1
|
Ebersole JL, Kirakodu SS, Nguyen LM, Gonzalez OA. Transcriptomic features of programmed and inflammatory cell death in gingival tissues. Oral Dis 2024. [PMID: 38623775 DOI: 10.1111/odi.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
The local gingival tissue environment with homeostasis and tissue-destructive events of periodontitis demonstrates major changes in histological features and biology of the oral/sulcular epithelium, fibroblasts, vascular cells, inflammatory cell infiltration, and alveolar bone. OBJECTIVE This study used an experimental periodontitis model to detail the gingival transcriptome related to cell death processes of pyroptosis, necroptosis, ferroptosis, and cuproptosis. MATERIALS AND METHODS Healthy Macaca mulatta primates stratified by age, ≤3 years (young), 7-12 years (adolescent), 12-15 years (adult), and 17-23 years (aged), provided gingival tissue biopsies for microarray analysis focused on 257 genes representative of the four cell death processes and bacterial plaque samples for 16S rRNA gene analysis. RESULTS Age differences in the profiles of gene expression in healthy tissues were noted for cuproptosis, ferroptosis, necroptosis, and pyroptosis. Major differences were then observed with disease initiation, progression, and resolution also related to the age of the animals. Distinct bacterial families/consortia of species were significantly related to the gene expression differences for the cell death pathways. CONCLUSIONS These results emphasized age-associated differences in the gingival tissue molecular response to changes in the quality and quantity of bacteria accumulating with the disease process reflected in regulated cell death pathways that are both physiological and pathophysiological.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Linh M Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Li Y, Liu W, Zhao R, An Y, Zhang M, Ren X, He H. Yunnan Baiyao Inhibits Periodontitis by Suppressing the Autophagic Flux. Int Dent J 2024; 74:284-293. [PMID: 37852809 PMCID: PMC10988253 DOI: 10.1016/j.identj.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Yunnan Baiyao (YNBY), a traditional Chinese medicine, is renowned for its anti-inflammatory properties. Recent studies have suggested that YNBY plays a significant role in inhibiting osteoclast differentiation and autophagy, which are essential processes in inflammation and bone resorption associated with periodontitis. However, the precise relationship between autophagy and the mechanism by which YNBY inhibits osteoclastogenesis remains unexplored.The primary objective of this study was to investigate the inhibitory effects of YNBY on the process of osteoclastogenesis and its potential in preventing inflammatory bone loss. METHODS The animals were subjected to sacrifice at intervals of 2, 4, and 6 weeks postintervention whilst under deep anaesthesia, and specimens were subsequently collected. The specimens were subjected to hematoxylin and eosin (HE) staining, in addition to tartrate-resistant acid phosphatase (TRAP) staining and subsequently imaged employing a digital scanner. The confirmation of osteoclast (OC) differentiation and autophagic flux was achieved through various techniques, including western blotting, transmission electron microscopy (TEM), TRAP staining, pit formation assay, and immunofluorescence. RESULTS The microcomputed tomography images provided evidence of the effective inhibition of alveolar bone absorption at 2, 4, and 6 weeks following YNBY treatment. Additionally, the histomorphometric evaluations of tissue segments stained with HE and TRAP, which involved measuring the distance between the alveolar bone crest (ABC) and cementoenamel junction (CEJ) and quantifying TRAP-positive OCs, yielded comparable results to those obtained through computed tomography analysis. YNBY treatment resulted in a decrease in the CEJ-ABC distance and inhibition of OC differentiation. Furthermore, in vitro studies showed that the autophagy modulators rapamycin (RAP) and 3-methyladenine (3-MA) significantly affected OC differentiation and function. YNBY attenuated the impact of RAP on the differentiation of OCs, autophagy-related factor activation, and bone resorption. CONCLUSIONS We hypothesise that YNBY suppresses the differentiation of OC and bone resorption by blocking autophagy. This study reveals that targeting autophagy might be a new alternative treatment methodology for periodontitis treatment.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Wang Liu
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Ruoyu Zhao
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yuanyuan An
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Mingzhu Zhang
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Xiaobin Ren
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University and Hospital of Stomatology, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
3
|
Zhou W, Zhang P, Li H. Identifying Oxidative Stress-Related Genes (OSRGs) as Potential Target for Treating Periodontitis Based on Bioinformatics Analysis. Comb Chem High Throughput Screen 2024; 27:1191-1204. [PMID: 37605414 DOI: 10.2174/1386207326666230821102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Periodontitis (PD) is a multifactorial inflammatory disease that is closely associated with periodontopathic bacteria. Numerous studies have demonstrated oxidative stress (OS) contributes to inflammation and is a prime factor in the development of PD. It is imperative to explore the function of newly discovered hub genes associated with OS in the advancement of PD, thereby identifying potential targets for therapeutic intervention. OBJECTIVES The goal of the current study was to identify the oxidative-stress-related genes (OSRGs) associated with periodontitis (PD) development using an integrated bioinformatics method. METHODS DEGs from GEO gene-expression data were identified using the "limma" package. We obtained OSRGs from GeneCards and utilized a Venn diagram to uncover differentially expressed OSRGs (DEOSRGs). After receiving the DEOSRGs, we employed Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) analytical tools to examine their possible functions and pathways in PD. Receiver operating characteristic (ROC) curves screened for hub genes of PD. RT-qPCR and western blot analysis were used to detect DEOSRG expression in mouse ligature-induced periodontitis gingival tissues. RESULTS The investigation identified 273 OSRGs. Based on PPI analysis, we recognized 20 OSRGs as hub genes. GO and KEGG enrichment analysis indicated that these hub genes were predominantly enriched in leukocyte migration, lymphocyte proliferation, and humoral immune response, and associated with leukocyte trans-endothelial migration, cytokine-cytokine receptor interaction, and NF-κB signaling pathway. Following ROC analysis, VCAM1, ITGAM, FCGR3A, IL1A, PECAM1, and VCAM1were identified as PD prognostic gene. RT-qPCR and western blot analyses confirmed that the expression ITGAM, FCGR3A, and PECAM1 were significantly elevated in the gingival tissues obtained from mice. CONCLUSION This investigation revealed that ITGAM, FCGR3A, and PECAM1 may have a crucial function in the advancement of PD.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| | - Pengfei Zhang
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| | - Hao Li
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, District, Shanghai, 200011, China
| |
Collapse
|
4
|
