1
|
Marchese AM, Fries L, Beyhaghi H, Vadivale M, Zhu M, Cloney-Clark S, Plested JS, Chung AW, Dunkle LM, Kalkeri R. Mechanisms and implications of IgG4 responses to SARS-CoV-2 and other repeatedly administered vaccines. J Infect 2024; 89:106317. [PMID: 39419185 DOI: 10.1016/j.jinf.2024.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Vaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19. The basis for enhanced IgG4 induction by vaccines is poorly understood but may be associated with platform- or dose regimen-specific differences in antigen exposure and/or cytokine stimulation. The clinical implications of vaccine-induced IgG4 responses remain uncertain, though collective evidence suggests that proportional increases in IgG4 might reduce vaccine antigen-specific immunity. Additional work is needed to determine underlying mechanisms and to elucidate what role IgG4 may play in modifications of vaccine-induced immunity to disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | | | | |
Collapse
|
2
|
O’Reilly S, Byrne J, Feeney ER, Mallon PWG, Gautier V. Navigating the Landscape of B Cell Mediated Immunity and Antibody Monitoring in SARS-CoV-2 Vaccine Efficacy: Tools, Strategies and Clinical Trial Insights. Vaccines (Basel) 2024; 12:1089. [PMID: 39460256 PMCID: PMC11511438 DOI: 10.3390/vaccines12101089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Correlates of Protection (CoP) are biomarkers above a defined threshold that can replace clinical outcomes as primary endpoints, predicting vaccine effectiveness to support the approval of new vaccines or follow up studies. In the context of COVID-19 vaccination, CoPs can help address challenges such as demonstrating vaccine effectiveness in special populations, against emerging SARS-CoV-2 variants or determining the durability of vaccine-elicited immunity. While anti-spike IgG titres and viral neutralising capacity have been characterised as CoPs for COVID-19 vaccination, the contribution of other components of the humoral immune response to immediate and long-term protective immunity is less well characterised. This review examines the evidence supporting the use of CoPs in COVID-19 clinical vaccine trials, and how they can be used to define a protective threshold of immunity. It also highlights alternative humoral immune biomarkers, including Fc effector function, mucosal immunity, and the generation of long-lived plasma and memory B cells and discuss how these can be applied to clinical studies and the tools available to study them.
Collapse
Affiliation(s)
- Sophie O’Reilly
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Byrne
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eoin R. Feeney
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Patrick W. G. Mallon
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland
| | - Virginie Gautier
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Belfield, Dublin 4, Ireland
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Bai S, Zhou S, Zhang J, Chen W, Lv M, Wang J, Zhang A, Wu J, Zhao W. Immunogenicity and safety of different combinations involving a third booster dose of SARS-CoV-2 inactivated vaccine, inactivated quadrivalent influenza vaccine, and 23-valent pneumococcal polysaccharide vaccine in adults aged ≥60 years: a phase 4, randomized, open-label study. Front Immunol 2024; 15:1437267. [PMID: 39229259 PMCID: PMC11368774 DOI: 10.3389/fimmu.2024.1437267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Background Concomitant administration of COVID-19, influenza, and pneumococcal vaccines could reduce the burden on healthcare systems. However, the immunogenicity and safety of various combinations of a third booster dose of SARS-CoV-2 inactivated vaccine (CoronaVac), inactivated quadrivalent influenza vaccine (IIV4), and 23-valent pneumococcal polysaccharide vaccine (PPV23), particularly in different age groups, is still unknown. Methods A phase 4, randomized, open-label, controlled trial was conducted in Beijing, China. 636 healthy adults were divided into two age groups (18-59 and ≥60 years) and randomized equally into three groups: CoronaVac and IIV4 followed by PPV23; CoronaVac and PPV23 followed by IIV4; or CoronaVac followed by IIV4 and PPV23, with a 28-day interval between vaccinations. Immunogenicity was evaluated by measuring antibody titers, and safety was monitored. ClinicalTrials.gov Identifier: NCT05298800. Results Co-administration of a third dose of CoronaVac, IIV4, and PPV23 in any combination was safe. Among adults aged 18-59, co-administration with PPV23 maintained non-inferiority of antibody levels for CoronaVac and IIV4, despite a slight reduction in antibody responses. This reduction was not observed in participants ≥60 years. Furthermore, co-administration of IIV4 and PPV23 affected seroconversion rates for both vaccines. Conclusions Co-administration of the third dose of SARS-CoV-2 inactivated vaccine with the influenza vaccine, followed by PPV23, may be optimal for adults aged 18-59. In adults ≥60, all vaccine combinations were immunogenic, suggesting a flexible vaccination approach. Since antibody measurements were taken 28 days post-vaccination, ongoing surveillance is essential to assess the longevity of the immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiang Wu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Wei Zhao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
4
|
Reinig S, Shih SR. Non-neutralizing functions in anti-SARS-CoV-2 IgG antibodies. Biomed J 2024; 47:100666. [PMID: 37778697 PMCID: PMC10825350 DOI: 10.1016/j.bj.2023.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023] Open
Abstract
Most individuals infected with or vaccinated against COVID-19 develop antigenic neutralizing immunoglobulin G (IgG) antibodies against the SARS-CoV-2 spike protein. Although neutralizing antibodies are biomarkers of the adaptive immune response, their mere presence is insufficient to explain the protection afforded against the disease or its pathology. IgG exhibits other secondary effector functions that activate innate immune components, including complement, natural killer cells, and macrophages. The affinity for effector cells depends on the isotypes and glycosylation of IgG antibodies. The anti-spike IgG titer should be sufficient to provide significant Fc-mediated effects in severe COVID-19, mRNA, and protein subunit vaccinations. In combination with aberrant effector cells, pro-inflammatory afucosylated IgG1 and IgG3 may be detrimental in severe COVID-19. The antibody response of mRNA vaccines leads to higher fucosylation and a less inflammatory IgG profile, with a long-term shift to IgG4, which is correlated with protection from disease.
