1
|
Harris MC, Gary HE, Cooper SK, Ackart DF, DiLisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Branch Moody D, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. Infect Immun 2024:e0038024. [PMID: 39494875 DOI: 10.1128/iai.00380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
CD1 is an antigen-presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigens. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by the availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b, and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that the upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that parallels the kinetic changes in CD1b expression in Mtb-infected lungs and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
Affiliation(s)
- Macallister C Harris
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Hadley E Gary
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Sarah K Cooper
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - David F Ackart
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - James E DiLisio
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Randall J Basaraba
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Tan-Yun Cheng
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Ildiko van Rhijn
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - D Branch Moody
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Radpour R, Simillion C, Wang B, Abbas HA, Riether C, Ochsenbein AF. IL-9 secreted by leukemia stem cells induces Th1-skewed CD4+ T cells, which promote their expansion. Blood 2024; 144:888-903. [PMID: 38941612 DOI: 10.1182/blood.2024024000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT In acute myeloid leukemia (AML), leukemia stem cells (LSCs) and leukemia progenitor cells (LPCs) interact with various cell types in the bone marrow (BM) microenvironment, regulating their expansion and differentiation. To study the interaction of CD4+ and CD8+ T cells in the BM with LSCs and LPCs, we analyzed their transcriptome and predicted cell-cell interactions by unbiased high-throughput correlation network analysis. We found that CD4+ T cells in the BM of patients with AML were activated and skewed toward T-helper (Th)1 polarization, whereas interleukin-9 (IL-9)-producing (Th9) CD4+ T cells were absent. In contrast to normal hematopoietic stem cells, LSCs produced IL-9, and the correlation modeling predicted IL9 in LSCs as a main hub gene that activates CD4+ T cells in AML. Functional validation revealed that IL-9 receptor signaling in CD4+ T cells leads to activation of the JAK-STAT pathway that induces the upregulation of KMT2A and KMT2C genes, resulting in methylation on histone H3 at lysine 4 to promote genome accessibility and transcriptional activation. This induced Th1-skewing, proliferation, and effector cytokine secretion, including interferon gamma (IFN-γ) and tumor necrosis factor α (TNF-α). IFN-γ and, to a lesser extent, TNF-α produced by activated CD4+ T cells induced the expansion of LSCs. In accordance with our findings, high IL9 expression in LSCs and high IL9R, TNF, and IFNG expression in BM-infiltrating CD4+ T cells correlated with worse overall survival in AML. Thus, IL-9 secreted by AML LSCs shapes a Th1-skewed immune environment that promotes their expansion by secreting IFN-γ and TNF-α.
Collapse
MESH Headings
- Interleukin-9/genetics
- Interleukin-9/metabolism
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/immunology
- Th1 Cells/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Proliferation
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Tumor Microenvironment/immunology
- Receptors, Interleukin-9/genetics
- Receptors, Interleukin-9/metabolism
- Interferon-gamma/metabolism
- Histone-Lysine N-Methyltransferase/genetics
Collapse
Affiliation(s)
- Ramin Radpour
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Bofei Wang
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
| | - Hussein A Abbas
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX
| | - Carsten Riether
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department for BioMedical Research, Tumor Immunology, University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Jing J, Ma Y, Xie Z, Wang B, Chen Y, Chi E, Wang J, Zhang K, Wang Z, Li S. Acute T-cell lymphoblastic leukemia: chimeric antigen receptor technology may offer a new hope. Front Immunol 2024; 15:1410519. [PMID: 39192970 PMCID: PMC11347323 DOI: 10.3389/fimmu.2024.1410519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a prevalent malignancy affecting the hematopoietic system, encompassing both B-cell ALL (B-ALL) and T-cell ALL (T-ALL). T-ALL, characterized by the proliferation of T-cell progenitors in the bone marrow, presents significant treatment challenges, with patients often experiencing high relapse rates and poor long-term survival despite advances in chemotherapy and hematopoietic stem cell transplantation (HSCT). This review explores the pathogenesis and traditional treatment strategies of T-ALL, emphasizing the promising potential of chimeric antigen receptor (CAR) technology in overcoming current therapeutic limitations. CAR therapy, leveraging genetically modified immune cells to target leukemia-specific antigens, offers a novel and precise approach to T-ALL treatment. The review critically analyzes recent developments in CAR-T and CAR-NK cell therapies, their common targets, optimization strategies, clinical outcomes, and the associated challenges, providing a comprehensive overview of their clinical prospects in T-ALL treatment.
Collapse
Affiliation(s)
- Jiajie Jing
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Yuan Ma
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Ziwen Xie
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Bingyan Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Yueming Chen
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Enjie Chi
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jiadong Wang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Kejin Zhang
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sisi Li
- Department of Clinical Medicine, Hangzhou City University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Müller-Calleja N, Ruf W, Lackner KJ. Lipid-binding antiphospholipid antibodies: significance for pathophysiology and diagnosis of the antiphospholipid syndrome. Crit Rev Clin Lab Sci 2024; 61:370-387. [PMID: 38293818 DOI: 10.1080/10408363.2024.2305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the presence of pathogenic antiphospholipid antibodies (aPL). Since approximately 30 years ago, lipid-binding aPL, which do not require a protein cofactor, have been regarded as irrelevant for APS pathogenesis even though anticardiolipin are a diagnostic criterion of APS. In this review, we will summarize the available evidence from in vitro studies, animal models, and epidemiologic studies, which suggest that this concept is no longer tenable. Accordingly, we will only briefly touch on the role of other aPL in APS. This topic has been amply reviewed in detail elsewhere. We will discuss the consequences for laboratory diagnostics and future research required to resolve open questions related to the pathogenic role of different aPL specificities.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
5
|
Evans L, Barral P. CD1 molecules: Beyond antigen presentation. Mol Immunol 2024; 170:1-8. [PMID: 38579449 PMCID: PMC11481681 DOI: 10.1016/j.molimm.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
CD1 molecules are well known for their role in binding and presenting lipid antigens to mediate the activation of CD1-restricted T cells. However, much less appreciated is the fact that CD1 molecules can have additional "unconventional" roles which impact the activation and functions of CD1-expressing cells, ultimately controlling tissue homeostasis as well as the progression of inflammatory and infectious diseases. Some of these roles are mediated by so-called reverse signalling, by which crosslinking of CD1 molecules at the cell surface initiates intracellular signalling. On the other hand, CD1 molecules can also control metabolic and inflammatory pathways in CD1-expressing cells through cell-intrinsic mechanisms independent of CD1 ligation. Here, we review the evidence for "unconventional" functions of CD1 molecules and the outcomes of such roles for health and disease.
