1
|
Choi JO, Ham JH, Hwang SS. RNA Metabolism in T Lymphocytes. Immune Netw 2022; 22:e39. [PMID: 36381959 PMCID: PMC9634142 DOI: 10.4110/in.2022.22.e39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.
Collapse
Affiliation(s)
- Jin Ouk Choi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jeong Hyeon Ham
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.,Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
2
|
Chen Y, Liu J, Zhang X, Zhu H, Wang Y, Li Z, Liu Y, Liu S, Liu S, Li N, Chen K, Cao X. lncRNA-GM targets Foxo1 to promote T cell-mediated autoimmunity. SCIENCE ADVANCES 2022; 8:eabn9181. [PMID: 35930633 PMCID: PMC9355365 DOI: 10.1126/sciadv.abn9181] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
RNA-RBP interaction is important in immune regulation and implicated in various immune disorders. The differentiation of proinflammatory T cell subset TH17 and its balance with regulatory T cell (Treg) generation is closely related to autoimmune pathogenesis. The roles of RNA-RBP interaction in regulation of TH17/Treg differentiation and autoinflammation remain in need of further investigation. Here we report that lncRNA-GM polarizes TH17 differentiation but inhibits iTreg differentiation by reducing activity of Foxo1, a transcriptional factor that is important in inhibiting TH17 differentiation but promoting Treg generation. lncRNA-GM-deficient mice were protected from experimental autoimmune encephalomyelitis. Mechanistically, lncRNA-GM directly binds to cytoplasmic Foxo1, thus inhibiting its activity through blocking dephosphorylation of Foxo1 by phosphatase PP2A to promote Il23r transcription. The human homolog of lncRNA-GM (AK026392.1) also polarizes human TH17 differentiation. Our study provides mechanistic insight into the interaction of lncRNA and transcriptional factor in determining T cell subset differentiation during T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Yali Chen
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Juan Liu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xiaomin Zhang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Ha Zhu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yujia Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Zhiqing Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yanfang Liu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shuxun Liu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Nan Li
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Kun Chen
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Wang HY, Ge W, Liu SQ, Long J, Jiang QQ, Zhou W, Zuo ZY, Liu DY, Zhao HM, Zhong YB. Curcumin Inhibits T Follicular Helper Cell Differentiation in Mice with Dextran Sulfate Sodium (DSS)-Induced Colitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:275-293. [PMID: 34931590 DOI: 10.1142/s0192415x22500100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Follicular helper T cells (Tfh) regulate the differentiation of germinal center B cells and maintain humoral immunity. Notably, imbalances in Tfh differentiation often lead to the development of autoimmune diseases, including inflammatory bowel disease (IBD). Curcumin, a natural product derived from Curcuma longa, is effective in relieving IBD in humans and animals, and its mechanisms of immune regulation need further elaboration. In this study, dextran sodium sulfate induced ulcerative colitis in BALB/c mice, and curcumin was administered simultaneously for 7 days. Curcumin effectively upregulated the change rate of mouse weight, colonic length, down-regulated colonic weight, index of colonic weight, colonic damage score and the levels of pro-inflammatory cytokines IL-6, IL-12, IL-23 and TGF-[Formula: see text]1 in colonic tissues of colitis mice. Importantly, curcumin regulated the differentiation balance of Tfh and their subpopulation in colitis mice; the percentages of Tfh (CD4[Formula: see text]CXCR5[Formula: see text]BCL-6[Formula: see text], CD4[Formula: see text]CXCR5[Formula: see text]PD-1[Formula: see text], CD4[Formula: see text]CXCR5[Formula: see text]PD-L1[Formula: see text], CD4[Formula: see text]CXCR5[Formula: see text]ICOS[Formula: see text], Tfh17 and Tem-Tfh were downregulated significantly, while CD4[Formula: see text]CXCR5[Formula: see text]Blimp-1[Formula: see text], Tfh1, Tfh10, Tfh21, Tfr, Tcm-Tfh and Tem-GC Tfh were upregulated. In addition, curcumin inhibited the expression of Tfh-related transcription factors BCL-6, p-STAT3, Foxp1, Roquin-1, Roquin-2 and SAP, and significantly upregulated the protein levels of Blimp-1 and STAT3 in colon tissue. In conclusion, curcumin may be effective in alleviating dextran sulfate sodium-induced colitis by regulating Tfh differentiation.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Wei Ge
- Department of Proctology, Affiliated Hospital of Jiangxi, University of Chinese Medicine, 445 Bayi Avenue, Nanchang 330006, Jiangxi Province, P. R. China
| | - Su-Qing Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,Department of Postgraduate, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Jian Long