Gonzalez OA, Kirakodu S, Nguyen L, Ebersole JL. Macrophage-related gingival transcriptomic patterns and microbiome alterations in experimental periodontitis in nonhuman primates. J Periodontal Res 2023; 58:1148-1170. [PMID: 37610132 DOI: 10.1111/jre.13156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE This study examined the microbiome features specifically related to host macrophage polarization in health, initiation and progression of periodontitis, and in resolution samples using a nonhuman primate model of ligature-induced periodontitis. BACKGROUND The oral microbiome is a complex of bacterial phyla, genera, and species acquired early in life into the individual autochthonous oral ecology. The microbiome changes overtime in response to both intrinsic and extrinsic stressors, and transitions to a dysbiotic ecology at sites of periodontal lesions. METHODS Comparisons were made between the microbial and host features in young (≤7 years) and adult (≥12 years) cohorts of animals. Footprints of macrophage-related genes in the gingival tissues were evaluated using expression profiles including M0, M1, and M2 related genes. RESULTS Within the gingival tissues, similar macrophage-related gene patterns were observed with significant increases with disease initiation and continued elevation throughout disease in both age groups. Approximately, 70% of the taxa were similar in relative abundance between the two groups; however, the adults showed a large number of OTUs that were significantly altered compared with the younger animals. Developing a correlation map identified three major node levels of interactions that comprised approximately ⅓ of the Operational Taxonomic Units (OTUs) that dominated the microbiomes across the samples. Also noted was a much greater frequency of significant correlations of individual OTUs with the macrophage phenotype markers, compared with disease and resolution samples in both age groups, with a greater frequency in the younger group. Moreover, these correlations were assigned to differentially expressed genes representing M0, M1, and M2-related phenotypes. A cluster analyses across the macrophage-related transcriptome and the OTUs demonstrated multiple somewhat distinct bacterial consortia, incorporating both commensal and putative pathogens, linked to the gene responses that differed in health, disease, and resolution samples. Finally, there were minimal alterations in the OTUs in individual clusters with specific macrophage-related responses in the younger group, while in the adult samples substantial variations were noted with genes from all macrophage phenotypes. CONCLUSIONS The results confirmed important features that could reflect macrophage polarization in periodontal lesions, and provided some initial data supporting specific members of the oral microbiome feature prominently related to specific gene response patterns consistent with macrophages in the gingival tissues.
Collapse
Affiliation(s)
- O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - L Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| |
Collapse
|
5
|
Xu Y, Wang Y, Xiao H, Li Y. Hypoxia dissociates HDAC6/FOXO1 complex and aggregates them into nucleus to regulate autophagy and osteogenic differentiation. J Periodontal Res 2023; 58:1248-1260. [PMID: 37767803 DOI: 10.1111/jre.13180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This research aimed to elucidate the molecular mechanisms underlying the periodontitis-associated bone loss, with particular emphasis on the contributory role of hypoxic microenvironment in this process. BACKGROUND Periodontitis generally causes alveolar bone loss and is often associated with a hypoxic microenvironment, which affects bone homeostasis. However, the regulating mechanism between hypoxia and jaw metabolism remains unclear. Hypoxia triggers autophagy, which is closely related to osteogenic differentiation, but how hypoxia-induced autophagy regulates bone metabolism is unknown. HDAC6 and FOXO1 are closely related to bone metabolism and autophagy, respectively, but whether they are related to hypoxia-induced bone loss and their internal mechanisms is still unclear. METHODS Established rat nasal obstruction model and hypoxia cell model. Immunohistochemistry was performed to detect the expression and localization of HDAC6 and FOXO1 proteins, analysis of autophagic flux and transmission electron microscopy was used to examine the autophagy level and observe the autophagosomes, co-immunoprecipitation and chromatin immunoprecipitation were preformed to investigate the interaction of HDAC6 and FOXO1. RESULTS Hypoxia causes increased autophagy and reduced osteogenic differentiation in rat mandibles and BMSCs, and blocking autophagy can attenuate hypoxia-induced osteogenic differentiation decrease. Moreover, hypoxia dissociated the FOXO1-HDAC6 complex and accumulated them in the nucleus. Knocking down of FOXO1 or HDAC6 alleviated hypoxia-induced autophagy elevation or osteogenic differentiation reduction by binding to related genes, respectively. CONCLUSION Hypoxia causes mandibular bone loss and autophagy elevation. Mechanically, hypoxia dissociates the FOXO1-HDAC6 complex and aggregates them in the nucleus, whereas HDAC6 decreases osteogenic differentiation and FOXO1 enhances autophagy to inhibit osteogenic differentiation.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Orthodontic, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yixin Wang
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Hui Xiao
- Department of Orthodontic, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yongming Li
- Department of Orthodontic, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
6
|
Gonzalez OA, Kirakodu SS, Ebersole JL. DAMPs and alarmin gene expression patterns in aging healthy and diseased mucosal tissues. FRONTIERS IN ORAL HEALTH 2023; 4:1320083. [PMID: 38098978 PMCID: PMC10720672 DOI: 10.3389/froh.2023.1320083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Periodontitis is delineated by a dysbiotic microbiome at sites of lesions accompanied by a dysregulated persistent inflammatory response that undermines the integrity of the periodontium. The interplay of the altered microbial ecology and warning signals from host cells would be a critical feature for maintaining or re-establishing homeostasis in these tissues. Methods This study used a nonhuman primate model (Macaca mulatta) with naturally-occurring periodontitis (n = 34) and experimental ligature-induced periodontitis (n = 36) to describe the features of gene expression for an array of damage-associate molecular patterns (DAMPs) or alarmins within the gingival tissues. The animals were age stratified into: ≤3 years (Young), 7-12 years (Adolescent), 12-15 years (Adult) and 17-23 years (Aged). Gingival tissue biopsies were examined via microarray. The analysis focused on 51 genes representative of the DAMPs/alarmins family of host cell warning factors and 18 genes associated with tissue destructive processed in the gingival tissues. Bacterial plaque samples were collected by curette sampling and 16S rRNA gene sequences used to describe the oral microbiome. Results A subset of DAMPs/alarmins were expressed in healthy and naturally-occurring periodontitis tissues in the animals and suggested local effects on gingival tissues leading to altered levels of DAMPs/alarmins related to age and disease. Significant differences from adult healthy levels were most frequently observed in the young and adolescent animals with few representatives in this gene array altered in the healthy aged gingival tissues. Of the 51 target genes, only approximately ⅓ were altered by ≥1.5-fold in any of the age groups of animals during disease, with those increases observed during disease initiation. Distinctive positive and negative correlations were noted with the DAMP/alarmin gene levels and comparative expression changes of tissue destructive molecules during disease across the age groups. Finally, specific correlations of DAMP/alarmin genes and relative abundance of particular microbes were observed in health and resolution samples in younger animals, while increased correlations during disease in the older groups were noted. Conclusions Thus, using this human-like preclinical model of induced periodontitis, we demonstrated the dynamics of the activation of the DAMP/alarmin warning system in the gingival tissues that showed some specific differences based on age.