Collapse
Affiliation(s)
- Lauren Evans
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK
| | - Patricia Barral
- The Peter Gorer Department of Immunobiology. King's College London, London, UK; The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Lameris R, Shahine A, Veth M, Westerman B, Godfrey DI, Lutje Hulsik D, Brouwer P, Rossjohn J, de Gruijl TD, van der Vliet HJ. Enhanced CD1d phosphatidylserine presentation using a single-domain antibody promotes immunomodulatory CD1d-TIM-3 interactions. J Immunother Cancer 2023; 11:e007631. [PMID: 38040419 PMCID: PMC10693867 DOI: 10.1136/jitc-2023-007631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND CD1d is a monomorphic major histocompatibility complex class I-like molecule that presents lipid antigens to distinct T-cell subsets and can be expressed by various malignancies. Antibody-mediated targeting of CD1d on multiple myeloma cells was reported to induce apoptosis and could therefore constitute a novel therapeutic approach. METHODS To determine how a CD1d-specific single-domain antibody (VHH) enhances binding of the early apoptosis marker annexin V to CD1d+ tumor cells we use in vitro cell-based assays and CRISPR-Cas9-mediated gene editing, and to determine the structure of the VHH1D17-CD1d(endogenous lipid) complex we use X-ray crystallography. RESULTS Anti-CD1d VHH1D17 strongly enhances annexin V binding to CD1d+ tumor cells but this does not reflect induction of apoptosis. Instead, we show that VHH1D17 enhances presentation of phosphatidylserine (PS) in CD1d and that this is saposin dependent. The crystal structure of the VHH1D17-CD1d(endogenous lipid) complex demonstrates that VHH1D17 binds the A'-pocket of CD1d, leaving the lipid headgroup solvent exposed, and has an electro-negatively charged patch which could be involved in the enhanced PS presentation by CD1d. Presentation of PS in CD1d does not trigger phagocytosis but leads to greatly enhanced binding of T-cell immunoglobulin and mucin domain containing molecules (TIM)-1 to TIM-3, TIM-4 and induces TIM-3 signaling. CONCLUSION Our findings reveal the existence of an immune modulatory CD1d(PS)-TIM axis with potentially unexpected implications for immune regulation in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Roeland Lameris
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Adam Shahine
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Myrthe Veth
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bart Westerman
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Tanja D de Gruijl
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- LAVA Therapeutics, Utrecht, The Netherlands
| |
Collapse
|
7
|
Huot N, Planchais C, Rosenbaum P, Contreras V, Jacquelin B, Petitdemange C, Lazzerini M, Beaumont E, Orta-Resendiz A, Rey FA, Reeves RK, Le Grand R, Mouquet H, Müller-Trutwin M. SARS-CoV-2 viral persistence in lung alveolar macrophages is controlled by IFN-γ and NK cells. Nat Immunol 2023; 24:2068-2079. [PMID: 37919524 PMCID: PMC10681903 DOI: 10.1038/s41590-023-01661-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA generally becomes undetectable in upper airways after a few days or weeks postinfection. Here we used a model of viral infection in macaques to address whether SARS-CoV-2 persists in the body and which mechanisms regulate its persistence. Replication-competent virus was detected in bronchioalveolar lavage (BAL) macrophages beyond 6 months postinfection. Viral propagation in BAL macrophages occurred from cell to cell and was inhibited by interferon-γ (IFN-γ). IFN-γ production was strongest in BAL NKG2r+CD8+ T cells and NKG2Alo natural killer (NK) cells and was further increased in NKG2Alo NK cells after spike protein stimulation. However, IFN-γ production was impaired in NK cells from macaques with persisting virus. Moreover, IFN-γ also enhanced the expression of major histocompatibility complex (MHC)-E on BAL macrophages, possibly inhibiting NK cell-mediated killing. Macaques with less persisting virus mounted adaptive NK cells that escaped the MHC-E-dependent inhibition. Our findings reveal an interplay between NK cells and macrophages that regulated SARS-CoV-2 persistence in macrophages and was mediated by IFN-γ.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France.
