1
|
Taitz JJ, Tan J, Ni D, Potier-Villette C, Grau G, Nanan R, Macia L. Antibiotic-mediated dysbiosis leads to activation of inflammatory pathways. Front Immunol 2025; 15:1493991. [PMID: 39850904 PMCID: PMC11754057 DOI: 10.3389/fimmu.2024.1493991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Introduction The gut microbiota plays a pivotal role in influencing host health, through the production of metabolites and other key signalling molecules. While the impact of specific metabolites or taxa on host cells is well-documented, the broader impact of a disrupted microbiota on immune homeostasis is less understood, which is particularly important in the context of the increasing overuse of antibiotics. Methods Female C57BL/6 mice were gavaged twice daily for four weeks with Vancomycin, Polymyxin B, or PBS (control). Caecal microbiota composition was assessed via 16S rRNA sequencing and caecal metabolites were quantified with NMR spectroscopy. Immune profiles of spleen and mesenteric lymph nodes (MLNs) were assessed by flow cytometry, and splenocytes assessed for ex vivo cytokine production. A generalised additive model approach was used to examine the relationship between global antibiotic consumption and IBD incidence. Results Antibiotics significantly altered gut microbiota composition, reducing alpha-diversity. Acetate and butyrate were significantly reduced in antibiotic groups, while propionate and succinate increased in Vancomycin and PmB-treated mice, respectively. The MLNs and spleen showed changes only to DC numbers. Splenocytes from antibiotic-treated mice stimulated ex vivo exhibited increased production of TNF. Epidemiological analysis revealed a positive correlation between global antibiotic consumption and IBD incidence. Discussion Our findings demonstrate that antibiotic-mediated dysbiosis results in significantly altered short-chain fatty acid levels but immune homeostasis in spleen and MLNs at steady state is mostly preserved. Non-specific activation of splenocytes ex vivo, however, revealed mice with perturbed microbiota had significantly elevated production of TNF. Thus, this highlights antibiotic-mediated disruption of the gut microbiota may program the host towards dysregulated immune responses, predisposing to the development of TNF-associated autoimmune or chronic inflammatory disease.
Collapse
Affiliation(s)
- Jemma J. Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Duan Ni
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Camille Potier-Villette
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Vascular Immunology Unit, Discipline of Pathology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Medical School Nepean, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Zobrist Y, Doulberis M, Biedermann L, Leventhal GE, Rogler G. Anthocyanin-Rich Extract Mitigates the Contribution of the Pathobiont Genus Haemophilus in Mild-to-Moderate Ulcerative Colitis Patients. Microorganisms 2024; 12:2376. [PMID: 39597764 PMCID: PMC11596099 DOI: 10.3390/microorganisms12112376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
Anthocyanins (ACs) have been shown to elicit anti-inflammatory and antioxidant effects in animal models of ulcerative colitis (UC). Furthermore, we previously observed in a double-blind randomized trial in UC patients that biochemical disease activity tended to be lower in patients that were exposed to AC. Here, we report on the changes in the fecal microbiome composition in these patients upon AC exposure. UC patients received a 3 g daily dose of an AC-rich bilberry extract (ACRE) for eight weeks. We determined the microbiome composition in longitudinal stool samples from 24 patients and quantified the degree of change over time. We also correlated the relative abundances of individual microbial taxa at different timepoints to fecal concentrations of calprotectin, a proxy for inflammation. Microbiome composition did not change over time as a result of the intervention, in terms of both alpha and beta diversity. However, before the intervention, the abundance of Haemophilus parainfluenzae was positively correlated with fecal calprotectin concentrations, and this correlation persisted in placebo-treated subjects throughout the study. In contrast, the correlation between H. parainfluenzae and calprotectin vanished in ACRE-treated subjects, while the relative abundance of H. parainfluenzae did not change. Our results suggest that ACRE treatment mitigates the contribution of H. parainfluenzae to inflammation. Further research is warranted to better comprehend the role of microbial composition in response to medical therapy including AC-rich extract in UC patients.
Collapse
Affiliation(s)
| | - Michael Doulberis
- Department of Gastroenterology and Hepatology, Department of Medicine, Zurich University Hospital, 8091 Zurich, Switzerland; (M.D.); (L.B.)
