1
|
Zhang MJ, Wen Y, Sun ZJ. The impact of metabolic reprogramming on tertiary lymphoid structure formation: enhancing cancer immunotherapy. BMC Med 2025; 23:217. [PMID: 40223062 PMCID: PMC11995586 DOI: 10.1186/s12916-025-04037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has achieved unprecedented success in the field of cancer therapy. However, its potential is constrained by a low therapeutic response rate. MAIN BODY Tertiary lymphoid structure (TLS) plays a crucial role in antitumor immunity and is associated with a good prognosis. Metabolic reprogramming, as a hallmark of the tumor microenvironment, can influence tumor immunity and promote the formation of follicular helper T cells and germinal centers. However, many current studies focus on the correlation between metabolism and TLS formation factors, and there is insufficient direct evidence to suggest that metabolism drives TLS formation. This review provided a comprehensive summary of the relationship between metabolism and TLS formation, highlighting glucose metabolism, lipid metabolism, amino acid metabolism, and vitamin metabolism. CONCLUSIONS In the future, an in-depth exploration of how metabolism affects cell interactions and the role of microorganisms in TLS will significantly advance our understanding of metabolism-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yan Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
2
|
Fan W, Zhai F, Yuan Z, Hu G, Wang L. The Mechanism of Xuanyu Tongjing Decoction Regulating NOD/NFκB Pathway to Inhibit Ectopic Tissue Inflammation to Reduce Ovarian Damage in Rats with Ovarian Endometriosis. Drug Des Devel Ther 2025; 19:2717-2735. [PMID: 40231194 PMCID: PMC11994466 DOI: 10.2147/dddt.s500129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction In traditional Chinese medicine texts, Xuanyu Tongjing Decoction (XYTJD) is a prescribed remedy for premenstrual belly pain and dysmenorrhea. It is currently routinely used to treat ovarian endometriosis (OEM) with good outcomes. Aim In order to investigate the underlying processes of Xuanyu Tongjing Decoction in treating OEM inflammation and reducing ovarian damage. Methods We created a rat model of OEM and carried out transcriptome sequencing. Batch molecular docking technique in conjunction with Ultra-high-performance liquid chromatography-quadrupole-time-of-flight-high-resolution mass spectrometry was used to screen the main active components in Xuanyu Tongjing Decoction. Results The ectopic cyst was firmly attached to the ovary in our successfully created rat model of ovarian endometriosis. According to GSEA enrichment study, XYTJD may up-regulate pathways linked to oocyte formation in ovarian tissues and down-regulate immunological and inflammatory pathways in ectopic tissues. Rat ectopic tissues and human ectopic tissues showed a similar pattern in the expression of the NOD/NFκB pathway during the proliferative phase. In ectopic tissues of rats, XYTJD may down-regulate the NOD/NFκB pathway and suppress the expression of TNF-α and IL-1β, which are downstream inflammatory factors in this pathway. In addition, XYTJD may restore the down-regulation of cAMP/PI3K/AKT and lower the expression of apoptotic factor CASP9, endoplasmic reticulum stress protein SEC61B and antioxidant protein GSTM5 in the ovary with ectopic tissue attachment. Following identification, the three samples' intersection included 10 active compounds in total. There was a 21-component overlap in active ingredients between rat and human serum. After a preliminary virtual screening, β-Hederin, Proanthocyanidin A2, and Cimiside E were suggested to be the essential components that interfere with NOD/NFκB. Conclusion In rats with proliferative OEM, XYTJD may down-regulate the NOD/NFκB pathway in ectopic tissues, consequently alleviating ovarian tissue damage by reducing inflammation brought on by ectopic tissues.
Collapse
Affiliation(s)
- Weisen Fan
- Department of Gynecology, Guang ‘anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Fengting Zhai
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, People’s Republic of China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, People’s Republic of China
| | - Guotao Hu
- Department of Gynecology, Guang ‘anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People’s Republic of China
| | - Li Wang
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250013, People’s Republic of China
| |
Collapse
|
3
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 PMCID: PMC11751394 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
4
|
Li J, Wang N, Mao G, Wang J, Xiang M, Zhang H, Zeng D, Ma H, Jiang J. Cuproptosis-associated lncRNA impact prognosis in patients with non-small cell lung cancer co-infected with COVID-19. J Cell Mol Med 2024; 28:e70059. [PMID: 39228012 PMCID: PMC11371660 DOI: 10.1111/jcmm.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) patients infected with COVID-19 experience much worse prognosis. However, the specific mechanisms behind this phenomenon remain unclear. We conducted a multicentre study, collecting surgical tissue samples from a total of 36 NSCLC patients across three centres to analyse. Among the 36 lung cancer patients, 9 were infected with COVID-19. COVID-19 infection (HR = 21.62 [1.58, 296.06], p = 0.021) was an independent risk factor of progression-free survival (PFS). Analysis of RNA-seq data of these cancer tissues demonstrated significantly higher expression levels of cuproptosis-associated genes in COVID-19-infected lung cancer patients. Using Lasso regression and Cox regression analysis, we identified 12 long noncoding RNAs (lncRNA) regulating cuproptosis. A score based on these lncRNA were used to divide patients into high-risk and low-risk groups. The results showed that the high-risk group had lower overall survival and PFS compared to the low-risk group. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) database revealed that the high-risk group benefited more from immunotherapy. Drug sensitivity analysis identified cetuximab and gefitinib as potentially effective treatments for the high-risk group. Cuproptosis plays a significant role NSCLC patients infected with COVID-19. Promisingly, cetuximab and gefitinib have shown potential effectiveness for managing these patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
| | - Nan Wang
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
| | - Guocai Mao
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| | - Jiantang Wang
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
| | - Mengqi Xiang
- Department of Medical OncologySichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Huachuan Zhang
- Department of Thoracic SurgerySichuan Cancer Hospital, Medical School of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Daxiong Zeng
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| | - Haitao Ma
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Thoracic SurgeryThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| | - Junhong Jiang
- Department of Respiratory and Critical Care MedicineThe Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Dushu Lake Hospital Affiliated to Soochow University, Medical Centre of Soochow UniversitySuzhouJiangsuChina
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow University, Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
5
|
Sun X, Gu R, Bai J. Differentiation and regulation of CD4 + T cell subsets in Parkinson's disease. Cell Mol Life Sci 2024; 81:352. [PMID: 39153043 PMCID: PMC11335276 DOI: 10.1007/s00018-024-05402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, and its hallmark pathological features are the loss of dopaminergic (DA) neurons in the midbrain substantia nigra pars compacta (SNpc) and the accumulation of alpha-synuclein (α-syn). It has been shown that the integrity of the blood-brain barrier (BBB) is damaged in PD patients, and a large number of infiltrating T cells and inflammatory cytokines have been detected in the cerebrospinal fluid (CSF) and brain parenchyma of PD patients and PD animal models, including significant change in the number and proportion of different CD4+ T cell subsets. This suggests that the neuroinflammatory response caused by CD4+ T cells is an important risk factor for the development of PD. Here, we systematically review the differentiation of CD4+ T cell subsets, and focus on describing the functions and mechanisms of different CD4+ T cell subsets and their secreted cytokines in PD. We also summarize the current immunotherapy targeting CD4+ T cells with a view to providing assistance in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiaowei Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650500, China
| | - Rou Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China.
