1
|
Kremer PG, Lampros EA, Blocker AM, Barb AW. One N-glycan regulates natural killer cell antibody-dependent cell-mediated cytotoxicity and modulates Fc γ receptor IIIa/CD16a structure. eLife 2024; 13:RP100083. [PMID: 39453384 PMCID: PMC11509673 DOI: 10.7554/elife.100083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Both endogenous antibodies and a subset of antibody therapeutics engage Fc gamma receptor (FcγR)IIIa/CD16a to stimulate a protective immune response. Increasing the FcγRIIIa/IgG1 interaction improves the immune response and thus represents a strategy to improve therapeutic efficacy. FcγRIIIa is a heavily glycosylated receptor and glycan composition affects antibody-binding affinity. Though our laboratory previously demonstrated that natural killer (NK) cell N-glycan composition affected the potency of one key protective mechanism, antibody-dependent cell-mediated cytotoxicity (ADCC), it was unclear if this effect was due to FcγRIIIa glycosylation. Furthermore, the structural mechanism linking glycan composition to affinity and cellular activation remained undescribed. To define the role of individual amino acid and N-glycan residues, we measured affinity using multiple FcγRIIIa glycoforms. We observed stepwise affinity increases with each glycan truncation step, with the most severely truncated glycoform displaying the highest affinity. Removing the N162 glycan demonstrated its predominant role in regulating antibody-binding affinity, in contrast to four other FcγRIIIa N-glycans. We next evaluated the impact of the N162 glycan on NK cell ADCC. NK cells expressing the FcγRIIIa V158 allotype exhibited increased ADCC following kifunensine treatment to limit N-glycan processing. Notably, an increase was not observed with cells expressing the FcγRIIIa V158 S164A variant that lacks N162 glycosylation, indicating that the N162 glycan is required for increased NK cell ADCC. To gain structural insight into the mechanisms of N162 regulation, we applied a novel protein isotope labeling approach in combination with solution NMR spectroscopy. FG loop residues proximal to the N162 glycosylation site showed large chemical shift perturbations following glycan truncation. These data support a model for the regulation of FcγRIIIa affinity and NK cell ADCC whereby composition of the N162 glycan stabilizes the FG loop and thus the antibody-binding site.
Collapse
Affiliation(s)
- Paul G Kremer
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Elizabeth A Lampros
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Allison M Blocker
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
- Complex Carbohydrate Research Center, University of GeorgiaAthensUnited States
- Department of Chemistry, University of GeorgiaAthensUnited States
| |
Collapse
|
2
|
Unione L, Jiménez-Barbero J. The power lies in the glycans. eLife 2024; 13:e102427. [PMID: 39302337 DOI: 10.7554/elife.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Glycans play an important role in modulating the interactions between natural killer cells and antibodies to fight pathogens and harmful cells.
Collapse
Affiliation(s)
- Luca Unione
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences, Basque Research and Technology Alliance, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
3
|
Kremer PG, Lampros EA, Blocker AM, Barb AW. One N-glycan regulates natural killer cell antibody-dependent cell-mediated cytotoxicity and modulates Fc γ receptor IIIa / CD16a structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599285. [PMID: 38948809 PMCID: PMC11212880 DOI: 10.1101/2024.06.17.599285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Both endogenous antibodies and a subset of antibody therapeutics engage Fc gamma receptor (FcγR)IIIa / CD16a to stimulate a protective immune response. Increasing the FcγRIIIa/IgG1 interaction improves the immune response and thus represents a strategy to improve therapeutic efficacy. FcγRIIIa is a heavily glycosylated receptor and glycan composition affects antibody-binding affinity. Though our laboratory previously demonstrated that natural killer (NK) cell N-glycan composition affected the potency of one key protective mechanism, antibody-dependent cell-mediated cytotoxicity (ADCC), it was unclear if this effect was due to FcγRIIIa glycosylation. Furthermore, the structural mechanism linking glycan composition to affinity and cellular activation remained undescribed. To define the role of individual amino acid and N-glycan residues we measured affinity using multiple FcγRIIIa glycoforms. We observed stepwise affinity increases with each glycan truncation step with the most severely truncated glycoform displaying the highest affinity. Removing the N162 glycan demonstrated its predominant role in regulating antibody-binding affinity, in contrast to four other FcγRIIIa N-glycans. We next evaluated the impact of the N162 glycan on NK cell ADCC. NK cells expressing the FcγRIIIa V158 allotype exhibited increased ADCC following kifunensine treatment to limit N-glycan processing. Notably, an increase was not observed with cells expressing the FcγRIIIa V158 S164A variant that lacks N162 glycosylation, indicating the N162 glycan is required for increased NK cell ADCC. To gain structural insight into the mechanisms of N162 regulation, we applied a novel protein isotope labeling approach in combination with solution NMR spectroscopy. FG loop residues proximal to the N162 glycosylation site showed large chemical shift perturbations following glycan truncation. These data support a model for the regulation of FcγRIIIa affinity and NK cell ADCC whereby composition of the N162 glycan stabilizes the FG loop and thus the antibody-binding site.