Collapse
Affiliation(s)
- Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Nziza N, Deng Y, Wood L, Dhanoa N, Dulit-Greenberg N, Chen T, Kane AS, Swank Z, Davis JP, Demokritou M, Chitnis AP, Fasano A, Edlow AG, Jain N, Horwitz BH, McNamara RP, Walt DR, Lauffenburger DA, Julg B, Shreffler WG, Alter G, Yonker LM. Humoral profiles of toddlers and young children following SARS-CoV-2 mRNA vaccination. Nat Commun 2024; 15:905. [PMID: 38291080 PMCID: PMC10827750 DOI: 10.1038/s41467-024-45181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Although young children generally experience mild symptoms following infection with SARS-CoV-2, severe acute and long-term complications can occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in children ages 5 years and older, and in adults, corresponding with substantial protection against hospitalizations and severe disease. Whether similar immune responses and humoral protection can be observed in vaccinated infants and young children, who have a developing and vulnerable immune system, remains poorly understood. To study the impact of mRNA vaccination on the humoral immunity of infant, we use a system serology approach to comprehensively profile antibody responses in a cohort of children ages 6 months to 5 years who were vaccinated with the mRNA-1273 COVID-19 vaccine (25 μg). Responses are compared with vaccinated adults (100 μg), in addition to naturally infected toddlers and young children. Despite their lower vaccine dose, vaccinated toddlers elicit a functional antibody response as strong as adults, with higher antibody-dependent phagocytosis compared to adults, without report of side effects. Moreover, mRNA vaccination is associated with a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to natural infection, supporting that mRNA vaccination is effective at eliciting a robust antibody response in toddlers and young children.
Collapse
Affiliation(s)
- Nadège Nziza
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Yixiang Deng
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lianna Wood
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Department of Pediatric Gastroenterology, Boston, MA, USA
| | - Navneet Dhanoa
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | | | - Tina Chen
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Abigail S Kane
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Zoe Swank
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jameson P Davis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Melina Demokritou
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | - Anagha P Chitnis
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
| | - Alessio Fasano
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrea G Edlow
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Boston, MA, USA
- Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, MA, USA
| | - Nitya Jain
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bruce H Horwitz
- Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Department of Emergency Medicine, Boston, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - David R Walt
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Boris Julg
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Wayne G Shreffler
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lael M Yonker
- Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA.
- Massachusetts General Hospital, Mucosal Immunology and Biology Research Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Bai S, Kang Y, Chen W, Xie H, Zhang L, Lv M, Wang J, Wu J, Zhao W. Comparison of Immunogenicity of Alum and MF59-Like Adjuvant Inactivated SARS-CoV-2 Vaccines Against SARS-CoV-2 Variants in Elderly Mice. Viral Immunol 2023; 36:526-533. [PMID: 37625037 DOI: 10.1089/vim.2023.0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
The constant emergence of variants of concern (VOCs) challenges the effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines over time. This is most concerning in clinically vulnerable groups, such as older adults. This study aimed to determine whether the novel adjuvant MF59-like adjuvant can improve cross-immunity against VOCs in aged animals. We compared the humoral and cellular immune responses of Alum and MF59-like adjuvant-formulated inactivated coronavirus disease 2019 (COVID-19) vaccines against prototype and SARS-CoV-2 variants in 18-month-old mice. Our results showed that two doses of the MF59-like adjuvant inactivated vaccines induced more robust binding and pseudo-neutralizing antibodies (Nabs) against the SARS-CoV-2 prototype and VOCs compared to the Alum-adjuvant and reduced Omicron variant escapes from Nabs in aged mice. The humoral immune responses of inactivated vaccines were much lower against VOCs than the prototype with or without adjuvants; however, T cell responses against VOCs were not affected. In addition, Alum and MF59-like adjuvanted vaccines induced Th1-biased immune responses with increased interferon-gamma and interleukin (IL)-2 secreting cells, and hardly detectable IL-4 and IL-5. Furthermore, the MF59-like adjuvant vaccine produced 1.9-2.0 times higher cross-reactive T cell responses against the SARS-CoV-2 prototype and VOCs than the Alum adjuvant. Therefore, our data have important implications for vaccine adjuvant strategies against SARS-CoV-2 VOCs in older adults.