- Gastroklinik, Private Gastroenterological Practice, 8810 Horgen, Switzerland
- Division of Gastroenterology and Hepatology, Medical University Department, Kantonsspital Aarau, 5001 Aarau, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, Department of Medicine, Zurich University Hospital, 8091 Zurich, Switzerland; (M.D.); (L.B.)
| | | | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, Department of Medicine, Zurich University Hospital, 8091 Zurich, Switzerland; (M.D.); (L.B.)
| |
Collapse
|
3
|
Artacho A, González-Torres C, Gómez-Cebrián N, Moles-Poveda P, Pons J, Jiménez N, Casanova MJ, Montoro J, Balaguer A, Villalba M, Chorão P, Puchades-Carrasco L, Sanz J, Ubeda C. Multimodal analysis identifies microbiome changes linked to stem cell transplantation-associated diseases. MICROBIOME 2024; 12:229. [PMID: 39511587 PMCID: PMC11542268 DOI: 10.1186/s40168-024-01948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most efficient therapeutic options available to cure many hematological malignancies. However, severe complications derived from this procedure, including graft-versus-host disease (GVHD) and infections, can limit its success and negatively impact survival. Previous studies have shown that alterations in the microbiome are associated with the development of allo-HSCT-derived complications. However, most studies relied on single techniques that can only analyze a unique aspect of the microbiome, which hinders our ability to understand how microbiome alterations drive allo-HSCT-associated diseases. RESULTS Here, we have applied multiple "omic" techniques (16S rRNA and shotgun sequencing, targeted and un-targeted metabolomics) in combination with machine learning approaches to define the most significant microbiome changes following allo-HSCT at multiple modalities (bacterial taxa, encoded functions, and derived metabolites). In addition, multivariate approaches were applied to study interactions among the various microbiome modalities (the interactome). Our results show that the microbiome of transplanted patients exhibits substantial changes in all studied modalities. These include depletion of beneficial microbes, mainly from the Clostridiales order, loss of their bacterial encoded functions required for the synthesis of key metabolites, and a reduction in metabolic end products such as short chain fatty acids (SCFAs). These changes were followed by an expansion of bacteria that frequently cause infections after allo-HSCT, including several Staphylococcus species, which benefit from the reduction of bacteriostatic SCFAs. Additionally, we found specific alterations in all microbiome modalities that distinguished those patients who subsequently developed GVHD, including depletion of anti-inflammatory commensals, protective reactive oxygen detoxifying enzymes, and immunoregulatory metabolites such as acetate or malonate. Moreover, extensive shifts in the homeostatic relationship between bacteria and their metabolic products (e.g., Faecalibacterium and butyrate) were detected mainly in patients who later developed GVHD. CONCLUSIONS We have identified specific microbiome changes at different modalities (microbial taxa, their encoded genes, and synthetized metabolites) and at the interface between them (the interactome) that precede the development of complications associated with allo-HSCT. These identified microbial features provide novel targets for the design of microbiome-based strategies to prevent diseases associated with stem cell transplantation. Video Abstract.
Collapse
Affiliation(s)
- Alejandro Artacho
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Cintya González-Torres
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Paula Moles-Poveda
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Javier Pons
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | - Nuria Jiménez
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain
| | | | - Juan Montoro
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Aitana Balaguer
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Marta Villalba
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Pedro Chorão
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | | | - Jaime Sanz
- Hematology Department, Hospital Universitari I Politècnic La Fe, Valencia, Spain.
- Departament de Medicina, Universitat de Valencia, Valencia, Spain.
- CIBERONC, Instituto Carlos III, Madrid, Spain.
| | - Carles Ubeda
- Fundación Para El Fomento de La Investigación Sanitaria y Biomédica de La Comunitat Valenciana-FISABIO, Valencia, Spain.