Collapse
Affiliation(s)
- Paul G. Kremer
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Elizabeth A. Lampros
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Allison M. Blocker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Adam W. Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA
- Department of Chemistry, University of Georgia, Athens, GA
| |
Collapse
|
4
|
Sun Y, Xu X, Wu T, Fukuda T, Isaji T, Morii S, Nakano M, Gu J. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. J Biol Chem 2024; 300:107558. [PMID: 39002669 PMCID: PMC11345378 DOI: 10.1016/j.jbc.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
5
|
Benavente MCR, Hakeem ZA, Davis AR, Murray NB, Azadi P, Mace EM, Barb AW. Distinct CD16a features on human NK cells observed by flow cytometry correlate with increased ADCC. Sci Rep 2024; 14:7938. [PMID: 38575779 PMCID: PMC10995120 DOI: 10.1038/s41598-024-58541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
Natural killer (NK) cells destroy tissue that have been opsonized with antibodies. Strategies to generate or identify cells with increased potency are expected to enhance NK cell-based immunotherapies. We previously generated NK cells with increased antibody-dependent cell mediated cytotoxicity (ADCC) following treatment with kifunensine, an inhibitor targeting mannosidases early in the N-glycan processing pathway. Kifunensine treatment also increased the antibody-binding affinity of Fc γ receptor IIIa/CD16a. Here we demonstrate that inhibiting NK cell N-glycan processing increased ADCC. We reduced N-glycan processing with the CRIPSR-CAS9 knockdown of MGAT1, another early-stage N-glycan processing enzyme, and showed that these cells likewise increased antibody binding affinity and ADCC. These experiments led to the observation that NK cells with diminished N-glycan processing capability also revealed a clear phenotype in flow cytometry experiments using the B73.1 and 3G8 antibodies binding two distinct CD16a epitopes. We evaluated this "affinity profiling" approach using primary NK cells and identified a distinct shift and differentiated populations by flow cytometry that correlated with increased ADCC.
Collapse
Affiliation(s)
- Maria C Rodriguez Benavente
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., 30602, Athens, GA, Georgia
| | - Zainab A Hakeem
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., 30602, Athens, GA, Georgia
| | - Alexander R Davis
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., 30602, Athens, GA, Georgia
| | - Nathan B Murray
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Georgia
| | - Parastoo Azadi
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., 30602, Athens, GA, Georgia
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Georgia
| | - Emily M Mace
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., 30602, Athens, GA, Georgia.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, Georgia.
- Department of Chemistry, University of Georgia, Athens, GA, Georgia.
| |
Collapse
|
6
|
Díaz de león JSA, Aguilar I, Barb AW. Macrophage N-glycan processing inhibits antibody-dependent cellular phagocytosis. Glycobiology 2023; 33:1182-1192. [PMID: 37792857 PMCID: PMC10876040 DOI: 10.1093/glycob/cwad078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Factors regulating macrophage effector function represent potential targets to optimize the efficacy of antibody-mediated therapies. Macrophages are myeloid cells capable of engulfing and destroying diseased or damaged target cells. Antibodies binding to the target cell surface can engage macrophage Fc gamma receptors (FcγRs) to elicit antibody-dependent cellular phagocytosis (ADCP), a process that contributes to treatments mediated by anti-tumor antibodies. Conversely, macrophage ADCP of apoptotic T cells is also linked to tolerance in the tumor environment. Here we evaluated the role of asparagine(N)-linked glycans in the function of macrophages derived from primary human monocytes. Macrophages treated with kifunensine, an inhibitor of N-glycan processing, exhibited greater target binding and ADCP of antibody-coated target cells. Kifunensine treatment increased ADCP of both rituximab-coated Raji B cells and trastuzumab-coated SKBR3 cells. ADCP required FcγRs; inhibiting CD64 / FcγRI led to the greatest reduction, followed by CD32 / FcγRII and then CD16 / FcγRIII in most donors. Kifunensine treatment also increased the antibody-binding affinity of CD16. Differences in the abundance of phosphorylated immune receptors, including Siglec-9, CD32a, and LAIR-1 correlated with the increased ADCP. These results demonstrate that N-glycan processing regulates macrophage effector function.
Collapse
Affiliation(s)
- Jesús S Aguilar Díaz de león
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St, Athens, GA 30602, United States
| | - Isaac Aguilar
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St, Athens, GA 30602, United States
| | - Adam W Barb
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St, Athens, GA 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
- Department of Chemistry, University of Georgia, 120 E. Green St, Athens, GA 30602, United States
| |
Collapse
|