Collapse
Affiliation(s)
- Shuang Bai
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Yanli Kang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Weixin Chen
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Hui Xie
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Lichi Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Min Lv
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Jian Wang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| | - Wei Zhao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Respiratory Infectious Diseases, Beijing, China
| |
Collapse
|
7
|
St. Germain R, Bossard EL, Corey L, Sholukh AM. Serum concentration of antigen-specific IgG can substantially bias interpretation of antibody-dependent phagocytosis assay readout. iScience 2023; 26:107527. [PMID: 37664583 PMCID: PMC10469534 DOI: 10.1016/j.isci.2023.107527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/21/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Because virus neutralization cannot solely explain vaccine-induced, antibody-mediated protection, antibody effector functions are being considered as a potential correlate of protection (CoP). However, measuring effector functions at a fixed serum dilution for high throughput purposes makes it difficult to distinguish between the effect of serum antibody concentration and antibody properties such as epitopes, subclass, and glycosylation. To address this issue, we evaluated antibody-dependent cellular phagocytosis (ADCP) assay against SARS-CoV-2 spike. Adjustment of serum samples to the same concentration of antigen-specific IgG prior to the ADCP assay revealed concentration-independent differences in ADCP after mRNA vaccination in subjects with and without prior SARS-CoV-2 infection not detectable in assay performed with fixed serum dilution. Phagocytosis measured at different concentrations of spike-specific IgG strongly correlated with the area under the curve (AUC) indicating that ADCP assay can be performed at a standardized antibody concentration for the high throughput necessary for vaccine trial analyses.
Collapse
Affiliation(s)
- Russell St. Germain
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Emily L. Bossard
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| | - Lawrence Corey
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Anton M. Sholukh
- Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
8
|
Walker MR, Idorn M, Bennett A, Søgaard M, Salanti A, Ditlev SB, Barfod L. Characterization of SARS-CoV-2 humoral immune response in a subject with unique sampling: A case report. Immun Inflamm Dis 2023; 11:e910. [PMID: 37382252 PMCID: PMC10266136 DOI: 10.1002/iid3.910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND The development of vaccine candidates for COVID-19, and the administration of booster vaccines, has meant a significant reduction in COVID-19 related deaths world-wide and the easing of global restrictions. However, new variants of SARS-CoV-2 have emerged with less susceptibility to vaccine induced immunity leading to breakthrough infections among vaccinated people. It is generally acknowledged that immunoglobulins play the major role in immune-protection, primarily through binding to the SARS-COV-2 receptor binding domain (RBD) and thereby inhibiting viral binding to the ACE2 receptor. However, there are limited investigations of anti-RBD isotypes (IgM, IgG, IgA) and IgG subclasses (IgG1-4) over the course of vaccination and breakthrough infection. METHOD In this study, SARS-CoV-2 humoral immunity is examined in a single subject with unique longitudinal sampling. Over a two year period, the subject received three doses of vaccine, had two active breakthrough infections and 22 blood samples collected. Serological testing included anti-nucleocapsid total antibodies, anti-RBD total antibodies, IgG, IgA, IgM and IgG subclasses, neutralization and ACE2 inhibition against the wildtype (WT), Delta and Omicron variants. RESULTS Vaccination and breakthrough infections induced IgG, specifically IgG1 and IgG4 as well as IgM and IgA. IgG1 and IgG4 responses were cross reactive and associated with broad inhibition. CONCLUSION The findings here provide novel insights into humoral immune response characteristics associated with SARS-CoV-2 breakthrough infections.