- Southwest United Graduate School, Kunming, 650500, China.
| |
Collapse
|
6
|
Manea M, Mărunțelu I, Constantinescu I. Extended analysis on peripheral blood cytokines correlated with hepatitis B virus viral load in chronically infected patients - a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1429926. [PMID: 39149606 PMCID: PMC11325457 DOI: 10.3389/fmed.2024.1429926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
Background Hepatitis B Virus (HBV) can affect life quality. Monitoring and understanding the fluctuations of the HBV level of viremia related to the intricate immune activity of the host helps in the development of new treatment strategies and evaluation patterns. This meta-analysis presents the correlations between cytokines and the level of viremia in chronic HBV patients for a better comprehension of the immune mechanisms behind this infection. Methods We used PRISMA guidelines for this meta-analysis. The databases assessed were PUBMED, WEB OF SCIENCE, SCOPUS, and Cochrane Library. ZOTERO and PlotDigitizer helped the systematic research process. We extracted information related to the correlations between cytokines and the HBV-DNA level. Effect measures included comparisons between standardized mean differences and correlation coefficients. We evaluated retrieved articles with the Newcastle-Ottawa Quality Assessment Scale (NOS). The R 4.2.2 software displayed the statistical calculation and graphical representations. Results From 58,169 records, we extracted 16 articles with 32 different cytokine determinations. The main interleukins included in detection panels were IL-10 and IL-21. The meta-correlation analysis comprised 1,199 chronic HBV patients. The standardized mean difference between cytokine levels in HBV patients and healthy controls was 0.82 (95% CI = [-0.19, 1.84], p = 0.11). We observed a significant, fair, pooled correlation coefficient between IL-10, IL-9, and the viral load (r = 0.52, 95% CI = [0.19, 0.85]). Conclusion This meta-analysis brings novelty because it gives a first rigorous systematic look at multiple studies with many cytokines. Our research approaches a debatable issue and gives a possible solution for settling controversies. Future studies can arise towards understanding the immune disruption in HBV and the development of new, improved assays for prognosis.
Collapse
Affiliation(s)
- Marina Manea
- Immunology and Transplant Immunology, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Ion Mărunțelu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Center of Immunogenetics and Virology, Fundeni Clinical Institute, Bucharest, Romania
| | - Ileana Constantinescu
- Immunology and Transplant Immunology, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
- Center of Immunogenetics and Virology, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
7
|
LIU X, ZHANG Y, ZHANG X, HE G, CAI W. [Progress of IL-21 and Tfh Mediated Immunotherapy in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:550-558. [PMID: 39147710 PMCID: PMC11331254 DOI: 10.3779/j.issn.1009-3419.2024.101.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 08/17/2024]
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent and aggressive global malignancy. Conventional surgical treatments, radiotherapy, chemotherapy, and targeted therapies often fall short in halting disease progression due to inherent limitations, resulting in suboptimal prognosis. Despite the advent of immunotherapy drugs offering new hope for NSCLC treatment, current efficacy remains insufficient to meet all patient needs. Therefore, actively exploring novel immunotherapeutic approaches to further reduce mortality rates in NSCLC patients has become a crucial focus of NSCLC research. This article aims to systematically review the anti-tumor effects of interleukin-21 and follicular helper T cells in NSCLC immunotherapy by summarizing and analyzing relevant literatures from both domestic and international sources, as well as exploring the potential for enhancing NSCLC treatment prospects through immune checkpoint regulation via immunotherapeutic means.
.
Collapse
|
8
|
Hou Y, Cao Y, He Y, Dong L, Zhao L, Dong Y, Niu R, Bi Y, Liu G. SIRT3 Negatively Regulates TFH-Cell Differentiation in Cancer. Cancer Immunol Res 2024; 12:891-904. [PMID: 38630891 DOI: 10.1158/2326-6066.cir-23-0786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Follicular helper T (TFH) cells are essential for inducing germinal center (GC) reactions to mediate humoral adaptive immunity in tumors; however, the mechanisms underlying TFH-cell differentiation remain unclear. In this study, we found that the metabolism sensor sirtuin 3 (SIRT3) is critical for TFH-cell differentiation and GC formation during tumor development and viral infection. SIRT3 deficiency in CD4+ T cells intrinsically enhanced TFH-cell differentiation and GC reactions during tumor development and viral infection. Mechanistically, damaged oxidative phosphorylation (OXPHOS) compensatively triggered the NAD+-glycolysis pathway to provide a cellular energy supply, which was necessary for SIRT3 deficiency-induced TFH-cell differentiation. Blocking NAD+ synthesis-glycolysis signaling or recovering OXPHOS activities reversed the TFH-cell differentiation induced by SIRT3 deficiency. Moreover, the mTOR and hypoxia-inducible factor 1α (HIF1α) signaling axis was found to be responsible for TFH-cell differentiation induced by SIRT3 deficiency. HIF1α directly interacted with and regulated the activity of the transcription factor Bcl6. Thus, our findings identify a cellular energy compensatory mechanism, regulated by the mitochondrial sensor SIRT3, that triggers NAD+-dependent glycolysis during mitochondrial OXPHOS injuries and an mTOR-HIF1α-Bcl6 pathway to reprogram TFH-cell differentiation. These data have implications for future cancer immunotherapy research targeting SIRT3 in T cells.
Collapse
Affiliation(s)
- Yueru Hou
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ying He
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lin Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ruiying Niu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
9
|
Huang L, Wu J, Cao J, Sheng X, Wang M, Cheng T. Resolvin D1 inhibits T follicular helper cell expansion in systemic lupus erythematosus. Scand J Rheumatol 2024; 53:276-283. [PMID: 38742879 DOI: 10.1080/03009742.2024.2344906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Resolvin D1 (RvD1) is one of the specialized pro-resolving lipid mediators, which control inflammation resolution and regulate immune responses. Previous research showed that RvD1 could block the progression of systemic lupus erythematosus (SLE). However, the detailed mechanism remains to be fully understood. METHOD Plasma RvD1 levels, and proportions of T follicular helper cells (Tfh cells) were measured in SLE patients and healthy controls. Plasma RvD1 levels and proportions of Tfh cells were quantitated in an MRL/lpr mouse model of lupus treated with RvD1. Naïve CD4+ T cells were purified from MRL/lpr mice to study the effect of RvD1 on Tfh cell differentiation in vitro. RESULTS In patients, there were significant negative correlations between plasma RvD1 levels and Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score, as well as between plasma RvD1 and anti-double-stranded DNA antibody levels, and numbers of peripheral Tfh cells and plasma cells. In MRL/lpr mice, the expected amelioration of disease phenotype and inflammatory response with RvD1 treatment correlated with decreased percentages of Tfh cells and plasma cells. In addition, the differentiation and proliferation of Tfh cells were markedly suppressed by RvD1 in vitro. CONCLUSION RvD1 may control SLE progression through the suppression of Tfh cell differentiation and subsequent inhibition of B-cell responses.
Collapse
Affiliation(s)
- L Huang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - J Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - J Cao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - X Sheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - M Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| | - T Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Su Zhou, PR China
| |
Collapse
|
10
|
Barberis M, Rojas López A. Metabolic imbalance driving immune cell phenotype switching in autoimmune disorders: Tipping the balance of T- and B-cell interactions. Clin Transl Med 2024; 14:e1626. [PMID: 38500390 PMCID: PMC10948951 DOI: 10.1002/ctm2.1626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The interplay between the immune system and the metabolic state of a cell is intricate. In all phases of an immune response, the corresponding metabolic changes shall occur to support its modulation, in addition to the signalling through the cytokine environment and immune receptor stimulation. While autoimmune disorders may develop because of a metabolic imbalance that modulates switching between T-cell phenotypes, the effects that the interaction between T and B cells have on one another's cellular metabolism are yet to be understood in disease context. Here, we propose a perspective which highlights the potential of targeting metabolism to modulate T- and B-cell subtypes populations as well as T-B and B-T cell interactions to successfully treat autoimmune disorders. Specifically, we envision how metabolic changes can tip the balance of immune cells interactions, through definite mechanisms in both health and disease, to explain phenotype switches of B and T cells. Within this scenario, we highlight targeting metabolism that link inflammation, immunometabolism, epigenetics and ageing, is critical to understand inflammatory disorders. The combination of treatments targeting immune cells that cause (T/B) cell phenotype imbalances, and the metabolic pathways involved, may increase the effectiveness of treatment of autoimmune disorders, and/or ameliorate their symptoms to improve patients' quality of life.