Collapse
Affiliation(s)
- O. A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S. S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - J. L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
7
|
Huang Y, Zhang L, Tan L, Zhang C, Li X, Wang P, Gao L, Zhao C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023; 46:1871-1886. [PMID: 37310646 DOI: 10.1007/s10753-023-01847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.
Collapse
Affiliation(s)
- Yina Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Ebersole JL, Kirakodu SS, Nguyen LM, Gonzalez OA. Sex effects on gingival transcriptomic patterns during initiation, progression, and resolution of periodontitis. J Periodontol 2023; 94:1018-1031. [PMID: 36853808 DOI: 10.1002/jper.23-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/12/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
BACKGROUND The prevalence and severity of periodontitis demonstrates altered population distribution with age, sex, and race and ethnicity. While males exhibit greater frequency of disease, particularly with aging, the underlying basis for this observation remains obscure. OBJECTIVE This study used a nonhuman primate (Macaca mulatta) model of experimental ligature-induced periodontitis in adult animals to evaluate gingival transcriptomic differences stratified based upon sex of the animal. METHODS The 18 animals represented humans ages 40-80 years, with gingival tissue samples obtained at baseline, 0.5 months (initiation), 1 and 3 months (progression), and at 5 months that were 60 days after ligature removal for clinical disease resolution. Microarray analysis was used to quantify gene expression profiles in the gingival tissues. RESULTS The results demonstrated clear gene expression differences in healthy (baseline) tissues between the sexes, with elevations in females associated with immune responses and elevation in males related to tissue structural genes. With disease initiation, fewer genes differed between the sexes, while these differences were significantly increased in progressing disease and resolution, particularly in male animals. Overexpressed biological processes showed tissue structural/functional genes at initiation, with host response pathways altered during disease progression. Resolution samples generally demonstrated biological processes of cellular metabolism that differed from baseline healthy samples. CONCLUSION The transcriptomic findings support sex as a biological variable in periodontitis using a nonhuman primate model of experimental periodontitis.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Linh M Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Cao N, Liu X, Hou Y, Deng Y, Xin Y, Xin X, Xiang X, Liu X, Yu W. 18-α-glycyrrhetinic acid alleviates oxidative damage in periodontal tissue by modulating the interaction of Cx43 and JNK/NF-κB pathways. Front Pharmacol 2023; 14:1221053. [PMID: 37538174 PMCID: PMC10394238 DOI: 10.3389/fphar.2023.1221053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Objective: Periodontitis is a common chronic inflammatory disease in which oxidative stress is one of the key pathogenic factors. Connexin43 (Cx43) is the most critical and widely distributed connexin isoform. When the organism undergoes a severe and sustained stress response, Cx43-mediated gap junctions (GJs) are believed to underlie the biology of tissue injury exacerbation and amplification. Notably, 18-α-glycyrrhetinic acid (GA) is a classical pharmacological inhibitor of GJs and has antioxidant potential. However, the regulatory role of GA in the redox signaling of periodontal tissues and the potential mechanisms of Cx43 in the pathogenesis of periodontitis remain uncertain. Methods: In this study, we evaluated the effects and mechanisms of GA in alleviating oxidative damage of periodontal tissues and cells by constructing an H2O2-induced oxidative stress model in human periodontal ligament cells (hPDLCs) and a periodontitis model in rats. Results: Cellular experiments showed that GA effectively attenuated H2O2-induced oxidative damage in hPDLCs by inhibiting the expression and function of Cx43. In addition, pretreatment of hPDLCs with either GA or SP600125 (a JNK inhibitor) inhibited the Cx43/JNK/NF-κB pathway, restored cell viability, and reduced apoptosis. Animal experiment results showed that GA intervention reduced alveolar bone resorption and periodontal tissue destruction, inhibited osteoclast differentiation, improved mitochondrial structural abnormalities and dysfunction in periodontal tissue, and decreased oxidative stress levels and apoptosis in rats with periodontitis. Conclusion: Overall, our findings suggest that the Cx43/JNK/NF-κB pathway may play a vital role to promote periodontitis progression, while GA reduces oxidative stress and apoptosis by inhibiting the interaction of Cx43 and JNK/NF-κB pathways, thus alleviating oxidative damage in the periodontal tissues.
Collapse
Affiliation(s)
- Niuben Cao
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaomeng Liu
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yubo Hou
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Deng
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yu Xin
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xirui Xin
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchen Xiang
- Department of Periodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Geriatric Stomatology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
11
|
Ebersole J, Kirakodu S, Nguyen L, Gonzalez O. Sex and Age Effects on Healthy Gingival Transcriptomic Patterns. J Dent Res 2023; 102:947-956. [PMID: 37232535 PMCID: PMC10399078 DOI: 10.1177/00220345231166310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Many chronic inflammatory diseases demonstrate demographic associations such as sex, age, and race-ethnicity. Periodontitis has been found to be increased with age and in males. This study used nonhuman primates representing a human-like model for periodontitis and examined the gingival transcriptome stratified on sex and age. Thirty-six Macaca mulatta in 4 age groups-young (<3 y), adolescent (3-7 y), adult (12-15 y), and aged (>17 y)-with a healthy periodontium were used to characterize gene expression in healthy gingival tissues. Gene expression was compared to clinical measures of bleeding on probing (BOP) and probing pocket depth (PPD). The results demonstrated sex differences in number of up- and downregulated genes that increased with age. Female animals generally showed elevated expression of genes related to host immunoinflammatory responses, and males showed increased expression of tissue structural genes. Gene expression correlations with BOP and/or PPD showed minimal overlap between the sexes, while male animals demonstrated substantial overlap in genes that correlated with both BOP and PPD clinical features. A cluster analysis of genes significantly different between sexes showed a clear sex and age discrimination in the young and adolescent animals. In the older groups, the genes clustered predominately by sex, irrespective of age group. A pathway analysis identified that significant gene expression patterns were quite similar in adolescent and adult animals, while the young and aged samples were quite distinct. The results confirmed substantial sex related variations in gingival tissue biology that were affected by age and observed even in adolescent animals. This suggests that "programming" of the gingival tissues related to sex can occur rather early in life and presage variations in future risk for periodontitis.