- Centers of Biomedical Research Network (CIBER) in Epidemiology and Public Health, Madrid, Spain.
| |
Collapse
|
4
|
Hernández Martínez CDJ, Felix Silva P, Salvador SL, Messora M, Palioto DB. Chronological analysis of periodontal bone loss in experimental periodontitis in mice. Clin Exp Dent Res 2023; 9:1009-1020. [PMID: 37997536 PMCID: PMC10728515 DOI: 10.1002/cre2.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES Periodontal disease is understood to be a result of dysbiotic interactions between the host and the biofilm, causing a unique reaction for each individual, which in turn characterizes their susceptibility. The objective of this study was to chronologically evaluate periodontal tissue destruction induced by systemic bacterial challenge in known susceptible (BALB/c) and resistant (C57BL/6) mouse lineages. MATERIAL AND METHODS Animals, 6-8 weeks old, were allocated into three experimental groups: Negative control (C), Gavage with sterile carboxymethyl cellulose 2%-without bacteria (Sham), and Gavage with carboxymethyl cellulose 2% + Porphyromonas gingivalis (Pg-W83). Before infection, all animals received antibiotic treatment (sulfamethoxazole/trimethoprim, 400/80 mg/5 mL) for 7 days, followed by 3 days of rest. Microbial challenge was performed 3 times per week for 1, 2, or 3 weeks. After that, the animals were kept until the completion of 42 days of experiments, when they were euthanized. The alveolar bone microarchitecture was assessed by computed microtomography. RESULTS Both C57BL/6 and BALB/c mice exhibited significant bone volume loss and lower trabecular thickness as well as greater bone porosity compared to the (C) and (Sham) groups after 1 week of microbial challenge (p < .001). When comparing only the gavage groups regarding disease implantation, time and lineage, it was possible to observe that within 1 week of induction the disease was more established in BALB/c than in C57BL/6 (p < .05). CONCLUSIONS Our results reflected that after 1 week of microbial challenge, there was evidence of alveolar bone loss for both lineages, with the loss observed in BALB/c mice being more pronounced.
Collapse
Affiliation(s)
- Cristhiam de J. Hernández Martínez
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Pedro Felix Silva
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Sergio L. Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao PretoUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Michel Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Daniela B. Palioto
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| |
Collapse
|
5
|
Bamias G, Kitsou K, Rivera-Nieves J. The Underappreciated Role of Secretory IgA in IBD. Inflamm Bowel Dis 2023; 29:1327-1341. [PMID: 36943800 PMCID: PMC10393212 DOI: 10.1093/ibd/izad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 03/23/2023]
Abstract
Eighty percent of antibody secreting cells (ASCs) are found in the intestine, where they produce grams of immunoglobulin (Ig) A daily. immunoglobulin A is actively transcytosed into the lumen, where it plays a critical role in modulating the gut microbiota. Although loss of immune tolerance to bacterial antigens is the likely trigger of the dysregulated immune response that characterizes inflammatory bowel disease (IBD), little effort has been placed on understanding the interface between B cells, IgA, and the microbiota during initiation or progression of disease. This may be in part due to the misleading fact that IgA-deficient humans are mostly asymptomatic, likely due to redundant role of secretory (S) IgM. Intestinal B cell recruitment is critically dependent on integrin α4β7-MAdCAM-1 interactions, yet antibodies that target α4β7 (ie, vedolizumab), MAdCAM-1 (ie, ontamalimab), or both β7 integrins (α4β7 and αE [CD103] β7; etrolizumab) are in clinical use or development as IBD therapeutics. The effect of such interventions on the biology of IgA is largely unknown, yet a single dose of vedolizumab lowers SIgA levels in stool and weakens the oral immunization response to cholera vaccine in healthy volunteers. Thus, it is critical to further understand the role of these integrins for the migration of ASC and other cellular subsets during homeostasis and IBD-associated inflammation and the mode of action of drugs that interfere with this traffic. We have recently identified a subset of mature ASC that employs integrin αEβ7 to dock with intestinal epithelial cells, predominantly in the pericryptal region of the terminal ileum. This role for the integrin had not been appreciated previously, nor the αEβ7-dependent mechanism of IgA transcytosis that it supports. Furthermore, we find that B cells more than T cells are critically dependent on α4β7-MAdCAM-1 interactions; thus MAdCAM-1 blockade and integrin-β7 deficiency counterintuitively hasten colitis in interleukin-10-deficient mice. In both cases, de novo recruitment of IgA ASC to the intestinal lamina propria is compromised, leading to bacterial overgrowth, dysbiosis, and lethal colitis. Thus, despite the safe and effective use of anti-integrin antibodies in patients with IBD, much remains to be learned about their various cell targets.