Collapse
Affiliation(s)
- Matteo Barberis
- Molecular Systems BiologySchool of BiosciencesFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Centre for Mathematical and Computational Biology, CMCBUniversity of SurreyGuildfordSurreyUK
- Synthetic Systems Biology and Nuclear OrganizationSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alejandra Rojas López
- Molecular Systems BiologySchool of BiosciencesFaculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
- Centre for Mathematical and Computational Biology, CMCBUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
11
|
Wang J, Chen W, Chen S, Yue G, Hu Y, Xu J. Landscape of infiltrating immune cells and related genes in diabetic kidney disease. Clin Exp Nephrol 2024; 28:181-191. [PMID: 37882850 DOI: 10.1007/s10157-023-02422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is one of the prominent microvascular complications of diabetes and the leading cause of end-stage renal disease. Inflammation plays a crucial role in the development and progression of DKD. Currently, only a few studies depict the landscape of infiltrating immune cells and their potential regulatory network in DKD. To gain a better understanding of the role of immune cells in the renal microenvironment, we sought to reveal the profile of infiltrating immune cells and their potential regulatory network in DKD. METHODS We obtained the transcriptomes and the corresponding clinical data of 19 DKD and 25 control samples from the Gene Expression Omnibus and Nephroseq databases, respectively. Thereafter, we conducted an analysis on the infiltrating immune cells and identified immune-related differentially expressed genes through bioinformatics. Finally, correlation analyses among immune cells, immune genes, and clinical manifestations were performed, and differentially infiltrating immune cell subsets were verified through multiplex immunofluorescence staining. RESULTS We demonstrated the landscape of infiltrating immune cells in patients with DKD and identified the top five hub immune regulatory genes (C3, IL7R, TYROBP, BMP2, and CXCL6). Three of the core genes (C3, BMP2, and CXCL6) were significantly correlated with the estimated glomerular filtration rate. Through multiplex immunofluorescence staining, we verified that macrophage numbers were remarkably elevated, whereas Treg cells were remarkably reduced in diabetic kidney tissues. Th2 cells were scarce in the kidney tissue. CONCLUSION Collectively, our findings shed light on new, possible therapeutic strategies for DKD, from an immune microenvironment perspective.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Wen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Shen Chen
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Queen Mary School, Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guanru Yue
- Department of Medical Genetics and Cell biology, Medical College of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ying Hu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No.17 Yongwaizheng St., Nanchang, Nanchang, 330006, Jiangxi, People's Republic of China.
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China.
- Jiangxi branch of national clinical research center for metabolic disease, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
12
|
Chen D, Zhao HM, Deng XH, Li SP, Zhou MH, Wu YX, Tong Y, Yu RQ, Pang QF. BCL6 attenuates hyperoxia-induced lung injury by inhibiting NLRP3-mediated inflammation in fetal mouse. Exp Lung Res 2024; 50:25-41. [PMID: 38419581 DOI: 10.1080/01902148.2024.2320665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.
Collapse
Affiliation(s)
- Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hui-Min Zhao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xian-Hui Deng
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Sheng-Peng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mei-Hui Zhou
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ying Tong
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ren-Qiang Yu
- Department of Neonatology, Affiliated Women's Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
13
|
Wang X, Wang X, Liu Z, Liu L, Zhang J, Jiang D, Huang G. Identification of inflammation-related biomarkers in keloids. Front Immunol 2024; 15:1351513. [PMID: 38444850 PMCID: PMC10912164 DOI: 10.3389/fimmu.2024.1351513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Background The relationship between inflammation-related genes (IRGs) and keloid disease (KD) is currently unclear. The aim of this study was to identify a new set of inflammation-related biomarkers in KD. Methods GSE145725 and GSE7890 datasets were used in this study. A list of 3026 IRGs was obtained from the Molecular Signatures Database. Differentially expressed inflammation-related genes (DEGs) were obtained by taking the intersection of DEGs between KD and control samples and the list of IRGs. Candidate genes were selected using least absolute shrinkage and selection operator (LASSO) regression analysis. Candidate genes with consistent expression differences between KD and control in both GSE145725 and GSE7890 datasets were screened as biomarkers. An alignment diagram was constructed and validated, and in silico immune infiltration analysis and drug prediction were performed. Finally, RT-qPCR was performed on KD samples to analyze the expression of the identified biomarkers. Results A total of 889 DEGs were identified from the GSE145725 dataset, 169 of which were IRGs. Three candidate genes (TRIM32, LPAR1 and FOXF1) were identified by the LASSO regression analysis, and expression validation analysis suggested that FOXF1 and LPAR1 were down-regulated in KD samples and TRIM32 was up-regulated. All three candidate genes had consistent changes in expression in both the GSE145725 and GSE7890 datasets. An alignment diagram was constructed to predict KD. Effector memory CD4 T cells, T follicular helper cell, Myeloid derived suppressor cell, activated dendritic cell, Immature dendritic cell and Monocyte were differentially expressed between the KD and control group. Sixty-seven compounds that may act on FOXF1, 108 compounds that may act on LPAR1 and 56 compounds that may act on TRIM32 were predicted. Finally, RT-qPCR showed that the expression of LPAR1 was significantly lower in KD samples compared to normal samples whereas TRIM32 was significantly higher, while there was no difference in the expression of FOXF1. Conclusion This study provides a new perspective to study the relationship between IRGs and KD.
Collapse
Affiliation(s)
- Xiaochuan Wang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoyang Wang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Zhenzhong Liu
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Lei Liu
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Jixun Zhang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Duyin Jiang
- Plastic Burn Surgery, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Guobao Huang
- Burn Plastic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Holm Hansen R, von Essen MR, Reith Mahler M, Cobanovic S, Sellebjerg F. Sustained effects on immune cell subsets and autoreactivity in multiple sclerosis patients treated with oral cladribine. Front Immunol 2024; 15:1327672. [PMID: 38433828 PMCID: PMC10904620 DOI: 10.3389/fimmu.2024.1327672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction Cladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS). Recently, we showed that one year after the initiation of cladribine treatment, T and B cell crosstalk was impaired, reducing potentially pathogenic effector functions along with a specific reduction of autoreactivity to RAS guanyl releasing protein 2 (RASGRP2). In the present study we conducted a longitudinal analysis of the effect of cladribine treatment in patients with RRMS, focusing on the extent to which the effects observed on T and B cell subsets and autoreactivity after one year of treatment are maintained, modulated, or amplified during the second year of treatment. Methods In this case-control exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 52 (W52), 60 (W60), 72 (W72) and 96 (W96) weeks, were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay. Results We found a substantial reduction in circulating memory B cells and proinflammatory B cell responses. Furthermore, we observed reduced T cell responses to autoantigens possibly presented by B cells (RASGRP2 and a-B crystallin (CRYAB)) at W52 and W96 and a further reduction in responses to the myelin antigens myelin basic protein (MBP) and myelin oligodendrocyte glycoprotein (MOG) after 96 weeks. Conclusion We conclude that the effects of cladribine observed after year one are maintained and, for some effects, even increased two years after the initiation of a full course of treatment with cladribine tablets.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Shu Q, Du Y, She H, Mo J, Zhu Z, Zhong L, He F, Fan J, Zhu J. Construction and validation of a mitochondria-associated genes prognostic signature and immune microenvironment characteristic of sepsis. Int Immunopharmacol 2024; 126:111275. [PMID: 37995567 DOI: 10.1016/j.intimp.2023.111275] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Sepsis is a common critical condition seen in clinical settings, with mitochondrial dysfunction playing an important role in the progression of sepsis. However, a mitochondrial prognosis model related to sepsis has not been established yet, and the relationship between the sepsis immune microenvironment and mitochondria remains unclear. METHODS Sepsis prognostic mitochondria-associated genes (MiAGs) were screened by univariate Cox, multivariate Cox, and LASSO analysis from the GEO dataset. Consensus Cluster was used to analyze MiAGs-based molecular subtypes for sepsis. The ESTIMATE and ssGSEA algorithms were used to analyze the situation of sepsis immune cell infiltration and its relation to MiAGs. Further, MiAGs score was calculated to construct a sepsis prognosis risk model to predict the prognosis of sepsis patients. Clinical blood samples were used to investigate the expression level of selected MiAGs in sepsis. Single-cell sequencing analysis, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and ATP detection were used to verify the influence of MiAGs on mitochondrial dysfunction in sepsis. RESULTS A total of 5 MiAGs of sepsis were screened. Based on MiAGs, sepsis MiAGs subtypes were analyzed, where Cluster A had a better prognosis than Cluster B, and there were significant differences in immune infiltration between the two clusters. The sepsis mitochondrial prognosis model suggested that the high MiAG score group had a shorter survival time compared to the low MiAG score group. Significant differences were also observed in the immune microenvironment between the high and low MiAG score groups. Prognostic analysis and the Nomogram indicated that the MiAG score is an independent prognostic factor in sepsis. Single-cell sequencing analysis exhibited the possible influence of MiAGs on the mitochondrial function of monocytes. Finally, the downregulation of the COX7B could effectively improve mitochondrial function in the LPS-stimulated sepsis model. CONCLUSION Our findings suggest that MiAGs can be used to predict the prognosis of sepsis and that regulating the mitochondrial prognostic gene COX7B can effectively improve the mitochondrial function of immune cells in sepsis.