Collapse
Affiliation(s)
- J.L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - S.S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - L.M. Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV, USA
| | - O.A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Qi X, Bie M, Jiang R, Kang F. HIF-1α regulates osteoclastogenesis and alveolar bone resorption in periodontitis via ANGPTL4. Arch Oral Biol 2023; 153:105736. [PMID: 37290266 DOI: 10.1016/j.archoralbio.2023.105736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE The mechanism of alveolar bone resorption caused by periodontitis is not fully understood. We sought to investigate whether microenvironmental changes of local hypoxia are involved in these processes. METHODS In this study, periodontitis models of control mice and knockout of Hypoxia Induced Factor 1α (HIF-1α) harboring Cathepsin K (CTSK) Cre mice were constructed to study the effect of osteoclasts affected by hypoxic environment on alveolar bone resorption. RAW264.7 cells were subsequently induced by CoCl2 to observe the effects of HIF-1α and Angiopoietin-like Protein 4 (ANGPTL4) on osteoblast differentiation and fusion. RESULTS The degree of alveolar bone resorption in the periodontitis tissues was lesser in mice with conditional knockout of HIF-1α in osteoclasts than in wild-type mice. We also observed that HIF-1α conditional knockout mice had fewer osteoclasts on the alveolar bone surface than control mice. HIF-1α increases the expression of ANGPTL4 and promotes the differentiation of RAW264.7 cells into osteoblasts and cell fusion under chemically simulated hypoxic conditions. CONCLUSION HIF-1α regulates osteoclastogenesis and participates in bone resorption in periodontitis through ANGPTL4.
Collapse
Affiliation(s)
- Xin Qi
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - MiaoMiao Bie
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Runyang Jiang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Feiwu Kang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai, China; Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
13
|
Gonzalez OA, Kirakodu SS, Nguyen LM, Ebersole JL. Gingival transcriptomic patterns of macrophage polarization during initiation, progression, and resolution of periodontitis. Clin Exp Immunol 2023; 211:248-268. [PMID: 36571202 PMCID: PMC10038328 DOI: 10.1093/cei/uxac122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Phenotypic and functional heterogeneity of macrophages is clearly a critical component of their effective functions in innate and adaptive immunity. This investigation hypothesized that altered profiles of gene expression in gingival tissues in health, disease, and resolution would reflect changes in macrophage phenotypes occurring in these tissues. The study used a nonhuman primate model to evaluate gene expression profiles as footprints of macrophage variation using a longitudinal experimental model of ligature-induced periodontitis in animals from 3 to 23 years of age to identify aging effects on the gingival environment. Significant differences were observed in distribution of expressed gene levels for M0, M1, and M2 macrophages in healthy tissues with the younger animals showing the least expression. M0 gene expression increased with disease in all but the aged group, while M1 was increased in adult and young animals, and M2 in all age groups, as early as disease initiation (within 0.5 months). Numerous histocompatibility genes were increased with disease, except in the aged samples. An array of cytokines/chemokines representing both M1 and M2 cells were increased with disease showing substantial increases with disease initiation (e.g. IL1A, CXCL8, CCL19, CCL2, CCL18), although the aged tissues showed a more limited magnitude of change across these macrophage genes. The analytics of macrophage genes at sites of gingival health, disease, and resolution demonstrated distinct profiles of host response interactions that may help model the disease mechanisms occurring with the formation of a periodontal lesion.
Collapse
Affiliation(s)
- Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Linh M Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of NevadaLas Vegas, Las Vegas, NV, USA
| | - Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of NevadaLas Vegas, Las Vegas, NV, USA
| |
Collapse
|
14
|
Wang H, Wang X, Ma L, Huang X, Peng Y, Huang H, Gao X, Chen Y, Cao Z. PGC-1 alpha regulates mitochondrial biogenesis to ameliorate hypoxia-inhibited cementoblast mineralization. Ann N Y Acad Sci 2022; 1516:300-311. [PMID: 35917205 DOI: 10.1111/nyas.14872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hypoxia often occurs in inflammatory tissues, such as tissues affected by periodontitis and apical periodontitis lesions. Mitochondrial biogenesis can be disrupted in hypoxia. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a core factor required for mitochondrial biogenesis. Cementoblasts are root surface lining cells that play an integral role in cementum formation. There is a dearth of research on the effect of hypoxia on cementoblasts and underlying mechanisms, particularly in relation to mitochondrial biogenesis during the hypoxic process. In this study, we found that the expression of hypoxia inducible factor-1α was elevated in apical periodontitis tissues in vivo. In contrast, periapical lesions exhibited a reduction of PGC-1α expression. For in vitro experiments, cobalt chloride (CoCl2 ) was used to induce hypoxia. We observed that CoCl2 -induced hypoxia suppressed the mineralization ability and mitochondrial biogenesis of cementoblasts, accompanied by abnormal mitochondria morphology. Furthermore, we found that CoCl2 blocked the p38 pathway, while it activated the Erk1/2 pathway, with the former upregulating the expression of PGC-1α, while the latter reversed the effects. Overall, our findings demonstrate that mitochondrial biogenesis, especially via PGC-1α, is impaired during cementogenesis in the context of CoCl2 -induced hypoxia, dependent on the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xudong Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Ning W, Acharya A, Li S, Schmalz G, Huang S. Identification of Key Pyroptosis-Related Genes and Distinct Pyroptosis-Related Clusters in Periodontitis. Front Immunol 2022; 13:862049. [PMID: 35844512 PMCID: PMC9281553 DOI: 10.3389/fimmu.2022.862049] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Aim This study aims to identify pyroptosis-related genes (PRGs), their functional immune characteristics, and distinct pyroptosis-related clusters in periodontitis. Methods Differentially expressed (DE)-PRGs were determined by merging the expression profiles of GSE10334, GSE16134, and PRGs obtained from previous literatures and Molecular Signatures Database (MSigDB). Least absolute shrinkage and selection operator (LASSO) regression was applied to screen the prognostic PRGs and develop a prognostic model. Consensus clustering was applied to determine the pyroptosis-related clusters. Functional analysis and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the biological characteristics and immune activities of the clusters. The hub pyroptosis-related modules were defined using weighted correlation network analysis (WGCNA). Results Of the 26 periodontitis-related DE-PRGs, the highest positive relevance was for High-Mobility Group Box 1 (HMGB1) and SR-Related CTD Associated Factor 11 (SCAF11). A 14-PRG-based signature was developed through the LASSO model. In addition, three pyroptosis-related clusters were obtained based on the 14 prognostic PRGs. Caspase 3 (CASP3), Granzyme B (GZMB), Interleukin 1 Alpha (IL1A), IL1Beta (B), IL6, Phospholipase C Gamma 1 (PLCG1) and PYD And CARD Domain Containing (PYCARD) were dysregulated in the three clusters. Distinct biological functions and immune activities, including human leukocyte antigen (HLA) gene expression, immune cell infiltration, and immune pathway activities, were identified in the three pyroptosis-related clusters of periodontitis. Furthermore, the pink module associated with endoplasmic stress-related functions was found to be correlated with cluster 2 and was suggested as the hub pyroptosis-related module. Conclusion The study identified 14 key pyroptosis-related genes, three distinct pyroptosis-related clusters, and one pyroptosis-related gene module describing several molecular aspects of pyroptosis in the pathogenesis and immune micro-environment regulation of periodontitis and also highlighted functional heterogeneity in pyroptosis-related mechanisms.