| | - Cyril Planchais
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Pierre Rosenbaum
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Beatrice Jacquelin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Caroline Petitdemange
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Marie Lazzerini
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Emma Beaumont
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| | - Félix A Rey
- Institut Pasteur, Université Paris-Cité, Structural Virology Unit, CNRS UMR3569, Paris, France
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Ragon Institute of Massachusetts General Hospital, MIT, Cambridge, MA, USA
- Duke Research and Discovery at RTP, Duke University Health System, Durham, NC, USA
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Immunologie des Maladies Virales, Auto-Immunes, Hématologiques et Bactériennes (IMVA-HB/IDMIT/UMR1184), Fontenay-aux-Roses & Kremlin Bicêtre, France
| | - Hugo Mouquet
- Institut Pasteur, Université Paris Cité, INSERM U1222, Humoral Immunology Unit, Paris, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris-Cité, HIV, Inflammation and Persistence Unit, Paris, France
| |
Collapse
|
8
|
Harris MC, Gary HE, Cooper SK, Ackart DF, Dilisio JE, Basaraba RJ, Cheng TY, van Rhijn I, Moody DB, Podell BK. Establishment of CD1b-restricted immunity to lipid antigens in the pulmonary response to Mycobacterium tuberculosis infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541963. [PMID: 37292852 PMCID: PMC10245897 DOI: 10.1101/2023.05.23.541963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CD1 is an antigen presenting glycoprotein homologous to MHC I; however, CD1 proteins present lipid rather than peptide antigen. CD1 proteins are well established to present lipid antigens of Mycobacterium tuberculosis (Mtb) to T cells, but understanding the role of CD1-restricted immunity in vivo in response to Mtb infection has been limited by availability of animal models naturally expressing the CD1 proteins implicated in human response: CD1a, CD1b and CD1c. Guinea pigs, in contrast to other rodent models, express four CD1b orthologs, and here we utilize the guinea pig to establish the kinetics of gene and protein expression of CD1b orthologs, as well as the Mtb lipid-antigen and CD1b-restricted immune response at the tissue level over the course of Mtb infection. Our results indicate transient upregulation of CD1b expression during the effector phase of adaptive immunity that wanes with disease chronicity. Gene expression indicates that upregulation of CD1b is the result of transcriptional induction across all CD1b orthologs. We show high CD1b3 expression on B cells, and identify CD1b3 as the predominant CD1b ortholog in pulmonary granuloma lesions. We identify ex vivo cytotoxic activity directed against CD1b that closely paralleled the kinetic changes in CD1b expression in Mtb infected lung and spleen. This study confirms that CD1b expression is modulated by Mtb infection in lung and spleen, leading to pulmonary and extrapulmonary CD1b-restricted immunity as a component of the antigen-specific response to Mtb infection.
Collapse
|
9
|
Caracciolo D, Mancuso A, Polerà N, Froio C, D'Aquino G, Riillo C, Tagliaferri P, Tassone P. The emerging scenario of immunotherapy for T-cell Acute Lymphoblastic Leukemia: advances, challenges and future perspectives. Exp Hematol Oncol 2023; 12:5. [PMID: 36624522 PMCID: PMC9828428 DOI: 10.1186/s40164-022-00368-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a challenging pediatric and adult haematologic disease still associated with an unsatisfactory cure rate. Unlike B-ALL, the availability of novel therapeutic options to definitively improve the life expectancy for relapsed/resistant patients is poor. Indeed, the shared expression of surface targets among normal and neoplastic T-cells still limits the efficacy and may induce fratricide effects, hampering the use of innovative immunotherapeutic strategies. However, novel monoclonal antibodies, bispecific T-cell engagers (BTCEs), and chimeric antigen receptors (CAR) T-cells recently showed encouraging results and some of them are in an advanced stage of pre-clinical development or are currently under investigation in clinical trials. Here, we review this exciting scenario focusing on most relevant advances, challenges, and perspectives of the emerging landscape of immunotherapy of T-cell malignancies.
Collapse
Affiliation(s)
- Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nicoletta Polerà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Froio
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Rich RR, Cron RQ. The Human Immune Response. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
11
|
HDAC Inhibition with Valproate Improves Direct Cytotoxicity of Monocytes against Mesothelioma Tumor Cells. Cancers (Basel) 2022; 14:cancers14092164. [PMID: 35565292 PMCID: PMC9100202 DOI: 10.3390/cancers14092164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor-associated macrophages and monocyte myeloid-derived immunosuppressive cells are associated with bad prognosis in malignant pleural mesothelioma (MPM). This study shows that peripheral blood monocytes can, nevertheless, be cytotoxic for MPM tumor cells. This cytotoxic activity that involves direct cell-to-cell contact can be improved with a lysine deacetylase inhibitor (VPA), opening new prospects for further improvement of still unsatisfactory MPM therapies. Abstract The composition of the tumor microenvironment (TME) mediates the outcome of chemo- and immunotherapies in malignant pleural mesothelioma (MPM). Tumor-associated macrophages (TAMs) and monocyte myeloid-derived immunosuppressive cells (M-MDSCs) constitute a major fraction of the TME. As central cells of the innate immune system, monocytes exert well-characterized functions of phagocytosis, cytokine production, and antibody-dependent cell-mediated cytotoxicity (ADCC). The objective of this study was to evaluate the ability of monocytes to exert a direct cytotoxicity by cell-to-cell contact with MPM cells. The experimental model is based on cocultures between human blood-derived monocytes sorted by negative selection and mesothelioma cell lines. Data show (i) that blood-derived human monocytes induce tumor cell death by direct cell-to-cell contact, (ii) that VPA is a pharmacological enhancer of this cytotoxic activity, (iii) that VPA increases monocyte migration and their aggregation with MPM cells, and (iv) that the molecular mechanisms behind VPA modulation of monocytes involve a downregulation of the membrane receptors associated with the M2 phenotype, i.e., CD163, CD206, and CD209. These conclusions, thus, broaden our understanding about the molecular mechanisms involved in immunosurveillance of the tumor microenvironment and open new prospects for further improvement of still unsatisfactory MPM therapies
Collapse
|
12
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 241] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Singh R, Chen Y, Ng SW, Cain D, Etherington R, Hardman C, Ogg G. Phospholipase activity of acyloxyacyl hydrolase induces IL-22-producing CD1a-autoreactive T cells in individuals with psoriasis. Eur J Immunol 2022; 52:511-524. [PMID: 34913478 PMCID: PMC9302981 DOI: 10.1002/eji.202149485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/07/2021] [Accepted: 12/10/2021] [Indexed: 11/08/2022]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by Th17 responses. Recent evidence has identified Langerhans cells to have a key role in disease pathogenesis, with constitutive high expression of CD1a and capacity to present lipid antigens to T cells. Phospholipase A2 enzymes generate neolipid antigens for recognition by CD1a-reactive T cells; however, the broader enzymatic pathways of CD1a lipid ligand generation have not been thoroughly investigated. In this study, we used immunofluorescence of skin and ELISpot analyses of CD1a-reactive T cells to investigate the role of the lipase acyloxyacyl hydrolase (AOAH) in CD1a ligand generation with relevance to the pathogenesis of psoriasis. We found that the PLA2 activity of rAOAH leads to the activation of circulating CD1a auto-reactive T cells, leading to the production of IFN-γ and IL-22. Circulating AOAH-responsive CD1a-reactive T cells from patients with psoriasis showed elevated IL-22 production. We observed that AOAH is highly expressed in psoriatic lesions compared to healthy skin. Overall, these data present a role for AOAH in generating antigens that activate circulating lipid-specific CD1a-restricted T cells and, thus, contribute to psoriatic inflammation. These findings suggest that inhibition of PLA2 activity of AOAH may have therapeutic potential for individuals with psoriasis.