Collapse
Affiliation(s)
- Qi Shu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yuanlin Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jiaping Mo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Zhenjie Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Like Zhong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Fugen He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Jingsheng Fan
- Department of Anesthesiology, Dongnan Hospital, Chongqing, China.
| | - Junfeng Zhu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
16
|
Wang Y, Shen Z, Wu H, Yu Z, Wu X, Zhou L, Guo F. Identification of genes related to glucose metabolism and analysis of the immune characteristics in Alzheimer's disease. Brain Res 2023; 1819:148545. [PMID: 37619853 DOI: 10.1016/j.brainres.2023.148545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/16/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Glucose metabolism plays a crucial role in the progression of Alzheimer's disease (AD). The purpose of this study is to identify genes related to glucose metabolism in AD by bioinformatics, construct an early AD prediction model from the perspective of glucose metabolism, and analyze the characteristics of immune cell infiltration. METHODS AD-related modules and genes were screened by weighted gene co-expression network analysis (WGCNA). The GO and KEEG enrichment analysis were used to explore the potential biological functions of glucose metabolism related genes (GMRGs) in AD. The Least Absolute Shrinkage Selection Operator (LASSO) method was used to construct an early AD prediction model based on GMRGs. Then, the receiver operating characteristic curve (ROC) and nomogram were introduced to evaluate the effectiveness of this model. Finally, CIBERSORT and single-cell analysis were applied for illustrating the immune characteristics in AD patients. RESULTS A total of 462 differential expressed genes (DEGs) were obtained between Non-Alzheimer's disease (ND,) and AD groups. The genes in the blue module had the highest correlation with AD by WGCNA analysis. We found 18 intersected genes among DEGs, blue model genes and GMRGs according to the Venn diagram. The GO and KEEG enrichment analysis showed that these 18 genes were mainly involved in the production of metabolites and energy, glycolysis, amino acid biosynthesis and so on. The early AD prediction model including ENO2, TPI1, AEBP1, HERC1, PCSK1, PREPL, SLC25A4, UQCRC2, CHST6, DDIT4, ACSS1 and SUCLA2 was constructed by LASSO analysis. The area under the curve (AUC) of this model in brain tissues was 0.942. Then, we draw the nomogram of this model and the C-index was 0.942. The model was further validated in blood samples and the AUC was 0.644. Immune cell infiltration analysis showed that the proportion of plasma cells, T cells follicular helper and activated NK cells in AD group were significantly lower than ND group, while the proportion of M1 macrophages, neutrophils, T cells CD4 naive and γ-δ T cells was significantly increased when compared with the ND group. Additionally, the specific GMRGs such as ENO2, DDIT4, and SUCLA2 are significantly correlated with certain immune cells such as plasma cells, follicular helper T cells, and M1 macrophages. Single-cell analysis results suggested that the increased macrophages in AD was associated with the up-regulation of AEBP1, DDIT4 and ACSS1. CONCLUSIONS The diagnosis model based on the twelve GMRGs has strong predictive ability and can be used as early diagnosis biomarkers for AD. In addition, these GMRGs closely associate with AD development by influencing the glucose metabolism of immune cells.
Collapse
Affiliation(s)
- Yina Wang
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhouji Shen
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo, China.
| | - Hao Wu
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zefeng Yu
- School of Information Engineering, Nanchang University, Nanchang, China.
| | - Xiping Wu
- Department of Neurology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Libin Zhou
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, China.
| | - Fei Guo
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo, China.
| |
Collapse
|
17
|
Holm Hansen R, von Essen MR, Mahler MR, Cobanovic S, Binko TS, Sellebjerg F. Cladribine Effects on T and B Cells and T Cell Reactivity in Multiple Sclerosis. Ann Neurol 2023; 94:518-530. [PMID: 37191113 DOI: 10.1002/ana.26684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Cladribine tablet therapy is an efficacious treatment for multiple sclerosis (MS), however, its mechanism of action on T and B cell subsets remains unclear. The purpose of this study was to investigate the treatment effects of cladribine on the peripheral pool of T and B cells subsets and reactivity toward central nervous system (CNS) antigens. METHODS In this cross-sectional exploratory study, frequencies and absolute counts of peripheral T and B cell subsets and B cell cytokine production from untreated patients with relapsing-remitting MS (RRMS) and patients treated with cladribine for 1 year were measured using flow cytometry. Autoreactivity was assessed using a FluoroSpot assay. RESULTS We found that 1 year after initiation of cladribine treatment, a lower number of CD4+ T cells was persisting whereas CD19+ B cell counts were normalized compared to untreated patients with RRMS. Follicular helper T cells and their effecter subsets producing cytokines exerting distinct B cell helper activity were lower and, additionally, the peripheral B cell pool was skewed toward a naïve and anti-inflammatory phenotype. Finally, reactivity to the recently identified CNS-enriched autoantigen RAS guanyl-releasing protein 2 (RASGRP2), but not to myelin basic protein and myelin oligodendrocyte glycoprotein, was lower in cladribine-treated patients. INTERPRETATION Together, these investigations on T and B cell subsets suggest that cladribine treatment impairs the B-T cell crosstalk and reduces their ability to mediate pathogenic effector functions. This may result in specific reduction of autoreactivity to RASGRP2 which is expressed in B cells and brain tissue. ANN NEUROL 2023;94:518-530.