Collapse
Affiliation(s)
- Melanie R. Walker
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Manja Idorn
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Anja Bennett
- Department of Mammalian ExpressionGlobal Research TechnologiesMåløvDenmark
| | | | - Ali Salanti
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Sisse B. Ditlev
- Copenhagen Center for Translational ResearchBispebjerg HospitalCopenhagenDenmark
| | - Lea Barfod
- Department of Immunology and Microbiology, Centre for Medical Parasitology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
9
|
Cortés-Sarabia K, Guzman-Silva V, Martinez-Pacheco KM, Meza-Hernández JA, Luna-Pineda VM, Leyva-Vázquez MA, Vences-Velázquez A, Beltrán-Anaya FO, Del Moral-Hernández O, Illades-Aguiar B. Detection of IgA and IgG Antibodies against the Structural Proteins of SARS-CoV-2 in Breast Milk and Serum Samples Derived from Breastfeeding Mothers. Viruses 2023; 15:966. [PMID: 37112946 PMCID: PMC10144911 DOI: 10.3390/v15040966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Background: COVID-19 vaccination or natural infection is associated with the development of immunity. The search of IgA and IgG antibodies against all the structural proteins (spike, nucleocapsid, membrane, and envelope) of SARS-CoV-2 in breastfeeding mothers is associated with immunity that can help the newborn avoid development of the infection. Methods: In this study, we analyzed 30 breastfeeding women that provided samples of breast milk and serum and evaluated the presence of IgA, total IgG, and subclasses against the structural proteins of SARS-CoV-2. Results: We reported a high seroprevalence to IgA (76.67-100%) and negativity to IgG against all analyzed proteins in breast milk. Seroprevalence in serum samples was around 10-36.67% to IgA and 23.3-60% to IgG. Finally, we detected the presence of the subclasses IgG1, IgG2, and IgG4 against all the structural proteins of SARS-CoV-2. Conclusions: This work provides evidence of the presence of IgA and IgG antibodies against the four structural proteins of SARS-CoV-2 in breast milk and serum samples derived from breastfeeding women, which can confer immunity to the newborn.
Collapse
Affiliation(s)
- Karen Cortés-Sarabia
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Vianey Guzman-Silva
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Karla Montserrat Martinez-Pacheco
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Jesús Alberto Meza-Hernández
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Víctor Manuel Luna-Pineda
- Unidad de Investigación en Inmunología y Proteómica, Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Amalia Vences-Velázquez
- Laboratorio de Inmunobiología y Diagnóstico Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Fredy Omar Beltrán-Anaya
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Oscar Del Moral-Hernández
- Laboratorio de Virología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo de los Bravo 39086, Mexico
| | - Berenice Illades-Aguiar
- Unidad de Investigación en Inmunología y Proteómica, Laboratorio de Investigación en COVID-19, Hospital Infantil de México “Federico Gómez”, Mexico City 06720, Mexico
| |
Collapse
|
10
|
Anti-SARS-Cov-2 S-RBD IgG Formed after BNT162b2 Vaccination Can Bind C1q and Activate Complement. J Immunol Res 2022; 2022:7263740. [PMID: 36573216 PMCID: PMC9789906 DOI: 10.1155/2022/7263740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Background The ability of vaccine-induced antibodies to bind C1q could affect pathogen neutralization. In this study, we investigated C1q binding and subsequent complement activation by anti-spike (S) protein receptor-binding domain (RBD) specific antibodies produced following vaccination with either the mRNA vaccine BNT162b2 or the inactivated vaccine BBIBP-CorV. Methods Serum samples were collected in the period of July 2021-March 2022. Participants' demographic data, type of vaccine, date of vaccination, as well as adverse effects of the vaccine were recorded. The serum samples were incubated with S protein RBD-coated plates. Levels of human IgG, IgA, IgM, C1q, and mannose-binding lectin (MBL) that were bound to the plate, as well as formed C3d, and C5b-9 were compared between different groups of participants. Results A total of 151 samples were collected from vaccinated (n = 116) and nonvaccinated (n = 35) participants. Participants who received either one or two doses of BNT162b2 formed higher levels of anti-RBD IgG and IgA than participants who received BBIBP-CorV. The anti-RBD IgG formed following either vaccine bound C1q, but significantly more C1q binding was observed in participants who received BNT162b2. Subsequently, C5b-9 formation was significantly higher in participants who received BNT162b2, while no significant difference in C5b-9 formation was found between the nonvaccinated and BBIBP-CorV groups. The formation of C5b-9 was strongly correlated to C1q binding and not to MBL binding, additionally, the ratio of formed C5b-9/bound C1q was significantly higher in the BNT162b2 group. Conclusion Anti-RBD IgG formed following vaccination can bind C1q with subsequent complement activation, and the degree of terminal complement pathway activation differed between vaccines, which could play a role in the protection offered by COVID-19 vaccines. Further investigation into the correlation between vaccine protection and vaccine-induced antibodies' ability to activate complement is required.
Collapse
|