Collapse
Affiliation(s)
- Randeep Singh
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Yi‐Ling Chen
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Soo Weei Ng
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - David Cain
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Rachel Etherington
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Clare Hardman
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Graham Ogg
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- NIHR Oxford Biomedical Research CentreOxford University HospitalsOxfordUnited Kingdom
| |
Collapse
|
14
|
Genardi S, Morgun E, Wang CR. CD1-Restricted T Cells in Inflammatory Skin Diseases. J Invest Dermatol 2022; 142:768-773. [PMID: 34130802 PMCID: PMC8665943 DOI: 10.1016/j.jid.2021.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Autoimmunity results from the breaking of immune tolerance, leading to inflammation and pathology. Although well studied in the conventional T-cell field, the role of nonconventional T cells in autoimmunity is less understood. CD1-restricted T cells recognize lipid antigens rather than peptide antigens and have been implicated in various autoimmune skin conditions, including psoriasis and atopic dermatitis. In this review, we will discuss the self-lipids that CD1-restricted T cells recognize and how these T cells become aberrantly regulated in pathogenic skin conditions.
Collapse
Affiliation(s)
- Samantha Genardi
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Eva Morgun
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chyung-Ru Wang
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
15
|
Fruit and Vegetable Supplemented Diet Modulates the Pig Transcriptome and Microbiome after a Two-Week Feeding Intervention. Nutrients 2021; 13:nu13124350. [PMID: 34959902 PMCID: PMC8703502 DOI: 10.3390/nu13124350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
A study was conducted to determine the effects of a diet supplemented with fruits and vegetables (FV) on the host whole blood cell (WBC) transcriptome and the composition and function of the intestinal microbiome. Nine six-week-old pigs were fed a pig grower diet alone or supplemented with lyophilized FV equivalent to half the daily recommended amount prescribed for humans by the Dietary Guideline for Americans (DGA) for two weeks. Host transcriptome changes in the WBC were evaluated by RNA sequencing. Isolated DNA from the fecal microbiome was used for 16S rDNA taxonomic analysis and prediction of metabolomic function. Feeding an FV-supplemented diet to pigs induced differential expression of several genes associated with an increase in B-cell development and differentiation and the regulation of cellular movement, inflammatory response, and cell-to-cell signaling. Linear discriminant analysis effect size (LEfSe) in fecal microbiome samples showed differential increases in genera from Lachnospiraceae and Ruminococcaceae families within the order Clostridiales and Erysipelotrichaceae family with a predicted reduction in rgpE-glucosyltransferase protein associated with lipopolysaccharide biosynthesis in pigs fed the FV-supplemented diet. These results suggest that feeding an FV-supplemented diet for two weeks modulated markers of cellular inflammatory and immune function in the WBC transcriptome and the composition of the intestinal microbiome by increasing the abundance of bacterial taxa that have been associated with improved intestinal health.
Collapse
|
16
|
Paterson NM, Al-Zubieri H, Barber MF. Diversification of CD1 Molecules Shapes Lipid Antigen Selectivity. Mol Biol Evol 2021; 38:2273-2284. [PMID: 33528563 PMCID: PMC8136489 DOI: 10.1093/molbev/msab022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Molecular studies of host-pathogen evolution have largely focused on the consequences of variation at protein-protein interaction surfaces. The potential for other microbe-associated macromolecules to promote arms race dynamics with host factors remains unclear. The cluster of differentiation 1 (CD1) family of vertebrate cell surface receptors plays a crucial role in adaptive immunity through binding and presentation of lipid antigens to T-cells. Although CD1 proteins present a variety of endogenous and microbial lipids to various T-cell types, they are less diverse within vertebrate populations than the related major histocompatibility complex (MHC) molecules. We discovered that CD1 genes exhibit a high level of divergence between simian primate species, altering predicted lipid-binding properties and T-cell receptor interactions. These findings suggest that lipid-protein conflicts have shaped CD1 genetic variation during primate evolution. Consistent with this hypothesis, multiple primate CD1 family proteins exhibit signatures of repeated positive selection at surfaces impacting antigen presentation, binding pocket morphology, and T-cell receptor accessibility. Using a molecular modeling approach, we observe that interspecies variation as well as single mutations at rapidly-evolving sites in CD1a drastically alter predicted lipid binding and structural features of the T-cell recognition surface. We further show that alterations in both endogenous and microbial lipid-binding affinities influence the ability of CD1a to undergo antigen swapping required for T-cell activation. Together these findings establish lipid-protein interactions as a critical force of host-pathogen conflict and inform potential strategies for lipid-based vaccine development.