Collapse
Affiliation(s)
- Rikke Holm Hansen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Marina Rode von Essen
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Stefan Cobanovic
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Tomas Sorm Binko
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Department of Neurology, Danish Multiple Sclerosis Center, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Luo R, Chang D, Zhang N, Cheng Y, Ge S, Xu G. T Follicular Helper Cells in Tertiary Lymphoid Structure Contribute to Renal Fibrosis by IL-21. Int J Mol Sci 2023; 24:12535. [PMID: 37628716 PMCID: PMC10454845 DOI: 10.3390/ijms241612535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Tertiary lymphoid structure (TLS) represents lymphocyte clusters in non-lymphoid organs. The formation and maintenance of TLS are dependent on follicular helper T (TFH) cells. However, the role of TFH cells during renal TLS formation and the renal fibrotic process has not been comprehensively elucidated in chronic kidney disease. Here, we detected the circulating TFH cells from 57 IgAN patients and found that the frequency of TFH cells was increased in IgA nephropathy patients with renal TLS and also increased in renal tissues from the ischemic-reperfusion-injury (IRI)-induced TLS model. The inducible T-cell co-stimulator (ICOS) is one of the surface marker molecules of TFH. Remarkably, the application of an ICOS-neutralizing antibody effectively prevented the upregulation of TFH cells and expression of its canonical functional mediator IL-21, and also reduced renal TLS formation and renal fibrosis in IRI mice in vivo. In the study of this mechanism, we found that recombinant IL-21 could directly promote renal fibrosis and the expression of p65. Furthermore, BAY 11-7085, a p65 selective inhibitor, could effectively alleviate the profibrotic effect induced by IL-21 stimulation. Our results together suggested that TFH cells contribute to TLS formation and renal fibrosis by IL-21. Targeting the ICOS-signaling pathway network could reduce TFH cell infiltration and alleviate renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (R.L.)
| |
Collapse
|
19
|
Luo H, Yan J, Zhang D, Zhou X. Identification of cuproptosis-related molecular subtypes and a novel predictive model of COVID-19 based on machine learning. Front Immunol 2023; 14:1152223. [PMID: 37533853 PMCID: PMC10393044 DOI: 10.3389/fimmu.2023.1152223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023] Open
Abstract
Background To explicate the pathogenic mechanisms of cuproptosis, a newly observed copper induced cell death pattern, in Coronavirus disease 2019 (COVID-19). Methods Cuproptosis-related subtypes were distinguished in COVID-19 patients and associations between subtypes and immune microenvironment were probed. Three machine algorithms, including LASSO, random forest, and support vector machine, were employed to identify differentially expressed genes between subtypes, which were subsequently used for constructing cuproptosis-related risk score model in the GSE157103 cohort to predict the occurrence of COVID-19. The predictive values of the cuproptosis-related risk score were verified in the GSE163151 cohort, GSE152418 cohort and GSE171110 cohort. A nomogram was created to facilitate the clinical use of this risk score, and its validity was validated through a calibration plot. Finally, the model genes were validated using lung proteomics data from COVID-19 cases and single-cell data. Results Patients with COVID-19 had higher significantly cuproptosis level in blood leukocytes compared to patients without COVID-19. Two cuproptosis clusters were identified by unsupervised clustering approach and cuproptosis cluster A characterized by T cell receptor signaling pathway had a better prognosis than cuproptosis cluster B. We constructed a cuproptosis-related risk score, based on PDHA1, PDHB, MTF1 and CDKN2A, and a nomogram was created, which both showed excellent predictive values for COVID-19. And the results of proteomics showed that the expression levels of PDHA1 and PDHB were significantly increased in COVID-19 patient samples. Conclusion Our study constructed and validated an cuproptosis-associated risk model and the risk score can be used as a powerful biomarker for predicting the existence of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Jisong Yan
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| | - Dingyu Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui, China
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology; Hubei Clinical Research Center for Infectious Diseases; Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences; Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
20
|
Zhang Y, Pan Y, Zhang P, Wang F, Han Y, Li K, Jiang W, Wang J, Luan Y, Xin Q. AhR agonist tapinarof ameliorates lupus autoimmunity by suppressing Tfh cell differentiation via regulation of the JAK2-STAT3 signaling pathway. Immun Inflamm Dis 2023; 11:e903. [PMID: 37382269 PMCID: PMC10266146 DOI: 10.1002/iid3.903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) is a critical regulator of the pathogenesis of autoimmune disorders. We aimed to investigate the therapeutic effect of the AhR agonist tapinarof during the development of systemic lupus erythematosus (SLE). METHODS MRL/lpr mice were intraperitoneally injected with 1 or 5 mg/kg tapinarof for 6 weeks. Kidney histopathology was evaluated using hematoxylin and eosin (H&E) and Periodic-Acid-Schiff (PAS) staining. Immunofluorescence microscopy was performed to detect immune complex renal depositions. Flow cytometry (FCM) analysis was carried out to determine the proportions of T and B cell subsets. Realtime qPCR was used to quantify the expression of Tfh cell-associated genes. We conducted an in vitro polarization experiment to observe the effect of tapinarof on Tfh differentiation. Western blotting was used to detect the expression of target proteins. RESULTS We found that tapinarof treatment ameliorated lupus phenotypes, including splenomegaly, lymph node enlargement, kidney damages, immune complex deposition, and excessive secretion of antibodies. Additionally, we showed that Treg subpopulation frequencies significantly increased in MRL/lpr mice treated with tapinarof, while the proportion of Th1/Th2 cells was reduced after tapinarof administration. Moreover, tapinarof suppressed Tfh cell differentiation and germinal center (GC) reaction in vivo. The inhibitory effect of tapinarof on Tfh cells was further verified in the in vitro Tfh cell polarization experiment. Realtime qPCR revealed that tapinarof repressed the expression of Tfh signature genes. Mechanistically, tapinarof significantly inhibited the phosphorylation levels of JAK2 and STAT3. The capacity for Tfh differentiation was partially rescued by the STAT3 activator Colivelin TFA. Furthermore, our in vitro Tfh polarization experiments indicated that tapinarof suppressed Tfh cell development in SLE. CONCLUSIONS Our data demonstrated that tapinarof modulated the JAK2-STAT3 pathway to suppress Tfh cell differentiation for the treatment of lupus symptoms in MRL/lpr mice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Respiratory MedicineThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yanyan Pan
- Department of PediatricsQilu Children's Hospital of Shandong UniversityJinanShandongChina
| | - Peiyi Zhang
- Department of Rheumatology and ImmunologyJinan Central HospitalJinanShandongChina
| | - Fang Wang
- Animal Laboratory Center, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Ying Han
- Animal Laboratory Center, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Kailin Li
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Wen Jiang
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Jue Wang
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Yun Luan
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Qian Xin
- Central Laboratory, Institute of Medical ScienceThe Second Hospital of Shandong UniversityJinanShandongChina
| |
Collapse
|
21
|