Collapse
Affiliation(s)
- Wanchen Ning
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Aneesha Acharya
- Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University Leipzig, Leipzig, Germany
| | - Shaohong Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Inhibition of TRPA1 Ameliorates Periodontitis by Reducing Periodontal Ligament Cell Oxidative Stress and Apoptosis via PERK/eIF2 α/ATF-4/CHOP Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107915. [PMID: 35720191 PMCID: PMC9205716 DOI: 10.1155/2022/4107915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023]
Abstract
Objective In periodontitis, excessive oxidative stress combined with subsequent apoptosis and cell death further exacerbated periodontium destruction. TRPA1, an important transient receptor potential (TRP) cation channel, may participate in the process. This study is aimed at exploring the role and the novel therapeutic function of TRPA1 in periodontitis. Methods Periodontal ligament cells or tissues derived from healthy and periodontitis (PDLCs/Ts and P-PDLCs/Ts) were used to analyze the oxidative and apoptotic levels and TRPA1 expression. TRPA1 inhibitor (HC030031) was administrated in inflammation induced by P. gingivalis lipopolysaccharide (P.g.LPS) to investigate the oxidative and apoptotic levels of PDLCs. The morphology of the endoplasmic reticulum (ER) and mitochondria was identified by transmission electron microscope, and the PERK/eIF2α/ATF-4/CHOP signal pathways were detected. Finally, HC030031 was administered to periodontitis mice to evaluate its effect on apoptotic and oxidative levels in the periodontium and the relieving of periodontitis. Results The oxidative, apoptotic levels and TRPA1 expression were higher in P-PDLC/Ts from periodontitis patients and in P.g.LPS-induced inflammatory PDLCs. TRPA1 inhibitor significantly decreased the intracellular calcium, oxidative stress, and apoptosis of inflammatory PDLCs and decreased ER stress by downregulating PERK/eIF2α/ATF-4/CHOP pathways. Meanwhile, the overall calcium ion decrease induced by EGTA also exerted similar antiapoptosis and antioxidative stress functions. In vivo, HC030031 significantly reduced oxidative stress and apoptosis in the gingiva and periodontal ligament, and less periodontium destruction was observed. Conclusion TRPA1 was highly related to periodontitis, and TRPA1 inhibitor significantly reduced oxidative and apoptotic levels in inflammatory PDLCs via inhibiting ER stress by downregulating PERK/eIF2α/ATF-4/CHOP pathways. It also reduced the oxidative stress and apoptosis in periodontitis mice thus ameliorating the development of periodontitis.
Collapse
|
17
|
Ebersole JL, Nagarajan R, Kirakodu SS, Gonzalez OA. Immunoglobulin gene expression profiles and microbiome characteristics in periodontitis in nonhuman primates. Mol Immunol 2022; 148:18-33. [PMID: 35665658 DOI: 10.1016/j.molimm.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Colonization of mucosal tissues throughout the body occurs by a wide array of bacteria in the microbiome that stimulate the cells and tissues, as well as respond to changes in the local milieu. A feature of periodontitis is the detection of adaptive immune responses to members of the oral microbiome that show specificity and changes with disease and treatment. Thus, variations in antibody responses are noted across the population and affected by aging, albeit, data are still unclear as to how these differences relate to disease risk and expression. This study used a nonhuman primate model of experimental periodontitis to track local microbiome changes as they related to the use and expression of a repertoire of immunoglobulin genes in gingival tissues. Gingival tissue biopsies from healthy tissues and following ligature-placement for disease initiation and progression provided gene expression analysis. Additionally, following removal of the ligatures, clinical healing occurs with gene expression in disease resolved tissues. Groups of 9 animals (young: <3 yrs., adolescent: 3-7 yrs., adult -12 to 15 yrs.; aged: 17-22 yrs) were used in the investigation. In healthy tissues, young and adolescent animals showed levels of expression of 78 Ig genes that were uniformly less than adults. In contrast, ⅔ of the Ig genes were elevated by > 2-fold in the aged samples. Specific increases in an array of the Ig gene transcripts were detected in adults at disease initiation and throughout progression, while increases in young and adolescent animals were observed only with disease progression, and in aged samples primarily late in disease progression. Resolved lesions continued to demonstrate elevated levels of Ig gene expression in only young, adolescent and adult animals. The array of Ig genes significantly correlated with inflammatory, tissue biology and hypoxia genes in the gingival tissues, with variations associated with age. In the young group of animals, specific members of the oral microbiome positively correlated with Ig gene expression, while in the older animals, many of these correlations were negative. Significant correlations were observed with a select assortment of bacterial OTUs and multiple Ig genes in both younger and older animal samples, albeit the genera/species showed little overlap. Incorporating this array of microbes and host responses clearly discriminated the various time points in transition from health to disease and resolution in both the young and adult animals. The results support a major importance of adaptive immune responses in the kinetics of periodontal lesion formation, and support aging effects on the repertoire of Ig genes that may relate to the increased prevalence and severity of periodontitis with age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, USA; Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Radhakrishnan Nagarajan
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield Clinic Health System, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA; Division of Periodontology, College of Dentistry, University of Kentucky, USA
| |
Collapse
|
18
|
Gao C, Li X, Zhao X, Yang P, Wang X, Chen X, Chen N, Chen F. Standardized studies of the oral microbiome: From technology-driven to hypothesis-driven. IMETA 2022; 1:e19. [PMID: 38868569 PMCID: PMC10989927 DOI: 10.1002/imt2.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2024]
Abstract
The microbiome is in a symbiotic relationship with the host. Among the microbial consortia in the human body, that in the oral cavity is complex. Instead of repeatedly confirming biomarkers of oral and systemic diseases, recent studies have focused on a unified clinical diagnostic standard in microbiology that reduces the heterogeneity caused by individual discrepancies. Research has also been conducted on other topics of greater clinical importance, including bacterial pathogenesis, and the effects of drugs and treatments. In this review, we divide existing research into technology-driven and hypothesis-driven, according to whether there is a clear research hypothesis. This classification allows the demonstration of shifts in the direction of oral microbiology research. Based on the shifts, we suggested that establishing clear hypotheses may be the solution to major research challenges.