Collapse
Affiliation(s)
- Nicole M Paterson
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Hussein Al-Zubieri
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA.,Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
17
|
Lv Y, Wang X, Ren Y, Fu X, Li T, Jiang Q. Construction of an immune-related signature with prognostic value for colon cancer. PeerJ 2021; 9:e10812. [PMID: 33996273 PMCID: PMC8106397 DOI: 10.7717/peerj.10812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Colon cancer is the third most common malignant tumor in the world. Although immunotherapy has been used in cancer treatment, there is still no first-line immunotherapy method for colon cancer. Therefore, it is essential to search for potential immunotherapy targets and molecular biomarkers for early diagnosis and prognosis. METHODS In this study, we downloaded transcriptome data from The Cancer Genome Atlas (TCGA) and immune-related genes from the ImmPort database. Then we filtered genes with prognostic value and constructed an immune-related signature. Patients were classified into low- and high-risk groups, and we exerted a series of analysis between the signature and clinical phenotypes. Additionally, we used protein-protein interaction networks, gene set enrichment analysis (GSEA) and single-sample gene-set enrichment analysis (ssGSEA) to explore the underlying mechanism of this signature. Furthermore, the accuracy of this signature was verified, using two data sets from Gene Expression Omnibus (GEO). RESULTS We selected 12 immune-related genes to construct the immune-related signature. Low-risk group had a higher level of immunity compared to high-risk group. The expression level of HLA genes and checkpoint-related genes were statistically different in low- and high-risk groups. This signature showed its prognostic value in TCGA cohort and 2 GEO data sets. The signature also had strong correlation with TNM classification, stage, survival state and lymphatic invasion. The mechanism of the signature may be related to several transcription factors and CD8+ T cell in the tumor microenvironment. CONCLUSION In conclusion, this immune-related signature is of great prognosis value for colon cancer and its biofunction might be correlated with HLA genes, checkpoint-related genes and high-infiltrating T cells in tumor tissues.
Collapse
Affiliation(s)
- Yunxia Lv
- Department of Thyroid Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyi Wang
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Yu Ren
- Department of First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xiaorui Fu
- Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, China
| | - Taiyuan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qunguang Jiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
18
|
Van Rhijn I, Le Nours J. CD1 and MR1 recognition by human γδ T cells. Mol Immunol 2021; 133:95-100. [PMID: 33636434 PMCID: PMC8075093 DOI: 10.1016/j.molimm.2020.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022]
Abstract
The two main T cell lineages, αβ and γδ T cells, play a central role in immunity. Unlike αβ T cells that recognize antigens bound to the Major Histocompatibility Complex (MHC) or MHC class I-like antigen-presenting molecules, the ligands for γδ T cell receptors (TCRs) are much more diverse. However, it is now clear that γδ TCRs can also recognize MHC class I-like molecules, including CD1b, CD1c, CD1d and the MHC class I-related protein 1 (MR1). Yet, our understanding at the molecular level of γδ T cell immunity to CD1 and MR1 is still very limited. Here, we discuss new molecular paradigms underpinning γδ TCRs recognition of antigens, antigen-presenting molecules or both. The recent discovery of recognition of MR1 by a γδ TCR at a position located underneath the antigen display platform reinforces the view that γδ TCRs can approach their ligands from many directions, unlike αβ TCRs that bind MHC, CD1 and MR1 targets in an aligned, end to end fashion.
Collapse
Affiliation(s)
- Ildiko Van Rhijn
- Brigham and Women's Hospital, Division of Rheumatology, Inflammation and Immunity, and Harvard Medical School, Boston, MA, 02115, USA; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands.
| | - Jérôme Le Nours
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
19
|
Facts and Challenges in Immunotherapy for T-Cell Acute Lymphoblastic Leukemia. Int J Mol Sci 2020; 21:ijms21207685. [PMID: 33081391 PMCID: PMC7589289 DOI: 10.3390/ijms21207685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL), a T-cell malignant disease that mainly affects children, is still a medical challenge, especially for refractory patients for whom therapeutic options are scarce. Recent advances in immunotherapy for B-cell malignancies based on increasingly efficacious monoclonal antibodies (mAbs) and chimeric antigen receptors (CARs) have been encouraging for non-responding or relapsing patients suffering from other aggressive cancers like T-ALL. However, secondary life-threatening T-cell immunodeficiency due to shared expression of targeted antigens by healthy and malignant T cells is a main drawback of mAb—or CAR-based immunotherapies for T-ALL and other T-cell malignancies. This review provides a comprehensive update on the different immunotherapeutic strategies that are being currently applied to T-ALL. We highlight recent progress on the identification of new potential targets showing promising preclinical results and discuss current challenges and opportunities for developing novel safe and efficacious immunotherapies for T-ALL.
Collapse
|
20
|
Camacho F, Moreno E, Garcia-Alles LF, Chinea Santiago G, Gilleron M, Vasquez A, Choong YS, Reyes F, Norazmi MN, Sarmiento ME, Acosta A. A Direct Role for the CD1b Endogenous Spacer in the Recognition of a Mycobacterium tuberculosis Antigen by T-Cell Receptors. Front Immunol 2020; 11:566710. [PMID: 33162982 PMCID: PMC7591678 DOI: 10.3389/fimmu.2020.566710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Frank Camacho
- Biologicals Sciences School, University of Concepcion, Concepcion, Chile
| | - Ernesto Moreno
- Faculty of Basic Sciences, University of Medellin, Medellin, Colombia
| | | | | | - Martine Gilleron
- Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Aleikar Vasquez
- Biologicals Sciences School, University of Concepcion, Concepcion, Chile
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Malaysia
| | - Fátima Reyes
- Biologicals Sciences School, University of Concepcion, Concepcion, Chile
| | - Mohd Nor Norazmi
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Maria E. Sarmiento
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Armando Acosta
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
21
|
de Lima Moreira M, Souter MNT, Chen Z, Loh L, McCluskey J, Pellicci DG, Eckle SBG. Hypersensitivities following allergen antigen recognition by unconventional T cells. Allergy 2020; 75:2477-2490. [PMID: 32181878 PMCID: PMC11056244 DOI: 10.1111/all.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Conventional T cells recognise protein-derived antigens in the context of major histocompatibility complex (MHC) class Ia and class II molecules and provide anti-microbial and anti-tumour immunity. Conventional T cells have also been implicated in type IV (also termed delayed-type or T cell-mediated) hypersensitivity reactions in response to protein-derived allergen antigens. In addition to conventional T cells, subsets of unconventional T cells exist, which recognise non-protein antigens in the context of monomorphic MHC class I-like molecules. These include T cells that are restricted to the cluster of differentiation 1 (CD1) family members, known as CD1-restricted T cells, and mucosal-associated invariant T cells (MAIT cells) that are restricted to the MHC-related protein 1 (MR1). Compared with conventional T cells, much less is known about the immune functions of unconventional T cells and their role in hypersensitivities. Here, we review allergen antigen presentation by MHC-I-like molecules, their recognition by unconventional T cells, and the potential role of unconventional T cells in hypersensitivities. We also speculate on possible scenarios of allergen antigen presentation by MHC-I-like molecules to unconventional T cells, the hallmarks of such responses, and the expected frequencies of hypersensitivities within the human population.