de Lima JD, de Paula AGP, Yuasa BS, de Souza Smanioto CC, da Cruz Silva MC, Dos Santos PI, Prado KB, Winter Boldt AB, Braga TT. Genetic and Epigenetic Regulation of the Innate Immune Response to Gout. Immunol Invest 2023; 52:364-397. [PMID: 36745138 DOI: 10.1080/08820139.2023.2168554] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gout is a disease caused by uric acid (UA) accumulation in the joints, causing inflammation. Two UA forms - monosodium urate (MSU) and soluble uric acid (sUA) have been shown to interact physically with inflammasomes, especially with the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3), albeit the role of the immune response to UA is poorly understood, given that asymptomatic hyperuricemia does also exist. Macrophage phagocytosis of UA activate NLRP3, lead to cytokines release, and ultimately, lead to chemoattract neutrophils and lymphocytes to the gout flare joint spot. Genetic variants of inflammasome genes and of genes encoding their molecular partners may influence hyperuricemia and gout susceptibility, while also influencing other comorbidities such as metabolic syndrome and cardiovascular diseases. In this review, we summarize the inflammatory responses in acute and chronic gout, specifically focusing on innate immune cell mechanisms and genetic and epigenetic characteristics of participating molecules. Unprecedently, a novel UA binding protein - the neuronal apoptosis inhibitor protein (NAIP) - is suggested as responsible for the asymptomatic hyperuricemia paradox.Abbreviation: β2-integrins: leukocyte-specific adhesion molecules; ABCG2: ATP-binding cassete family/breast cancer-resistant protein; ACR: American college of rheumatology; AIM2: absent in melanoma 2, type of pattern recognition receptor; ALPK1: alpha-protein kinase 1; ANGPTL2: angiopoietin-like protein 2; ASC: apoptosis-associated speck-like protein; BIR: baculovirus inhibitor of apoptosis protein repeat; BIRC1: baculovirus IAP repeat-containing protein 1; BIRC2: baculoviral IAP repeat-containing protein 2; C5a: complement anaphylatoxin; cAMP: cyclic adenosine monophosphate; CARD: caspase activation and recruitment domains; CARD8: caspase recruitment domain-containing protein 8; CASP1: caspase 1; CCL3: chemokine (C-C motif) ligand 3; CD14: cluster of differentiation 14; CD44: cluster of differentiation 44; Cg05102552: DNA-methylation site, usually cytosine followed by guanine nucleotides; contains arbitrary identification code; CIDEC: cell death-inducing DNA fragmentation factor-like effector family; CKD: chronic kidney disease; CNV: copy number variation; CPT1A: carnitine palmitoyl transferase - type 1a; CXCL1: chemokine (CXC motif) ligand 1; DAMPs: damage associated molecular patterns; DC: dendritic cells; DNMT(1): maintenance DNA methyltransferase; eQTL: expression quantitative trait loci; ERK1: extracellular signal-regulated kinase 1; ERK2: extracellular signal-regulated kinase 2; EULAR: European league against rheumatism; GMCSF: granulocyte-macrophage colony-stimulating factor; GWAS: global wide association studies; H3K27me3: tri-methylation at the 27th lysine residue of the histone h3 protein; H3K4me1: mono-methylation at the 4th lysine residue of the histone h3 protein; H3K4me3: tri-methylation at the 4th lysine residue of the histone h3 protein; HOTAIR: human gene located between hoxc11 and hoxc12 on chromosome 12; IκBα: cytoplasmatic protein/Nf-κb transcription inhibitor; IAP: inhibitory apoptosis protein; IFNγ: interferon gamma; IL-1β: interleukin 1 beta; IL-12: interleukin 12; IL-17: interleukin 17; IL18: interleukin 18; IL1R1: interleukin-1 receptor; IL-1Ra: interleukin-1 receptor antagonist; IL-22: interleukin 22; IL-23: interleukin 23; IL23R: interleukin 23 receptor; IL-33: interleukin 33; IL-6: interleukin 6; IMP: inosine monophosphate; INSIG1: insulin-induced gene 1; JNK1: c-jun n-terminal kinase 1; lncRNA: long non-coding ribonucleic acid; LRR: leucine-rich repeats; miR: mature non-coding microRNAs measuring from 20 to 24 nucleotides, animal origin; miR-1: miR followed by arbitrary identification code; miR-145: miR followed by arbitrary identification code; miR-146a: miR followed by arbitrary identification code, "a" stands for mir family; "a" family presents similar mir sequence to "b" family, but different precursors; miR-20b: miR followed by arbitrary identification code; "b" stands for mir family; "b" family presents similar mir sequence to "a" family, but different precursors; miR-221: miR - followed by arbitrary identification code; miR-221-5p: miR followed by arbitrary identification code; "5p" indicates different mature miRNAs generated from the 5' arm of the pre-miRNA hairpin; miR-223: miR followed by arbitrary identification code; miR-223-3p: mir followed by arbitrary identification code; "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; miR-22-3p: miR followed by arbitrary identification code, "3p" indicates different mature miRNAs generated from the 3' arm of the pre-miRNA hairpin; MLKL: mixed lineage kinase domain-like pseudo kinase; MM2P: inductor of m2-macrophage polarization; MSU: monosodium urate; mTOR: mammalian target of rapamycin; MyD88: myeloid differentiation primary response 88; n-3-PUFAs: n-3-polyunsaturated fatty-acids; NACHT: acronym for NAIP (neuronal apoptosis inhibitor protein), C2TA (MHC class 2 transcription activator), HET-E (incompatibility locus protein from podospora anserina) and TP1 (telomerase-associated protein); NAIP: neuronal apoptosis inhibitory protein (human); Naip1: neuronal apoptosis inhibitory protein type 1 (murine); Naip5: neuronal apoptosis inhibitory protein type 5 (murine); Naip6: neuronal apoptosis inhibitory protein type 6 (murine); NBD: nucleotide-binding domain; Nek7: smallest NIMA-related kinase; NET: neutrophil extracellular traps; Nf-κB: nuclear factor kappa-light-chain-enhancer of activated b cells; NFIL3: nuclear-factor, interleukin 3 regulated protein; NIIMA: network of immunity in infection, malignancy, and autoimmunity; NLR: nod-like receptor; NLRA: nod-like receptor NLRA containing acidic domain; NLRB: nod-like receptor NLRA containing BIR domain; NLRC: nod-like receptor NLRA containing CARD domain; NLRC4: nod-like receptor family CARD domain containing 4; NLRP: nod-like receptor NLRA containing PYD domain; NLRP1: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 1; NLRP12: nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 12; NLRP3: nod-like receptor family pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain; NRBP1: nuclear receptor-binding protein; Nrf2: nuclear factor erythroid 2-related factor 2; OR: odds ratio; P2X: group of membrane ion channels activated by the binding of extracellular; P2X7: p2x purinoceptor 7 gene; p38: member of the mitogen-activated protein kinase family; PAMPs: pathogen associated molecular patters; PBMC: peripheral blood mononuclear cells; PGGT1B: geranylgeranyl transferase type-1 subunit beta; PHGDH: phosphoglycerate dehydrogenase; PI3-K: phospho-inositol; PPARγ: peroxisome proliferator-activated receptor gamma; PPARGC1B: peroxisome proliferative activated receptor, gamma, coactivator 1 beta; PR3: proteinase 3 antigen; Pro-CASP1: inactive precursor of caspase 1; Pro-IL1β: inactive precursor of interleukin 1 beta; PRR: pattern recognition receptors; PYD: pyrin domain; RAPTOR: regulatory associated protein of mTOR complex 1; RAS: renin-angiotensin system; REDD1: regulated in DNA damage and development 1; ROS: reactive oxygen species; rs000*G: single nuclear polymorphism, "*G" is related to snp where replaced nucleotide is guanine, usually preceded by an id number; SLC2A9: solute carrier family 2, member 9; SLC7A11: solute carrier family 7, member 11; SMA: smooth muscular atrophy; Smac: second mitochondrial-derived activator of caspases; SNP: single nuclear polymorphism; Sp3: specificity protein 3; ST2: serum stimulation-2; STK11: serine/threonine kinase 11; sUA: soluble uric acid; Syk: spleen tyrosine kinase; TAK1: transforming growth factor beta activated kinase; Th1: type 1 helper T cells; Th17: type 17 helper T cells; Th2: type 2 helper T cells; Th22: type 22 helper T cells; TLR: tool-like receptor; TLR2: toll-like receptor 2; TLR4: toll-like receptor 4; TNFα: tumor necrosis factor alpha; TNFR1: tumor necrosis factor receptor 1; TNFR2: tumor necrosis factor receptor 2; UA: uric acid; UBAP1: ubiquitin associated protein; ULT: urate-lowering therapy; URAT1: urate transporter 1; VDAC1: voltage-dependent anion-selective channel 1.