Collapse
Affiliation(s)
- Chuqi Gao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xuantao Li
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaole Zhao
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Peiyue Yang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiao Wang
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Xiaoli Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| | - Ning Chen
- Department of GastroenterologyPeking University People's HospitalBeijingChina
| | - Feng Chen
- Central LaboratoryPeking University Hospital of StomatologyBeijingChina
| |
Collapse
|
19
|
Gonzalez OA, Kirakodu S, Nguyen LM, Orraca L, Novak MJ, Gonzalez-Martinez J, Ebersole JL. Comparative Analysis of Gene Expression Patterns for Oral Epithelial Cell Functions in Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 3:863231. [PMID: 35677025 PMCID: PMC9169451 DOI: 10.3389/froh.2022.863231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The structure and function of epithelial cells are critical for the construction and maintenance of intact epithelial surfaces throughout the body. Beyond the mechanical barrier functions, epithelial cells have been identified as active participants in providing warning signals to the host immune and inflammatory cells and in communicating various detailed information on the noxious challenge to help drive specificity in the characteristics of the host response related to health or pathologic inflammation. Rhesus monkeys were used in these studies to evaluate the gingival transcriptome for naturally occurring disease samples (GeneChip® Rhesus Macaque Genome Array) or for ligature-induced disease (GeneChip® Rhesus Gene 1.0 ST Array) to explore up to 452 annotated genes related to epithelial cell structure and functions. Animals were distributed by age into four groups: ≤ 3 years (young), 3–7 years (adolescent), 12–16 years (adult), and 18–23 years (aged). For naturally occurring disease, adult and aged periodontitis animals were used, which comprised 34 animals (14 females and 20 males). Groups of nine animals in similar age groups were included in a ligature-induced periodontitis experiment. A buccal gingival sample from either healthy or periodontitis-affected tissues were collected, and microarray analysis performed. The overall results of this investigation suggested a substantial alteration in epithelial cell functions that occurs rapidly with disease initiation. Many of these changes were prolonged throughout disease progression and generally reflect a disruption of normal cellular functions that would presage the resulting tissue destruction and clinical disease measures. Finally, clinical resolution may not signify biological resolution and represent a continued risk for disease that may require considerations for additional biologically specific interventions to best manage further disease.
Collapse
Affiliation(s)
- Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Linh M. Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Luis Orraca
- School of Dentistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Michael J. Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Janis Gonzalez-Martinez
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
- *Correspondence: Jeffrey L. Ebersole
| |
Collapse
|
20
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
21
|
Chen G, Sun Q, Cai Q, Zhou H. Outer Membrane Vesicles From Fusobacterium nucleatum Switch M0-Like Macrophages Toward the M1 Phenotype to Destroy Periodontal Tissues in Mice. Front Microbiol 2022; 13:815638. [PMID: 35391731 PMCID: PMC8981991 DOI: 10.3389/fmicb.2022.815638] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is a chronic inflammatory oral disease that affects nearly 50% of all adults. Fusobacterium nucleatum (F. nucleatum) is known to be involved in the formation and development of periodontitis. Outer membrane vesicles (OMVs) harboring toxic bacterial components are continuously released during F. nucleatum growth and regulate the extent of the inflammatory response by controlling the functions of immune and non-immune cells in tissues. Macrophages are important immune cells in periodontal tissue that resist pathogen invasion and play an important role in the pathophysiological process of periodontitis. However, the role of the interaction between F. nucleatum OMVs and macrophages in the occurrence and development of periodontitis has not been studied. The purpose of this study was to clarify the effect of F. nucleatum OMVs on the polarization of macrophages and the roles of this specific polarization and F. nucleatum OMVs in the pathophysiology of periodontitis. The periodontitis model was established by inducing ligation in C57BL/6 mice as previously described. Micro-CT, RT-qPCR, hematoxylin-eosin (H&E) and tartrate acid phosphatase (TRAP) staining assays were performed to analyze the periodontal tissue, alveolar bone loss, number of osteoclasts and expression of inflammatory factors in gingival tissue. The changes in the state and cytokine secretion of bone marrow-derived macrophages (BMDMs) stimulated by F. nucleatum OMVs were observed in vivo by confocal microscopy, flow cytometry, Western blot and ELISA. Mouse gingival fibroblasts (MGFs) were isolated and then cocultured with macrophages. The effects of F. nucleatum OMVs on the proliferation and apoptosis of MGFs were analyzed by flow cytometry and lactate dehydrogenase (LDH) assays. The periodontitis symptoms of mice in the F. nucleatum OMVs + ligation group were more serious than those of mice in the simple ligation group, with more osteoclasts and more inflammatory factors (IL-1β, IL-6, and TNF-α) being observed in their gingival tissues. M0 macrophages transformed into M1 macrophages after the stimulation of BMDMs with F. nucleatum OMVs, and the M1 macrophages then released more inflammatory cytokines. Analysis of the coculture model showed that the MGF apoptosis and LDH release in the inflammatory environment were increased by F. nucleatum OMV treatment. In conclusion, F. nucleatum OMVs were shown to aggravate periodontitis, alveolar bone loss and the number of osteoclasts in an animal model of periodontitis. F. nucleatum OMVs promoted the polarization of macrophages toward the proinflammatory M1 phenotype, and the inflammatory environment further aggravated the toxicity of F. nucleatum OMVs on MGFs. These results suggest that M1 macrophages and F. nucleatum OMVs play roles in the occurrence and development of periodontitis.