Collapse
Affiliation(s)
- Marcela de Lima Moreira
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Michael N. T. Souter
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Vic., Australia
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| | | | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
22
|
Abstract
γδ T cells form an abundant part of the human cellular immune system, where they respond to tissue damage, infection, and cancer. The spectrum of known molecular targets recognized by Vδ1-expressing γδ T cells is becoming increasingly diverse. Here we describe human γδ T cells that recognize CD1b, a lipid antigen-presenting molecule, which is inducibly expressed on monocytes and dendritic cells. Using CD1b tetramers to study multiple donors, we found that many CD1b-specific γδ T cells use Vδ1. Despite their common use of Vδ1, three CD1b-specific γδ T cell receptors (TCRs) showed clear differences in the surface of CD1b recognized, the requirement for lipid antigens, and corecognition of butryophilin-like proteins. Several Vγ segments were present among the CD1b-specific TCRs, but chain swap experiments demonstrated that CD1b specificity was mediated by the Vδ1 chain. One of the CD1b-specific Vδ1+ TCRs paired with Vγ4 and shows dual reactivity to CD1b and butyrophilin-like proteins. αβ TCRs typically recognize the peptide display platform of MHC proteins. In contrast, our results demonstrate the use of rearranged receptors to mediate diverse modes of recognition across the surface of CD1b in ways that do and do not require carried lipids.
Collapse
|
23
|
Basu S, Elkington P, Rao NA. Pathogenesis of ocular tuberculosis: New observations and future directions. Tuberculosis (Edinb) 2020; 124:101961. [PMID: 33010848 DOI: 10.1016/j.tube.2020.101961] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/22/2020] [Accepted: 06/03/2020] [Indexed: 01/01/2023]
Abstract
Ocular tuberculosis (OTB) encompasses all forms of intra- and extra-ocular inflammation associated with Mycobacterium tuberculosis (Mtb) infection. However, the organism is rarely found in ocular fluid samples of diseased eyes, rendering the pathomechanisms of the disease unclear. This confounds clinical decision-making in diagnosis and treatment of OTB. Here, we critically review existing human and animal data related to ocular inflammation and TB pathogenesis to unravel likely pathomechanisms of OTB. Broadly there appear to be two fundamental mechanisms that may underlie the development of TB-associated ocular inflammation: a. inflammatory response to live/replicating Mtb in the eye, and b. immune mediated ocular inflammation induced by non-viable Mtb or its components in the eye. This distinction is significant as in direct Mtb-driven mechanisms, diagnosis and treatment would be aimed at detection of Mtb-infection and its elimination; while indirect mechanisms would primarily require anti-inflammatory therapy with adjunctive anti-TB therapy. Further, we discuss how that most clinical phenotypes of OTB likely represent a combination of both mechanisms, with one being predominant than the other.
Collapse
Affiliation(s)
- Soumyava Basu
- Retina and Uveitis Service, L V Prasad Eye Institute (Mithu Tulsi Chanrai Campus), Bhubaneswar, India.
| | - Paul Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Narsing A Rao
- USC-Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Layre E. Trafficking of Mycobacterium tuberculosis Envelope Components and Release Within Extracellular Vesicles: Host-Pathogen Interactions Beyond the Wall. Front Immunol 2020; 11:1230. [PMID: 32765485 PMCID: PMC7378356 DOI: 10.3389/fimmu.2020.01230] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Components of Mycobacterium tuberculosis (Mtb) envelope such as lipoproteins, lypoglycans, lipids, and glycolipids act as Pathogen Associated Molecular Patterns and/or antigens, hence contributing in different ways to the bacillus recognition, phagocytosis, and to immune responses modulation. However, Mtb envelope components are not only encountered at the bacillus-host direct contact but can act remotely from the bacillus envelope. Indeed, they are also released from the bacillus envelope and are detected in different compartments such as the infected cells endosomal compartments or in extracellular vesicles produced by the bacillus itself or by infected cells. Characterizing their trafficking is of main importance for our understanding of their role in host-pathogen interactions and consequently for their potential use as vaccine components. This review aims at providing an overview of the current knowledge of the nature of Mtb envelope components shuttled within extracellular vesicles, the interaction of these vesicles with host immune cells and the remaining black holes.
Collapse
Affiliation(s)
- Emilie Layre
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
25
|
Structural Dynamics of the Lipid Antigen-Binding Site of CD1d Protein. Biomolecules 2020; 10:biom10040532. [PMID: 32244759 PMCID: PMC7226365 DOI: 10.3390/biom10040532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022] Open
Abstract
CD1 molecules present lipid antigens to T-cells in early stages of immune responses. Whereas CD1‒lipid‒T-cell receptors interactions are reasonably understood, molecular details on initial trafficking and loading of lipids onto CD1 proteins are less complete. We present a molecular dynamics (MD) study of human CD1d, the isotype that activates iNKT cells. MD simulations and calculations of properties and Poisson-Boltzmann electrostatic potentials were used to explore the dynamics of the antigen-binding domain of the apo-form, CD1d complexes with three lipid–antigens that activate iNKT cells and CD1d complex with GM2AP, a protein that assists lipid loading onto CD1 molecules in endosomes/lysosomes. The study was done at pH 7 and 4.5, values representative of strongly acidic environments in endosomal compartments. Our findings revealed dynamic features of the entrance to the hydrophobic channels of CD1d modulated by two α helices with sensitivity to the type of lipid. We also found lipid- and pH-dependent dynamic changes in three exposed tryptophans unique to CD1d among the five human CD1 isotypes. On the basis of modelled structures, our data also revealed external effects produced by the helper protein GM2AP only when it interacts in its open form, thus suggesting that the own assistant protein also adapts conformation to association with CD1d.