Collapse
Affiliation(s)
- Giorgos Bamias
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Konstantina Kitsou
- GI Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Jesús Rivera-Nieves
- Gastroenterology Section, San Diego VA Medical Center, La Jolla Village Drive, San Diego, CA, USA
- Division of Gastroenterology, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
DuPont HL, Jiang ZD, Alexander AS, DuPont AW, Brown EL. Intestinal IgA-Coated Bacteria in Healthy- and Altered-Microbiomes (Dysbiosis) and Predictive Value in Successful Fecal Microbiota Transplantation. Microorganisms 2022; 11:microorganisms11010093. [PMID: 36677385 PMCID: PMC9862469 DOI: 10.3390/microorganisms11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
IgA-coated bacteria in the gut (IgA-biome) provide a homeostatic function in healthy people through inhibition of microbial invaders and by protecting the epithelial monolayer of the gut. The laboratory methods used to detect this group of bacteria require flow cytometry and DNA sequencing (IgA-Seq). With dysbiosis (reduced diversity of the microbiome), the IgA-biome also is impaired. In the presence of enteric infection, oral vaccines, or an intestinal inflammatory disorder, the IgA-biome focuses on the pathogenic bacteria or foreign antigens, while in other chronic diseases associated with dysbiosis, the IgA-biome is reduced in capacity. Fecal microbiota transplantation (FMT), the use of fecal product from well-screened, healthy donors administered to patients with dysbiosis, has been successful in engrafting the intestine with healthy microbiota and metabolites leading to improve health. Through FMT, IgA-coated bacteria have been transferred to recipients retaining their immune coating. The IgA-biome should be evaluated in FMT studies as these mucosal-associated bacteria are more likely to be associated with successful transplantation than free luminal organisms. Studies of the microbiome pre- and post-FMT should employ metagenomic methods that identify bacteria at least at the species level to better identify organisms of interest while allowing comparisons of microbiota data between studies.
Collapse
Affiliation(s)
- Herbert L. DuPont
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
- Kelsey Research Foundation, Houston, TX 77005, USA
- Correspondence: ; Tel.: +1-713-500-9366
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| | | | - Andrew W. DuPont
- Department of Internal Medicine, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Eric L. Brown
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX 77030, USA
| |
Collapse
|
7
|
Lactobacillus fermentum Stimulates Intestinal Secretion of Immunoglobulin A in an Individual-Specific Manner. Foods 2022; 11:foods11091229. [PMID: 35563952 PMCID: PMC9099657 DOI: 10.3390/foods11091229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Immunoglobulin A (IgA), as the most secreted immunoglobulin in the intestine, plays an irreplaceable role in mucosal immunity regulation. Previous studies have indicated that Lactobacillus showed strain specificity in stimulating the secretion of IgA through intestinal mucosal lymphocytes. The reason for this phenomenon is not clear. The current studies have been aimed at exploring the effect of a strain on the secretion of IgA in the host’s intestine, but the mechanism behind it has not been seriously studied. Based on this, we selected five strains of Lactobacillus fermentum isolated from different individuals to determine whether there are intraspecific differences in stimulating the secretion of IgA from the intestinal mucosa. It was found that IgA concentrations in different intestinal segments and faeces induced by L. fermentum were different. 12-1 and X6L1 strains increased the secretion of IgA by the intestine significantly. In addition, different strains of L. fermentum were also proven to have different effects on the host gut microbiota but no significant effects on IgA-coated microbiota. Besides, it was speculated that different strains of L. fermentum may act on different pathways to stimulate IgA in a non-inflammatory manner. By explaining the differences of IgA secretion in the host’s intestine tract stimulated by different strains of L. fermentum, it is expected to provide a theoretical basis for the stimulation of intestinal secretion of IgA by Lactobacillus and a new direction for exploring the relationship between Lactobacillus and human immunity.