Collapse
Affiliation(s)
- Jordana Dinorá de Lima
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Bruna Sadae Yuasa
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Maria Clara da Cruz Silva
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | | | - Karin Braun Prado
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Angelica Beate Winter Boldt
- Program of Internal Medicine, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Genetics Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
| | - Tárcio Teodoro Braga
- Microbiology, Parasitology and Pathology Program, Universidade Federal do Parana (UFPR), Curitiba, Brazil
- Biosciences and Biotechnology Program, Instituto Carlos Chagas (ICC), Fiocruz-Parana, Brazil
| |
Collapse
|
22
|
Intratumoral Niches of B Cells and Follicular Helper T Cells, and the Absence of Regulatory T Cells, Associate with Longer Survival in Early-Stage Oral Tongue Cancer Patients. Cancers (Basel) 2022; 14:cancers14174298. [PMID: 36077836 PMCID: PMC9454508 DOI: 10.3390/cancers14174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
In early oral squamous cell carcinoma (OSCC), the occurrence of clusters between CD20 B cells and CD4 T cells in the invasive margin (IM) can be captured by using the CD20 cluster score, and is positively associated with patient survival. However, the exact contribution of different CD4 T cell subsets, as well as B cell subsets toward patient prognosis is largely unknown. To this end, we studied regulatory T cells ((Treg cells) FOXP3 and CD4), T helper-type 1 cells ((Th1 cells) Tbet and CD4), follicular helper T cells ((Tfh cells) Bcl6 and CD4), B cells (CD20), germinal center B cells ((GC B cells) BCL6 and CD20), and follicular dendritic cells ((fDCs) CD21) for their density, location, and interspacing using multiplex in situ immunofluorescence of 75 treatment-naïve, primary OSCC patients. We observed that Treg, Th1-, Tfh-, and GC B cells, but not fDCs, were abundantly present in the stroma as compared with the tumor, and in the IM as compared with in the center of the tumor. Patients with high CD20 cluster scores had a high density of all three CD4 T cell subsets and GC B cells in the stromal IM as compared with patients with low CD20 cluster scores. Notably, enriched abundance of Tfh cells (HR 0.20, p = 0.04), and diminished abundance of Treg cells (HR 0.10, p = 0.03), together with an overall short distance between Tfh and B cells (HR:0.08, p < 0.01), but not between Treg and B cells (HR 0.43, p = 0.28), were significantly associated with overall survival of patients with OSCC. Our study identified the prognostic value of clusters between CD20 B cells and Tfh cells in the stromal IM of OSCC patients, and enabled an improved understanding of the clinical value of a high CD20 cluster score, which requires validation in larger clinical cohorts.
Collapse
|
23
|
Holm Hansen R, Talbot J, Højsgaard Chow H, Bredahl Hansen M, Buhelt S, Herich S, Schwab N, Hellem MNN, Nielsen JE, Sellebjerg F, von Essen MR. Increased Intrathecal Activity of Follicular Helper T Cells in Patients With Relapsing-Remitting Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/5/e200009. [PMID: 35835563 PMCID: PMC9621607 DOI: 10.1212/nxi.0000000000200009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Follicular helper T (Tfh) cells play a critical role in protective immunity helping B cells produce antibodies against foreign pathogens and are likely implicated in the pathogenesis of various autoimmune diseases. The purpose of this study was to investigate the role of Tfh cells in the pathogenesis of multiple sclerosis (MS). METHODS Using flow cytometry, we investigated phenotype, prevalence, and function of Tfh cells in blood and CSF from controls and patients with relapsing-remitting MS (RRMS) and primary progressive MS (PPMS). In addition, an in vitro blood-brain barrier coculture assay of primary human astrocytes and brain microvascular endothelial cells grown in a Boyden chamber was used to assess the migratory capacity of peripheral Tfh cells. RESULTS This study identified 2 phenotypically and functionally distinct Tfh cell populations: CD25- Tfh cells (Tfh1-like) and CD25int Tfh cells (Tfh17-like). Whereas minor differences in Tfh cell populations were found in blood between patients with MS and controls, we observed an increased frequency of CD25- Tfh cells in CSF of patients with RRMS and PPMS and CD25int Tfh cells in patients with RRMS, compared with controls. Increasing frequencies of CSF CD25- Tfh cells and the CD25- Tfh/Tfr ratio scaled with increasing IgG index in patients with RRMS. Despite an increased prevalence of intrathecal Tfh cells in patients with MS, no difference in the migratory capacity of circulating Tfh cells was observed between controls and patients with MS. Instead, CSF concentrations of CXCL13 scaled with total counts of Tfh and Tfr cell subsets in the CSF. DISCUSSION Our study indicates substantial changes in intrathecal Tfh dynamics, particularly in patients with RRMS, and suggests that the intrathecal inflammatory environment in patients with RRMS promotes recruitment of peripheral Tfh cells rather than the Tfh cells having an increased capacity to migrate to CNS.
Collapse
|
24
|
Gu G, Lv X, Liu G, Zeng R, Li S, Chen L, Liang Z, Wang H, Lu F, Zhan L, Lv X. Tnfaip6 Secreted by Bone Marrow-Derived Mesenchymal Stem Cells Attenuates TNBS-Induced Colitis by Modulating Follicular Helper T Cells and Follicular Regulatory T Cells Balance in Mice. Front Pharmacol 2021; 12:734040. [PMID: 34707499 PMCID: PMC8542666 DOI: 10.3389/fphar.2021.734040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: To investigate the immunological mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in inflammatory bowel disease (IBD). Methods: Mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis were intraperitoneally injected with phosphate-buffered saline, BM-MSCs, BM-MSCs with tumor necrosis factor-induced protein 6 (Tnfaip6) knockdown mediated by RNA interference recombinant adenovirus, and BM-MSCs-infected with control adenovirus or recombinant mouse Tnfaip6. The disease activity index, weight loss, and histological scores were recorded. Serum levels of Tnfaip6 and pro- and anti-inflammatory cytokines, including interleukin (IL)-21, tumor necrosis factor-alpha (TNF-α), IL-10 were measured by enzyme-linked immunosorbent assay. The relative expression levels of these cytokines, B-cell lymphoma 6 (BCL-6) and fork-like transcription factor p3 (Foxp3) in the colon were determined by real-time quantitative PCR (RT-qPCR). BCL-6 and Foxp3 are the master regulators of follicular helper T cells (Tfh) and follicular regulatory T cells (Tfr), respectively. The infiltration of Tfh and Tfr in mesenteric lymph nodes (MLNs) and spleens was analyzed by flow cytometry. Results: Compared to the normal control group, the expression levels of BCL-6 and IL-21 in the colon, Tfh infiltration, and ratios of Tfh/Tfr in the MLNs and spleen, and the serum concentrations of IL-21 and TNF-α increased significantly in the colitis model group (p < 0.05). Intraperitoneal injection of BM-MSCs or Tnfaip6 ameliorated weight loss and clinical and histological severity of colitis, downregulated the expression of BCL-6, IL-21, and TNF-α, upregulated the expression of Foxp3, IL-10, and Tnfaip6 (p < 0.05), increased Tfr and reduced the infiltration of Tfh in the MLNs and spleen, and downregulated the Tfh/Tfr ratio (p < 0.05). On the other hand, BM-MSCs lost the therapeutic effect and immune regulatory functions on Tfh and Tfr after Tnfaip6 knockdown. Conclusion: Tfh increase in the inflamed colon, Tfh decrease and Tfr increase during the colitis remission phase, and the imbalance of the Tfh/Tfr ratio is closely related to the progression of IBD. Tnfaip6 secreted by BM-MSCs alleviates IBD by inhibiting Tfh differentiation, promoting Tfr differentiation, and improving the imbalance of Tfh/Tfr in mice.