Collapse
|
26
|
Cuevas-Zuviría B, Mínguez-Toral M, Díaz-Perales A, Garrido-Arandia M, Pacios LF. Dynamic plasticity of the lipid antigen-binding site of CD1d is crucially favoured by acidic pH and helper proteins. Sci Rep 2020; 10:5714. [PMID: 32235847 PMCID: PMC7109084 DOI: 10.1038/s41598-020-62833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
CD1 molecules present lipid antigens for recognition by T-cell receptors (TCRs). Although a reasonably detailed picture of the CD1-lipid-TCR interaction exists, the initial steps regarding lipid loading onto and exchange between CD1 proteins remain elusive. The hydrophobic nature of lipids and the fact that CD1 molecules are unable to extract lipids from membranes raise the need for the assistance of helper proteins in lipid trafficking. However, the experimental study of this traffic in the endosomal compartments at which it occurs is so challenging that computational studies can help provide mechanistic insight into the associated processes. Here we present a multifaceted computational approach to obtain dynamic structural data on the human CD1d isotype. Conformational dynamics analysis shows an intrinsic flexibility associated with the protein architecture. Electrostatic properties together with molecular dynamics results for CD1d complexes with several lipids and helper proteins unravel the high dynamic plasticity of the antigen-binding site that is crucially favoured by acidic pH and the presence of helper proteins.
Collapse
Affiliation(s)
- Bruno Cuevas-Zuviría
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Marina Mínguez-Toral
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Araceli Díaz-Perales
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM), 28040, Madrid, Spain.
| |
Collapse
|
27
|
Fourcade L, Sabourin-Poirier C, Perraud V, Faucher MC, Chagnon-Choquet J, Labbé AC, Alary M, Guédou F, Poudrier J, Roger M. Natural Immunity to HIV is associated with Low BLyS/BAFF levels and low frequencies of innate marginal zone like CD1c+ B-cells in the genital tract. PLoS Pathog 2019; 15:e1007840. [PMID: 31173604 PMCID: PMC6583986 DOI: 10.1371/journal.ppat.1007840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/19/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022] Open
Abstract
BLyS/BAFF is recognized for its role in B-cell ontogenesis, as well as cell fate decision towards the first-line/innate marginal zone (MZ) B-cell pool. Excess BLyS/BAFF is associated with hyperglobulinemia and increased frequencies of activated precursor-like MZ B-cells. Herein, we show that HIV highly-exposed seronegative (HESN) commercial sex workers (CSWs) had lower soluble BLyS/BAFF levels and relative frequencies of BLyS/BAFF expressing cells in their genital mucosa when compared to those from HIV-infected CSWs and HIV-uninfected non-CSWs. Furthermore, we identified genital innate and/or marginal zone (MZ)-like CD1c+ B-cells that naturally bind to fully glycosylated gp120, which frequencies were lower in HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSWs. Although genital levels of total IgA were similar between groups, HESNs had lower levels of total IgG1 and IgG3. Interestingly, HIV-gp41 reactive IgG1 were found in some HESNs. Low genital levels of BLyS/BAFF observed in HESNs may allow for controlled first-line responses, contributing to natural immunity to HIV. Worldwide, most human immunodeficiency virus (HIV) infections affect women through heterosexual intercourse. We and others have identified African female commercial sex workers (CSWs), who remain seronegative despite high exposition to HIV (HESNs). Innate marginal zone (MZ) B-cells recirculate in humans and have been found in front-line areas such as the sub-epithelial lamina propria of mucosal associated lymphoid tissues. MZ B-cells can bind to fully glycosylated gp120 and produce specific IgG and IgA, and have a propensity for B regulatory potential, which could help both the fight against HIV and maintenance of low inflammatory conditions reported for HESNs. Here we identify genital MZ-like B-cells, which frequencies are lower in the genital tract of HESNs when compared to HIV-infected CSWs and HIV-uninfected non-CSW women. Furthermore, this coincides with significantly lower genital levels of B lymphocyte stimulator (BLyS/BAFF), known to shape the MZ pool and which overexpression leads to MZ deregulation in HIV-infected progressors. HESN individuals provide an exceptional opportunity to determine important clues for the development of protective devices. Here we show that contained BLyS/BAFF levels are concomitant with natural immunity against HIV, and may prevent dysregulated first-line responses. MZ-like B-cells could be harnessed in preventive strategies viewed at soliciting quick first-line to be adjunct to matured long term protection.
