.,Illinois Neurological Institute, Peoria, IL, USA
| | - Kiran K Velpula
- Departments of Cancer Biology and Pharmacology, Pediatrics, Neurosurgery, and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL, USA
| |
Collapse
|
17
|
Kiliç F, Işik Ü, Demirdaş A, Usta A. Serum galectin-3 levels are decreased in schizophrenia. ACTA ACUST UNITED AC 2020; 42:398-402. [PMID: 32159713 PMCID: PMC7430395 DOI: 10.1590/1516-4446-2019-0699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 11/22/2022]
Abstract
Objective: To determine whether changes in serum galectin-3 (gal-3) concentrations in schizophrenia patients have etiopathogenetic importance. Since very little research has assessed the connection between galectins and schizophrenia, we wanted to examine alterations in the inflammatory marker gal-3 in schizophrenia and investigate possible correlations between clinical symptomatology and serum concentrations. Methods: Forty-eight schizophrenia patients and 44 healthy controls were included in this study. The Scale for the Assessment of Positive Symptoms (SAPS) and the Scale for the Assessment of Negative Symptoms (SANS) were administered to determine symptom severity. Venous blood samples were collected, and serum gal-3 levels were measured. Results: Mean serum gal-3 levels were significantly lower in schizophrenia patients, and there were no significant differences in age or sex with the control group. There was also a significant positive correlation between serum gal-3 concentrations and negative schizophrenia symptoms according to the SANS. Conclusion: The results indicate that gal-3 is decreased in schizophrenia patients, which could contribute to inflammation in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Faruk Kiliç
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ümit Işik
- Department of Child and Adolescent Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Arif Demirdaş
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| | - Ayşe Usta
- Department of Psychiatry, Süleyman Demirel University Medicine Faculty, Isparta, Turkey
| |
Collapse
|
18
|
AbuSamra DB, Mauris J, Argüeso P. Galectin-3 initiates epithelial-stromal paracrine signaling to shape the proteolytic microenvironment during corneal repair. Sci Signal 2019; 12:12/590/eaaw7095. [PMID: 31311846 DOI: 10.1126/scisignal.aaw7095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Paracrine interactions between epithelial cells and stromal fibroblasts occur during tissue repair, development, and cancer. Crucial to these processes is the production of matrix metalloproteinases (MMPs) that modify the microenvironment. Here, we demonstrated that the carbohydrate-binding protein galectin-3 stimulated microenvironment remodeling in the cornea by promoting the paracrine action of secreted interleukin-1β (IL-1β). Through live cell imaging in vitro, we observed rapid activation of the MMP9 promoter in clusters of cultured human epithelial cells after direct heterotypic contact with single primary human fibroblasts. Soluble recombinant galectin-3 and endogenous galectin-3 of epithelial origin both stimulated MMP9 activity through the induction of IL-1β secretion by fibroblasts. In vivo, mechanical disruption of the basement membrane in wounded corneas prompted an increase in the abundance of IL-1β in the stroma and increased the amount of gelatinase activity in the epithelium. Moreover, corneas of galectin-3-deficient mice failed to stimulate IL-1β after wounding. This mechanism of paracrine control has broad importance for our understanding of how the proteolytic microenvironment is modified in epithelial-stromal interactions.
Collapse
Affiliation(s)
- Dina B AbuSamra
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Jérôme Mauris
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pablo Argüeso
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
19
|
AbuSamra DB, Argüeso P. Lectin-Glycan Interactions in Corneal Infection and Inflammation. Front Immunol 2018; 9:2338. [PMID: 30349544 PMCID: PMC6186829 DOI: 10.3389/fimmu.2018.02338] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 11/13/2022] Open
Abstract
The cornea is an extraordinary component of vision that functions as the principal barrier to pathogens in the eye while allowing light transmission into the retina. Understanding the cellular and molecular mechanisms that maintain homeostasis in this tissue is the subject of intense scientific study given the high prevalence of corneal disease. Over the past decade, the interactions between lectins and glycans on plasma membranes have emerged as important regulatory factors in corneal biology. In particular, members of the galectin family have been shown to bind multiple β-galactoside-containing receptors to regulate immunopathological processes associated with viral and bacterial infection, transplantation, wound healing, dry eye, angiogenesis, and lymphangiogenesis. In this review, we describe the current understanding of how these surface interactions intersect with different pathways to activate unique cellular responses in cornea as well as their potential therapeutic implications.
Collapse
Affiliation(s)
- Dina B AbuSamra
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Pablo Argüeso
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Thomas L, Pasquini LA. Galectin-3-Mediated Glial Crosstalk Drives Oligodendrocyte Differentiation and (Re)myelination. Front Cell Neurosci 2018; 12:297. [PMID: 30258354 PMCID: PMC6143789 DOI: 10.3389/fncel.2018.00297] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022] Open
Abstract
Galectin-3 (Gal-3) is the only chimeric protein in the galectin family. Gal-3 structure comprises unusual tandem repeats of proline and glycine-rich short stretches bound to a carbohydrate-recognition domain (CRD). The present review summarizes Gal-3 functions in the extracellular and intracellular space, its regulation and its internalization and secretion, with a focus on the current knowledge of Gal-3 role in central nervous system (CNS) health and disease, particularly oligodendrocyte (OLG) differentiation, myelination and remyelination in experimental models of multiple sclerosis (MS). During myelination, microglia-expressed Gal-3 promotes OLG differentiation by binding glycoconjugates present only on the cell surface of OLG precursor cells (OPC). During remyelination, microglia-expressed Gal-3 favors an M2 microglial phenotype, hence fostering myelin debris phagocytosis through TREM-2b phagocytic receptor and OLG differentiation. Gal-3 is necessary for myelin integrity and function, as evidenced by myelin ultrastructural and behavioral studies from LGALS3-/- mice. Mechanistically, Gal-3 enhances actin assembly and reduces Erk 1/2 activation, leading to early OLG branching. Gal-3 later induces Akt activation and increases MBP expression, promoting gelsolin release and actin disassembly and thus regulating OLG final differentiation. Altogether, findings indicate that Gal-3 mediates the glial crosstalk driving OLG differentiation and (re)myelination and may be regarded as a target in the design of future therapies for a variety of demyelinating diseases.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.,Institute of Chemistry and Biological Physicochemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|