Collapse
|
8
|
Abokor AA, McDaniel GH, Golonka RM, Campbell C, Brahmandam S, Yeoh BS, Joe B, Vijay-Kumar M, Saha P. Immunoglobulin A, an Active Liaison for Host-Microbiota Homeostasis. Microorganisms 2021; 9:2117. [PMID: 34683438 PMCID: PMC8539215 DOI: 10.3390/microorganisms9102117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal surfaces in the gastrointestinal tract are continually exposed to native, commensal antigens and susceptible to foreign, infectious antigens. Immunoglobulin A (IgA) provides dual humoral responses that create a symbiotic environment for the resident gut microbiota and prevent the invasion of enteric pathogens. This review features recent immunological and microbial studies that elucidate the underlying IgA and microbiota-dependent mechanisms for mutualism at physiological conditions. IgA derailment and concurrent microbiota instability in pathological diseases are also discussed in detail. Highlights of this review underscore that the source of IgA and its structural form can dictate microbiota reactivity to sustain a diverse niche where both host and bacteria benefit. Other important studies emphasize IgA insufficiency can result in the bloom of opportunistic pathogens that encroach the intestinal epithelia and disseminate into circulation. The continual growth of knowledge in these subjects can lead to the development of therapeutics targeting IgA and/or the microbiota to treat life threatening diseases.
Collapse
Affiliation(s)
- Ahmed A. Abokor
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Grant H. McDaniel
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Connor Campbell
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Sreya Brahmandam
- College of Medicine, University of Toledo, Toledo, OH 43614, USA; (G.H.M.); (C.C.); (S.B.)
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Bina Joe
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.A.); (R.M.G.); (B.S.Y.); (B.J.); (M.V.-K.)
| |
Collapse
|
9
|
Padem N, Erickson K, Yong M, Makhija M, Hulse KE, Singh AM. Dysregulated specific IgE production to bystander foods in children with peanut allergy but not egg allergy. JOURNAL OF FOOD ALLERGY 2021; 3:24-31. [PMID: 39022630 PMCID: PMC11250455 DOI: 10.2500/jfa.2021.3.210005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background Food specific immunoglobulin E (sIgE) levels are associated with the development of allergic responses and are used in the clinical evaluation of food allergy. Food sIgG4 levels have been associated with tolerance or clinical nonresponsiveness, particularly in interventional studies. Objective We aimed to characterize food-specific antibody responses and compare responses with different foods in food allergy. Methods Serum sIgA, sIgG4, and sIgE to whole peanut, egg white, and wheat, along with total IgE were measured in 57 children. Children with food allergy, children with natural tolerance, and controls were studied. The Mann-Whitney test or Kruskall Wallis test with the Dunn correction were used for statistical analysis. Results As expected, total IgE levels were highest in the subjects with food allergy compared with the subjects who were nonallergic (p < 0.001) or the subjects who were naturally tolerant (p < 0.001). Peanut sIgE levels were higher in subjects with peanut allergy compared with the subjects who were naturally tolerant (p < 0.0001) and the control subjects (p < 0.03). Interestingly, peanut sIgG4 levels were also highest in children with peanut allergy compared with subjects who were naturally tolerant and control subjects (p = 0.28 and p < 0.001, respectively). Subjects with peanut allergy alone had comparable egg white sIgE levels to children with egg white allergy. In addition, the subjects with peanut allergy alone also had higher levels of egg white and wheat sIgE compared with the control subjects (p < 0.02 and p = 0.001, respectively). In contrast, the subjects with egg white allergy did not demonstrate elevated peanut or wheat sIgE levels. Conclusion These novel findings suggested that IgE production is dysregulated in patients with peanut allergy, who are much less likely to outgrow their allergy, and suggest that the mechanisms that drive more persistent forms of food allergy may be distinct from more transient forms of food allergy.