Collapse
Affiliation(s)
- Gang Chen
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiang Sun
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - QiaoLing Cai
- Department of Stomatology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - HongWei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Ebersole JL, Kirakodu S, Nguyen L, Gonzalez OA. Gingival Transcriptome of Innate Antimicrobial Factors and the Oral Microbiome With Aging and Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 3:817249. [PMID: 35330821 PMCID: PMC8940521 DOI: 10.3389/froh.2022.817249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The epithelial barrier at mucosal sites comprises an important mechanical protective feature of innate immunity, and is intimately involved in communicating signals of infection/tissue damage to inflammatory and immune cells in these local environments. A wide array of antimicrobial factors (AMF) exist at mucosal sites and in secretions that contribute to this innate immunity. A non-human primate model of ligature-induced periodontitis was used to explore characteristics of the antimicrobial factor transcriptome (n = 114 genes) of gingival biopsies in health, initiation and progression of periodontal lesions, and in samples with clinical resolution. Age effects and relationship of AMF to the dominant members of the oral microbiome were also evaluated. AMF could be stratified into 4 groups with high (n = 22), intermediate (n = 29), low (n = 18) and very low (n = 45) expression in healthy adult tissues. A subset of AMF were altered in healthy young, adolescent and aged samples compared with adults (e.g., APP, CCL28, DEFB113, DEFB126, FLG2, PRH1) and were affected across multiple age groups. With disease, a greater number of the AMF genes were affected in the adult and aged samples with skewing toward decreased expression, for example WDC12, PGLYRP3, FLG2, DEFB128, and DEF4A/B, with multiple age groups. Few of the AMF genes showed a >2-fold increase with disease in any age group. Selected AMF exhibited significant positive correlations across the array of AMF that varied in health and disease. In contrast, a rather limited number of the AMF significantly correlated with members of the microbiome; most prominent in healthy samples. These correlated microbes were different in younger and older samples and differed in health, disease and resolution samples. The findings supported effects of age on the expression of AMF genes in healthy gingival tissues showing a relationship to members of the oral microbiome. Furthermore, a dynamic expression of AMF genes was related to the disease process and showed similarities across the age groups, except for low/very low expressed genes that were unaffected in young samples. Targeted assessment of AMF members from this large array may provide insight into differences in disease risk and biomolecules that provide some discernment of early transition to disease.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Linh Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Manuylov BM, Afanasyev SS, Manuylova EB, Zatevalov AM, Simonenko SV, Borisova OY, Voropaeva EA, Ziborova NV. Correction of the oropharyngeal and gut microbiota in children by plant extracts containing natural products. MICROBIOLOGY INDEPENDENT RESEARCH JOURNAL 2022. [DOI: 10.18527/2500-2236-2022-9-1-1-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The widespread use of antibacterial drugs for the treatment of respiratory diseases causes antimicrobial resistance in opportunistic microorganisms, which leads to the chronic forms of respiratory diseases and contributes to the risk of repeated respiratory infections. One of the new therapeutic solutions is the use of multicomponent water-soluble plant extracts. The goal of this study was to evaluate the antibacterial efficacy of the extracts of multicomponent herbal remedies versus the synthetic antiseptic for the treatment of the oropharyngeal and gut opportunistic microflora in children with chronic tonsillitis.In a retrospective study, we compared the effectiveness of the plant extract Tonzinal (experimental group, 100 patients) versus the Miramistin antiseptic agent (control group, 40 patients) for the treatment of chronic tonsillitis in children 5 to 15 years old using various treatment regimens.The oropharyngeal microbiocenosis was investigated by the bacteriological analysis of smears from the posterior wall of the pharynx and tonsils. Bacterial strains were isolated by inoculation on liquid agar media with the subsequent identification of Staphylococcus aureus, Streptococcus pyogenes, Candida spp., Moraxela cataralis, and Mycoplasma pneumonie according to the morphological and biochemical characteristics. For the bacteriological analysis of gut microbiocenosis, Staphylococcus aureus, Streptococcus spp., Candida spp., Klebsiella spp., Clostridiums spp., and Proteus spp. were isolated from the fecal filtrate and then identified by the same methods. The occurrence rate of microorganisms in patients of the experimental and control groups was compared before and after the 10-day course of therapy.A statistically significant decrease in the occurrence rate of Staphylococcus aureus (from 25% to 0%, p<0.01) and Candida spp. (from 18% to 0%, p<0.01) in the oropharynx of patients in the experimental group and from 20% to 7.5% and from 5% to 0% (p<0.05), respectively, in the control group was observed. A statistically significant decrease in the occurrence rate of Streptococcus pyogenes was only observed in the experimental group (from 30% to 0%, p<0.01). Treatment with Tonzinal or Miramistin did not lead to the statistically significant changes in the occurrence rate of opportunistic microorganisms in the gut microflora of the patients in both groups. Therefore, we have shown a higher antimicrobial efficacy of Tonzinal versus the Miramistin antiseptic for the treatment of the oropharyngeal opportunistic microorganisms in children with chronic tonsillitis.