Collapse
Affiliation(s)
- Lyvia Fourcade
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Catherine Sabourin-Poirier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Victoire Perraud
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
| | - Marie-Claude Faucher
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Josiane Chagnon-Choquet
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
| | - Annie-Claude Labbé
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- Département de Microbiologie Médicale et Infectiologie, Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec–Université Laval, Québec, Canada
- Département de Médecine Sociale et Préventive, Université Laval, Québec, Canada
- Institut National de Santé Publique du Québec, Québec, Canada
| | | | - Johanne Poudrier
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| | - Michel Roger
- Laboratoire d’Immunogénétique, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Canada
- Département de Microbiologie, Infectiologie et Immunologie de l‘Université de Montréal, Montréal, Canada
- * E-mail: (JP); (MR)
| |
Collapse
|
28
|
Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, Roca-Ho H, Blanch-Lombarte O, González-García S, Torrebadell M, Junca J, Ramírez-Orellana M, Velasco-Hernández T, Bueno C, Fuster JL, Prado JG, Calvo J, Uzan B, Cools J, Camos M, Pflumio F, Toribio ML, Menéndez P. Fratricide-resistant CD1a-specific CAR T cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 2019; 133:2291-2304. [PMID: 30796021 PMCID: PMC6554538 DOI: 10.1182/blood-2018-10-882944] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/18/2019] [Indexed: 12/13/2022] Open
Abstract
Relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL) has a dismal outcome, and no effective targeted immunotherapies for T-ALL exist. The extension of chimeric antigen receptor (CAR) T cells (CARTs) to T-ALL remains challenging because the shared expression of target antigens between CARTs and T-ALL blasts leads to CART fratricide. CD1a is exclusively expressed in cortical T-ALL (coT-ALL), a major subset of T-ALL, and retained at relapse. This article reports that the expression of CD1a is mainly restricted to developing cortical thymocytes, and neither CD34+ progenitors nor T cells express CD1a during ontogeny, confining the risk of on-target/off-tumor toxicity. We thus developed and preclinically validated a CD1a-specific CAR with robust and specific cytotoxicity in vitro and antileukemic activity in vivo in xenograft models of coT-ALL, using both cell lines and coT-ALL patient-derived primary blasts. CD1a-CARTs are fratricide resistant, persist long term in vivo (retaining antileukemic activity in re-challenge experiments), and respond to viral antigens. Our data support the therapeutic and safe use of fratricide-resistant CD1a-CARTs for relapsed/refractory coT-ALL.
Collapse
Affiliation(s)
- Diego Sánchez-Martínez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Matteo L Baroni
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Francisco Gutierrez-Agüera
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Heleia Roca-Ho
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Oscar Blanch-Lombarte
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Montserrat Torrebadell
- Haematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Junca
- Institut Catala d'Oncologia-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Manuel Ramírez-Orellana
- Department of Pediatric Hematology and Oncology, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain
| | - Talía Velasco-Hernández
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
| | - José Luís Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Calvo
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | - Benjamin Uzan
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | - Jan Cools
- KU Center for Human Genetics and VIB Center for Cancer Biology, Leuven, Belgium
| | - Mireia Camos
- Haematology Laboratory, Institut de Recerca, Hospital Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Françoise Pflumio
- Univerité Paris Diderot and Université Paris-Sud, Unité Mixte de Recherche 967, INSERM, U967, Fontenay-aux-Roses, France
| | | | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomedica en Red-Oncología, Instituto de Salud Carlos III, Barcelona, Spain; and
- Instituciò Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
29
|
Taheri M, Danesh H, Bizhani F, Bahari G, Naderi M, Hashemi M. Association between genetic variants in CD1A and CD1D genes and pulmonary tuberculosis in an Iranian population. Biomed Rep 2019; 10:259-265. [PMID: 30972222 DOI: 10.3892/br.2019.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/12/2019] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)1 molecules are a highly conserved family of MCH-like transmembrane glycoproteins that bind lipid and glycolipid antigens and present a diverse range of microbial and self-glycolipids to antigen-specific T cells. The current study aimed to find out the impact of CD1A and CD1D polymorphisms on pulmonary tuberculosis (PTB). This case-control study encompassed 172 PTB patients and 180 healthy subjects. Genotyping of CD1A and CD1D variants was achieved using the polymerase chain reaction restriction fragment length polymorphism method. The results revealed that CD1A rs411089 variant significantly increased the risk of PTB in recessive model [odds ratio (OR)=2.71, 95% confidence interval (CI)=1.38-5.57, CC vs. TT+TC, P=0.005]. CD1D rs859009 polymorphism significantly reduced the risk of PTB in heterozygous codominant (OR=0.50, 95% CI=0.29-0.86, P=0.011, GC vs. GG) and dominant (OR=0.53, 95% CI=0.31-0.88, P=0.019, GC+CC vs. GG) inheritance model. The CD1A rs366316, CD1D rs973742 and CD1D rs859010 were not associated with the risk/protection from PTB (P>0.05). The results of the present study suggest that CD1A rs411089 and CD1D rs859009 but not CD1A rs366316, CD1D rs973742 and CD1D rs859010 polymorphisms are associated with PTB in a sample of the Iranian population. Further investigation with different ethnicities and larger sample sizes are necessary to certify the findings of the present study.
Collapse
Affiliation(s)
- Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Hiva Danesh
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Fatemeh Bizhani
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Gholamreza Bahari
- Children and Adolescent Health Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Naderi
- Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| | - Mohammad Hashemi
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-4318, Iran
| |
Collapse
|
30
|
Grayfer L, Kerimoglu B, Yaparla A, Hodgkinson JW, Xie J, Belosevic M. Mechanisms of Fish Macrophage Antimicrobial Immunity. Front Immunol 2018; 9:1105. [PMID: 29892285 PMCID: PMC5985312 DOI: 10.3389/fimmu.2018.01105] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Overcrowding conditions and temperatures shifts regularly manifest in large-scale infections of farmed fish, resulting in economic losses for the global aquaculture industries. Increased understanding of the functional mechanisms of fish antimicrobial host defenses is an important step forward in prevention of pathogen-induced morbidity and mortality in aquaculture setting. Like other vertebrates, macrophage-lineage cells are integral to fish immune responses and for this reason, much of the recent fish immunology research has focused on fish macrophage biology. These studies have revealed notable similarities as well as striking differences in the molecular strategies by which fish and higher vertebrates control their respective macrophage polarization and functionality. In this review, we address the current understanding of the biological mechanisms of teleost macrophage functional heterogeneity and immunity, focusing on the key cytokine regulators that control fish macrophage development and their antimicrobial armamentarium.
Collapse
Affiliation(s)
- Leon Grayfer
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Baris Kerimoglu
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Amulya Yaparla
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | | | - Jiasong Xie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Miodrag Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|