Collapse
Affiliation(s)
- Nurcicek Padem
- From the Division of Allergy and Immunology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kristin Erickson
- From the Division of Allergy and Immunology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, and
| | - Meagan Yong
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, and
| | - Melanie Makhija
- From the Division of Allergy and Immunology, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathryn E. Hulse
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, and
| | - Anne Marie Singh
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
10
|
Ding M, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Crosstalk between sIgA-Coated Bacteria in Infant Gut and Early-Life Health. Trends Microbiol 2021; 29:725-735. [PMID: 33602613 DOI: 10.1016/j.tim.2021.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Gut microbiota transmission from mother to offspring has attracted much interest in recent years. The gut microbiota in the infant plays a potentially significant role in modulating and maintaining the development of infant immunity. Secretory immunoglobulin A (sIgA), the major immunoglobulin in the intestine, can target polysaccharides and flagellin on the bacterial surface, resulting in sIgA-coated bacteria. The presentation of specific bacteria coated with sIgA may be a signal of disease and provide novel insights into the relationship between infant microbiota and disease. Here, we review the composition of sIgA-coated bacteria in the adult intestine, human milk, and the infant intestine, as well as the factors that influence the development of gut microbiota in early life. Then, we highlight the diseases that are related to variations in sIgA-coated bacteria in the infant and adult intestine. Furthermore, we discuss the possibility that sIgA-coated bacteria could play a role in mediating both innate and adaptive immune responses. Finally, we propose directions for future research to promote our understanding within this field.
Collapse
Affiliation(s)
- Mengfan Ding
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
11
|
Hansen AL, Reily C, Novak J, Renfrow MB. Immunoglobulin A Glycosylation and Its Role in Disease. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:433-477. [PMID: 34687019 DOI: 10.1007/978-3-030-76912-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Human IgA is comprised of two subclasses, IgA1 and IgA2. Monomeric IgA (mIgA), polymeric IgA (pIgA), and secretory IgA (SIgA) are the main molecular forms of IgA. The production of IgA rivals all other immunoglobulin isotypes. The large quantities of IgA reflect the fundamental roles it plays in immune defense, protecting vulnerable mucosal surfaces against invading pathogens. SIgA dominates mucosal surfaces, whereas IgA in circulation is predominately monomeric. All forms of IgA are glycosylated, and the glycans significantly influence its various roles, including antigen binding and the antibody effector functions, mediated by the Fab and Fc portions, respectively. In contrast to its protective role, the aberrant glycosylation of IgA1 has been implicated in the pathogenesis of autoimmune diseases, such as IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). Furthermore, detailed characterization of IgA glycosylation, including its diverse range of heterogeneity, is of emerging interest. We provide an overview of the glycosylation observed for each subclass and molecular form of IgA as well as the range of heterogeneity for each site of glycosylation. In many ways, the role of IgA glycosylation is in its early stages of being elucidated. This chapter provides an overview of the current knowledge and research directions.
Collapse
Affiliation(s)
- Alyssa L Hansen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Colin Reily
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Gheorghe CE, Ritz NL, Martin JA, Wardill HR, Cryan JF, Clarke G. Investigating causality with fecal microbiota transplantation in rodents: applications, recommendations and pitfalls. Gut Microbes 2021; 13:1941711. [PMID: 34328058 PMCID: PMC8331043 DOI: 10.1080/19490976.2021.1941711] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/04/2023] Open
Abstract
In recent years, studies investigating the role of the gut microbiota in health and diseases have increased enormously - making it essential to deepen and question the research methodology employed. Fecal microbiota transplantation (FMT) in rodent studies (either from human or animal donors) allows us to better understand the causal role of the intestinal microbiota across multiple fields. However, this technique lacks standardization and requires careful experimental design in order to obtain optimal results. By comparing several studies in which rodents are the final recipients of FMT, we summarize the common practices employed. In this review, we document the limitations of this method and highlight different parameters to be considered while designing FMT Studies. Standardizing this method is challenging, as it differs according to the research topic, but avoiding common pitfalls is feasible. Several methodological questions remain unanswered to this day and we offer a discussion on issues to be explored in future studies.