Collapse
Affiliation(s)
- B. M. Manuylov
- Gabrichevsky Institute of Epidemiology and Microbiology (Gabrichevsky MRIEM)
| | - S. S. Afanasyev
- Gabrichevsky Institute of Epidemiology and Microbiology (Gabrichevsky MRIEM)
| | - E. B. Manuylova
- Gabrichevsky Institute of Epidemiology and Microbiology (Gabrichevsky MRIEM)
| | - A. M. Zatevalov
- Gabrichevsky Institute of Epidemiology and Microbiology (Gabrichevsky MRIEM)
| | | | - O. Yu. Borisova
- Gabrichevsky Institute of Epidemiology and Microbiology (Gabrichevsky MRIEM)
| | - E. A. Voropaeva
- Gabrichevsky Institute of Epidemiology and Microbiology (Gabrichevsky MRIEM)
| | - N. V. Ziborova
- Veltisсhev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University
| |
Collapse
|
24
|
Ebersole JL, Nagarajan R, Kirakodu S, Gonzalez OA. Oral Microbiome and Gingival Gene Expression of Inflammatory Biomolecules With Aging and Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 2:725115. [PMID: 35048048 PMCID: PMC8757787 DOI: 10.3389/froh.2021.725115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Although data describe the presence and increase of inflammatory mediators in the local environment in periodontitis vs. health in humans, details regarding how these responses evolve in the transition from health to disease, changes during disease progression, and features of a resolved lesion remain unknown. This study used a nonhuman primate model of ligature-induced periodontitis in young, adolescent, adult, and aged animals to document features of inflammatory response affected by age. Rhesus monkeys had ligatures tied and provided gingival tissue biopsy specimens at baseline, 0.5, 1, and 3 months of disease and at 5 months of the study, which was 2 months post-ligature removal for clinically resolved tissues. The transcriptome was assessed using microarrays for chemokine (n = 41), cytokine (n = 45), chemokine receptor (n = 21), cytokine receptor (n = 37), and lipid mediator (n = 31) genes. Limited differences were noted in healthy tissues for chemokine expression with age; however, chemokine receptor genes were decreased in young but elevated in aged samples. IL1A, IL36A, and IL36G cytokines were decreased in the younger groups, with IL36A elevated in aged animals. IL10RA/IL10RB cytokine receptors were altered with age. Striking variation in the lipid mediator genes in health was observed with nearly 60% of these genes altered with age. A specific repertoire of chemokine and chemokine receptor genes was affected by the disease process, predominated by changes during disease initiation. Cytokine/cytokine receptor genes were also elevated with disease initiation, albeit IL36B, IL36G, and IL36RN were all significantly decreased throughout disease and resolution. Significant changes were observed in similar lipid mediator genes with disease and resolution across the age groups. Examination of the microbiome links to the inflammatory genes demonstrated that specific microbes, including Fusobacterium, P. gingivalis, F. alocis, Pasteurellaceae, and Prevotella are most frequently significantly correlated. These correlations were generally positive in older animals and negative in younger specimens. Gene expression and microbiome patterns from baseline were distinctly different from disease and resolution. These results demonstrate patterns of inflammatory gene expression throughout the phases of the induction of a periodontal disease lesion. The patterns show a very different relationship to specific members of the oral microbiome in younger compared with older animals.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Radhakrishnan Nagarajan
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield Clinic Health System, Marshfield, WI, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
25
|
A Microbiome-Derived Peptide Induces Apoptosis of Cells from Different Tissues. Cells 2021; 10:cells10112885. [PMID: 34831108 PMCID: PMC8616533 DOI: 10.3390/cells10112885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022] Open
Abstract
Apoptosis is a programmed cell death involved in embryogenesis and tissue homeostasis under physiological conditions. However, abnormalities in the process of apoptosis are implicated in the pathogenesis of various diseases. The human microbiota may release products that induce apoptosis of host cells. We recently identified a novel microbiome-derived peptide called corisin that worsens lung fibrosis by inducing apoptosis of lung epithelial cells. We hypothesized that corisin and a corisin-like peptide might also induce apoptosis of cells from different tissues. We cultured podocytes, renal tubular epithelial cells, keratinocytes, retinal and intestinal cells treated with corisin and evaluated apoptosis by flow cytometry and Western blotting. Although at different grades, flow cytometry analysis and Western blotting showed that corisin and a corisin-like peptide induced apoptosis of podocytes, keratinocytes, tubular epithelial cells, retinal, and intestinal cells. In addition, we found that corisin synergistically enhances the proapoptotic activity of transforming growth factor-β1 on podocytes. In conclusion, these results suggest that corisin and corisin-like peptides may play a role in the pathogenesis of disease in different organs by promoting apoptosis of parenchymal cells.
Collapse
|
26
|
Khor B, Snow M, Herrman E, Ray N, Mansukhani K, Patel KA, Said-Al-Naief N, Maier T, Machida CA. Interconnections Between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance Between Systemic Health and Disease. Microorganisms 2021; 9:496. [PMID: 33652903 PMCID: PMC7996936 DOI: 10.3390/microorganisms9030496] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
The human microbiota represents a complex array of microbial species that influence the balance between the health and pathology of their surrounding environment. These microorganisms impart important biological benefits to their host, such as immune regulation and resistance to pathogen colonization. Dysbiosis of microbial communities in the gut and mouth precede many oral and systemic diseases such as cancer, autoimmune-related conditions, and inflammatory states, and can involve the breakdown of innate barriers, immune dysregulation, pro-inflammatory signaling, and molecular mimicry. Emerging evidence suggests that periodontitis-associated pathogens can translocate to distant sites to elicit severe local and systemic pathologies, which necessitates research into future therapies. Fecal microbiota transplantation, probiotics, prebiotics, and synbiotics represent current modes of treatment to reverse microbial dysbiosis through the introduction of health-related bacterial species and substrates. Furthermore, the emerging field of precision medicine has been shown to be an effective method in modulating host immune response through targeting molecular biomarkers and inflammatory mediators. Although connections between the human microbiome, immune system, and systemic disease are becoming more apparent, the complex interplay and future innovations in treatment modalities will become elucidated through continued research and cross-disciplinary collaboration.
Collapse
Affiliation(s)
- Brandon Khor
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Michael Snow
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Elisa Herrman
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nicholas Ray
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Kunal Mansukhani
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Karan A. Patel
- Academic DMD Program, Oregon Health & Science University, 2730 SW Moody Avenue, Portland, OR 97201, USA; (B.K.); (M.S.); (E.H.); (N.R.); (K.M.); (K.A.P.)
| | - Nasser Said-Al-Naief
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Tom Maier
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| | - Curtis A. Machida
- Department of Integrative Biomedical and Diagnostic Sciences, School of Dentistry, Oregon Health & Science University 2730 SW Moody Avenue, Portland, OR 97201, USA; (N.S.-A.-N.); (T.M.)
| |
Collapse
|