Collapse
Affiliation(s)
- Guangli Gu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gengfeng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ruizhi Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhaoliang Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiqin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
25
|
Zhang X, Ge R, Chen H, Ahiafor M, Liu B, Chen J, Fan X. Follicular Helper CD4 + T Cells, Follicular Regulatory CD4 + T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2021; 2021:2058964. [PMID: 34552387 PMCID: PMC8452443 DOI: 10.1155/2021/2058964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Follicular helper CD4+ T (TFH) cells are a specialized subset of effector T cells that play a central role in orchestrating adaptive immunity. TFH cells mainly promote germinal center (GC) formation, provide help to B cells for immunoglobulin affinity maturation and class-switch recombination of B cells, and facilitate production of long-lived plasma cells and memory B cells. TFH cells express the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), the chemokine (C-X-C motif) receptor 5 (CXCR5), the CD28 family members programmed cell death protein-1 (PD-1) and inducible costimulator (ICOS) and are also responsible for the secretion of interleukin-21 (IL-21) and IL-4. Follicular regulatory CD4+ T (TFR) cells, as a regulatory counterpart of TFH cells, participate in the regulation of GC reactions. TFR cells not only express markers of TFH cells but also express markers of regulatory T (Treg) cells containing FOXP3, glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4), and IL-10, hence owing to the dual characteristic of TFH cells and Treg cells. ICOS, expressed on activated CD4+ effector T cells, participates in T cell activation, differentiation, and effector process. The expression of ICOS is highest on TFH and TFR cells, indicating it as a key regulator of humoral immunity. Multiple sclerosis (MS) is a severe autoimmune disease that affects the central nervous system and results in disability, mediated by autoreactive T cells with evolving evidence of a remarkable contribution from humoral responses. This review summarizes recent advances regarding TFH cells, TFR cells, and ICOS, as well as their functional characteristics in relation to MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Maxwell Ahiafor
- School of International Studies, Binzhou Medical University, Yantai, 264003 Shandong, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| |
Collapse
|
26
|
Beurier P, Ricard L, Eshagh D, Malard F, Siblany L, Fain O, Mohty M, Gaugler B, Mekinian A. TFH cells in systemic sclerosis. J Transl Med 2021; 19:375. [PMID: 34461933 PMCID: PMC8407089 DOI: 10.1186/s12967-021-03049-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022] Open
Abstract
Systemic sclerosis is an autoimmune disease characterized by excessive dermal fibrosis with progression to internal organs, vascular impairment and immune dysregulation evidenced by the infiltration of inflammatory cells in affected tissues and the production of auto antibodies. While the pathogenesis remains unclear, several data highlight that T and B cells deregulation is implicated in the disease pathogenesis. Over the last decade, aberrant responses of circulating T follicular helper cells, a subset of CD4 T cells which are able to localise predominantly in the B cell follicles through a high level of chemokine receptor CXCR5 expression are described in pathogenesis of several autoimmune diseases and chronic graft-versus-host-disease. In the present review, we summarized the observed alteration of number and frequency of circulating T follicular helper cells in systemic sclerosis. We described their role in aberrant B cell activation and differentiation though interleukine-21 secretion. We also clarified T follicular helper-like cells involvement in fibrogenesis in both human and mouse model. Finally, because T follicular helper cells are involved in both fibrosis and autoimmune abnormalities in systemic sclerosis patients, we presented the different strategies could be used to target T follicular helper cells in systemic sclerosis, the therapeutic trials currently being carried out and the future perspectives from other auto-immune diseases and graft-versus-host-disease models.
Collapse
Affiliation(s)
- Pauline Beurier
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Laure Ricard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Deborah Eshagh
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Florent Malard
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Lama Siblany
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Olivier Fain
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France
| | - Mohamad Mohty
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France.,Sorbonne Université, Paris, France.,Service D'Hématologie Clinique, AP-HP, Hôpital Saint-Antoine, 75012, Paris, France
| | - Béatrice Gaugler
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France
| | - Arsène Mekinian
- INSERM UMRs 938, Centre de Recherche Saint-Antoine, AP-HP, Hôpital Saint-Antoine, Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Sorbonne Université, 75012, Paris, France. .,Sorbonne Université, Paris, France. .,Service de Médecine Interne and Inflammation-Immunopathology-Biotherapy Department (DMU 3iD), AP-HP, Hôpital Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
27
|
Shen C, Xue X, Zhang X, Wu L, Duan X, Su C. Dexamethasone reduces autoantibody levels in MRL/lpr mice by inhibiting Tfh cell responses. J Cell Mol Med 2021; 25:8329-8337. [PMID: 34318604 PMCID: PMC8419171 DOI: 10.1111/jcmm.16785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/15/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that dexamethasone (Dex) reduces the levels of anti‐nuclear (ANA) and anti‐dsDNA antibodies in MRL/lpr mice (a mouse model of SLE). However, the effect of Dex on T follicular helper (Tfh) cells is less documented. Here, using the MRL/lpr mouse model, we investigated the influence of Dex on Tfh cells and potential underlying mechanisms. The data showed that the proportion of Tfh cells, identified as CD4+CXCR5+ICOS+, CD4+CXCR5+PD‐1+ or CD4+BCL‐6+ cells, markedly decreased after treatment with the Dex, in both Balb/c mice and MRL/lpr mice. Dex significantly inhibited IL‐21 expression at both the mRNA and the protein levels. Dex also significantly reduced the proportion of germinal centre B cells and decreased serum IgG, IgG2a/b and IgA levels. Moreover, a positive correlation between the proportion of Tfh cells (CD4+CXCR5+ICOS+, CD4+CXCR5+PD‐1+ or CD4+BCL‐6+) and autoantibodies was observed. Dex significantly increased the Prdm1 and Stat5b mRNA expression and decreased the Bcl‐6 and c‐Maf mRNA expression of CD4+T cells. In brief, Dex inhibited the Tfh development, which relies on many other transcription factors in addition to Bcl‐6. Our data indicate that Dex can be used as a Tfh cell inhibitor in SLE.
Collapse
Affiliation(s)
- Chunxiu Shen
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaonan Xue
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xiaoyu Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lihua Wu
- Department of Nephrology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiangguo Duan
- Department of Laboratory Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.,College of Clinical Medicine, Ningxia Medical University, Yinchuan, China
| | - Chunxia Su
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
28
|
Du B, Teng J, Yin R, Tian Y, Jiang T, Du Y, Cai W. Increased Circulating T Follicular Helper Cells Induced via IL-12/21 in Patients With Acute on Chronic Hepatitis B Liver Failure. Front Immunol 2021; 12:641362. [PMID: 33868273 PMCID: PMC8044369 DOI: 10.3389/fimmu.2021.641362] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Objectives T Follicular helper (Tfh) cells, recognized as a distinct CD4+ T cell subset, mediate the development of long-lived humoral immunity via B cell activation/differentiation. Tfh cells play an important role during hepatic viral infection, but its role in hepatitis B virus-related acute on chronic liver failure (HBV-ACLF) remains to be explored. Materials and Methods The frequency of Tfh cells, serum pro-inflammatory cytokine (IL-12, IL-21, IL-17 and TNF) levels and IgG/M levels were investigated in HBV-ACLF (n = 36), serious chronic hepatitis B (n = 21), moderate chronic hepatitis B patients (n = 32) and healthy control (HC) subjects (n = 10). Results Circulating Tfh cells were significantly increased in HBV-ACLF patients compared to other groups, correlating well with MELD score. However, the frequency of Tfh cells decreased in ameliorated HBV-ACLF patients. Furthermore, serum IL-12 and IL-21 levels were higher in HBV-ACLF patients, compared to other groups. Naïve CD4+ T cells from HC subjects differentiate into Tfh cells following treatment with HBV-ACLF patients’ serum, a process that can be blocked by IL-12/21 neutralizing antibodies. Tfh cells induced by HBV-ACLF patient’s serum promoted the proliferation and IgG production of B cells in vitro. Moreover, circulating CD19+ B cells, serum and liver IgG/M levels were significantly higher in HBV-ACLF patients, compared to other groups. Conclusions Our data demonstrated that there was a high frequency of Tfh cells and high levels of serum IL-12/21 in HBV-ACLF patients. Naïve CD4+ T cells differentiate into Tfh cells in the presence of HBV-ACLF patients’ serum rich in IL-12/21, which can be blocked by neutralizing IL-12/21 antibodies. These data may provide useful insights for both clinical and basic research in the treatment of HBV-ACLF.
Collapse
Affiliation(s)
- Bingying Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaming Teng
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongkun Yin
- Department of Infectious Diseases, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Tian
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Tingwang Jiang
- Clinical Research Centre, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, China
| | - Yanan Du
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|