Collapse
Affiliation(s)
- Cassandra E. Gheorghe
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jason A. Martin
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hannah R. Wardill
- Precision Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Adelaide Medical School, the University of Adelaide, Adelaide, Australia
| | - John F. Cryan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
13
|
Valeri V, Tonon S, Vibhushan S, Gulino A, Belmonte B, Adori M, Karlsson Hedestam GB, Gautier G, Tripodo C, Blank U, Mion F, Pucillo CEM. Mast cells crosstalk with B cells in the gut and sustain IgA response in the inflamed intestine. Eur J Immunol 2020; 51:445-458. [PMID: 32920851 DOI: 10.1002/eji.202048668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Viviana Valeri
- Department of Medicine, University of Udine, Udine, Italy
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Alessandro Gulino
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gregory Gautier
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Claudio Tripodo
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
14
|
Poppe J, van Baarle L, Matteoli G, Verbeke K. How Microbial Food Fermentation Supports a Tolerant Gut. Mol Nutr Food Res 2020; 65:e2000036. [PMID: 32996681 DOI: 10.1002/mnfr.202000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/21/2020] [Indexed: 12/13/2022]
Abstract
The gastrointestinal tract harbors a complex resident microbial ecosystem, comprising over 500 species, spanning commensals, mutualist, opportunistic, and professional pathogens thriving on undigested food components originating from the diet and endogenous secretions. Despite this high concentration of food and bacterial antigens, a healthy gut has a near absent level of inflammation, a status called intestinal immune homeostasis. This immune homeostasis is built and maintained in the presence, and interestingly, with cooperation of the microbiota. The microbiota ferments undigested food components into a wide variety of metabolites, some of which interact with the intestinal immune system. In particular short-chain fatty acids, aryl hydrocarbon receptor ligands, and bile acid metabolites have been involved in the induction of intestinal immune homeostasis. The production of these metabolites is influenced by the microbial load and community structure, as well as the availability of substrates and the gut environment which are directly or indirectly modulated by food intake. In this manuscript, the factors that influence the production of these metabolites and their interaction with the immune cells that play key roles in maintaining intestinal immune homeostasis in the healthy gut are reviewed.
Collapse
Affiliation(s)
- Jonas Poppe
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Targid - Herestraat 49, O&N1, Leuven, Box 701 - 3000, Belgium
| | - Lies van Baarle
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Targid - Herestraat 49, O&N1, Leuven, Box 701 - 3000, Belgium
| | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Targid - Herestraat 49, O&N1, Leuven, Box 701 - 3000, Belgium
| | - Kristin Verbeke
- Department of Chronic Diseases and Metabolism, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Targid - Herestraat 49, O&N1, Leuven, Box 701 - 3000, Belgium
| |
Collapse
|
15
|
Bekeredjian-Ding I. Challenges for Clinical Development of Vaccines for Prevention of Hospital-Acquired Bacterial Infections. Front Immunol 2020; 11:1755. [PMID: 32849627 PMCID: PMC7419648 DOI: 10.3389/fimmu.2020.01755] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in bacteria causing endogenous infections has entailed a need for innovative approaches to therapy and prophylaxis of these infections and raised a new interest in vaccines for prevention of colonization and infection by typically antibiotic resistant pathogens. Nevertheless, there has been a long history of failures in late stage clinical development of this type of vaccines, which remains not fully understood. This article provides an overview on present and past vaccine developments targeting nosocomial bacterial pathogens; it further highlights the specific challenges associated with demonstrating clinical efficacy of these vaccines and the facts to be considered in future study designs. Notably, these vaccines are mainly applied to subjects with preexistent immunity to the target pathogen, transient or chronic immunosuppression and ill-defined microbiome status. Unpredictable attack rates and changing epidemiology as well as highly variable genetic and immunological strain characteristics complicate the development. In views of the clinical need, re-thinking of the study designs and expectations seems warranted: first of all, vaccine development needs to be footed on a clear rationale for choosing the immunological mechanism of action and the optimal time point for vaccination, e.g., (1) prevention (or reduction) of colonization vs. prevention of infection and (2) boosting of a preexistent immune response vs. altering the quality of the immune response. Furthermore, there are different, probably redundant, immunological and microbiological defense mechanisms that provide protection from infection. Their interplay is not well-understood but as a consequence their effect might superimpose vaccine-mediated resolution of infection and lead to failure to demonstrate efficacy. This implies that improved characterization of patient subpopulations within the trial population should be obtained by pro- and retrospective analyses of trial data on subject level. Statistical and systems biology approaches could help to define immune and microbiological biomarkers that discern populations that benefit from vaccination from those where vaccines might not be effective.
Collapse
Affiliation(s)
- Isabelle Bekeredjian-Ding
- Division of Microbiology, Langen, Germany.,Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
16
|
de Aguiar CF, Castoldi A, Amano MT, Ignacio A, Terra FF, Cruz M, Felizardo RJF, Braga TT, Davanzo GG, Gambarini V, Antonio T, Antiorio ATFB, Hiyane MI, Morais da Fonseca D, Andrade-Oliveira V, Câmara NOS. Fecal IgA Levels and Gut Microbiota Composition Are Regulated by Invariant Natural Killer T Cells. Inflamm Bowel Dis 2020; 26:697-708. [PMID: 31819985 DOI: 10.1093/ibd/izz300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The gut microbiota is a key element to support host homeostasis and the development of the immune system. The relationship between the microbiota and immunity is a 2-way road, in which the microbiota contributes to the development/function of immune cells and immunity can affect the composition of microbes. In this context, natural killer T cells (NKT cells) are distinct T lymphocytes that play a role in gut immunity and are influenced by gut microbes. In our work, we investigated the involvement of invariant NKT cells (iNKT) in intestinal homeostasis. RESULTS We found that iNKT-deficient mice (iNKT-KO) had reduced levels of fecal IgA and an altered composition of the gut microbiota, with increased Bacteroidetes. The absence of iNKT cells also affected TGF-β1 levels and plasma cells, which were significantly reduced in knockout (KO) mice. In addition, when submitted to dextran sodium sulfate colitis, iNKT-KO mice had worsening of colitis when compared with wild-type (WT) mice. To further address iNKT cell contribution to intestinal homeostasis, we adoptively transferred iNKT cells to KO mice, and they were submitted to colitis. Transfer of iNKT cells improved colitis and restored fecal IgA levels and gut microbiota. CONCLUSIONS Our results indicate that intestinal NKT cells are important modulators of intestinal homeostasis and that gut microbiota composition may be a potential target in the management of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Cristhiane Favero de Aguiar
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Angela Castoldi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Mariane T Amano
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Instituto Sírio-Libanês de Ensino e Pesquisa, Hospital Sírio-Libanês, São Paulo-SP, Brazil
| | - Aline Ignacio
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Fernanda Fernandes Terra
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Mario Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Raphael J F Felizardo
- Division of Nephrology, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo-SP, Brazil
| | - Tárcio Teodoro Braga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Victor Gambarini
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Tiago Antonio
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Ana Tada Fonseca Brasil Antiorio
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), Campinas-SP, Brazil
| | - Meire Ioshie Hiyane
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Vinicius Andrade-Oliveira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), Santo André-SP, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil.,Division of Nephrology, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo-SP, Brazil
| |
Collapse
|
17
|
Depletion of dietary aryl hydrocarbon receptor ligands alters microbiota composition and function. Sci Rep 2019; 9:14724. [PMID: 31604984 PMCID: PMC6789125 DOI: 10.1038/s41598-019-51194-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/24/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal microbiota is critical for maintaining homeostasis. Dysbiosis, an imbalance in the microbial community, contributes to the susceptibility of several diseases. Many factors are known to influence gut microbial composition, including diet. We have previously shown that fecal immunoglobulin (Ig) A levels are decreased in mice fed a diet free of aryl hydrocarbon receptor (AhR) ligands. Here, we hypothesize this IgA decrease is secondary to diet-induced dysbiosis. We assigned mice to a conventional diet, an AhR ligand-free diet, or an AhR ligand-free diet supplemented with the dietary AhR ligand indole-3-carbinol (I3C). We observed a global alteration of fecal microbiota upon dietary AhR ligand deprivation. Compared to mice on the conventional diet, family Erysipelotrichaceae was enriched in the feces of mice on the AhR ligand-free diet but returned to normal levels upon dietary supplementation with I3C. Faecalibaculum rodentium, an Erysipelotrichaceae species, depleted its growth media of AhR ligands. Cultured fecal bacteria from mice on the AhR ligand-free diet, but not the other two diets, were able to alter IgA levels in vitro, as was F. rodentium alone. Our data point to the critical role of AhR dietary ligands in shaping the composition and proper functioning of gut microbiota.
Collapse
|