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Qing-Qing Jiang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Wen Zhou
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Zheng-Yun Zuo
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - Hai-Mei Zhao
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China
| | - You-Bao Zhong
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,Laboratory Animal Science and Technology Center, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330004, Jiangxi Province, P. R. China.,Department of Proctology, Affiliated Hospital of Jiangxi, University of Chinese Medicine, 445 Bayi Avenue, Nanchang 330006, Jiangxi Province, P. R. China
| |
Collapse
|
4
|
Petrova T, Bennett K, Nanda S, Strickson S, Scudamore CL, Prescott AR, Cohen P. Why are the phenotypes of TRAF6 knock-in and TRAF6 knock-out mice so different? PLoS One 2022; 17:e0263151. [PMID: 35157702 PMCID: PMC8843210 DOI: 10.1371/journal.pone.0263151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
The expression of TNF-Receptor Associated Factor 6 (TRAF6) is essential for many physiological processes. Here we studied the phenotype of TRAF6[L74H] knock-in mice which are devoid of TRAF6 E3 ligase activity in every cell of the body, but express normal levels of the TRAF6 protein. Remarkably, TRAF6[L74H] mice have none of the phenotypes seen in TRAF6 KO mice. Instead TRAF6[L74H] mice display an entirely different phenotype, exhibiting autoimmunity, and severe inflammation of the skin and modest inflammation of the liver and lungs. Similar to mice with a Treg-specific knockout of TRAF6, or mice devoid of TRAF6 in all T cells, the CD4+ and CD8+ T cells in the spleen and lymph nodes displayed an activated effector memory phenotype with CD44high/CD62Llow expression on the cell surface. In contrast, T cells from WT mice exhibited the CD44low/CD62Lhigh phenotype characteristic of naïve T cells. The onset of autoimmunity and autoinflammation in TRAF6[L74H] mice (two weeks) was much faster than in mice with a Treg-specific knockout of TRAF6 or lacking TRAF6 expression in all T cells (2-3 months) and we discuss whether this may be caused by secondary inflammation of other tissues. The distinct phenotypes of mice lacking TRAF6 expression in all cells appears to be explained by their inability to signal via TNF Receptor Superfamily members, which does not seem to be impaired significantly in TRAF6[L74H] mice.
Collapse
Affiliation(s)
- Tsvetana Petrova
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kyle Bennett
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sambit Nanda
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sam Strickson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Alan R. Prescott
- Dundee Imaging Facility and Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
5
|
Behrens G, Edelmann SL, Raj T, Kronbeck N, Monecke T, Davydova E, Wong EH, Kifinger L, Giesert F, Kirmaier ME, Hohn C, de Jonge LS, Pisfil MG, Fu M, Theurich S, Feske S, Kawakami N, Wurst W, Niessing D, Heissmeyer V. Disrupting Roquin-1 interaction with Regnase-1 induces autoimmunity and enhances antitumor responses. Nat Immunol 2021; 22:1563-1576. [PMID: 34811541 PMCID: PMC8996344 DOI: 10.1038/s41590-021-01064-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
Roquin and Regnase-1 proteins bind and post-transcriptionally regulate proinflammatory target messenger RNAs to maintain immune homeostasis. Either the sanroque mutation in Roquin-1 or loss of Regnase-1 cause systemic lupus erythematosus-like phenotypes. Analyzing mice with T cells that lack expression of Roquin-1, its paralog Roquin-2 and Regnase-1 proteins, we detect overlapping or unique phenotypes by comparing individual and combined inactivation. These comprised spontaneous activation, metabolic reprogramming and persistence of T cells leading to autoimmunity. Here, we define an interaction surface in Roquin-1 for binding to Regnase-1 that included the sanroque residue. Mutations in Roquin-1 impairing this interaction and cooperative regulation of targets induced T follicular helper cells, germinal center B cells and autoantibody formation. These mutations also improved the functionality of tumor-specific T cells by promoting their accumulation in the tumor and reducing expression of exhaustion markers. Our data reveal the physical interaction of Roquin-1 with Regnase-1 as a hub to control self-reactivity and effector functions in immune cell therapies.
Collapse
Affiliation(s)
- Gesine Behrens
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Stephanie L Edelmann
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Timsse Raj
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Nina Kronbeck
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Elena Davydova
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Lisa Kifinger
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin E Kirmaier
- Cancer and Immunometabolism Research Group at the Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Christine Hohn
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Laura S de Jonge
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Mariano Gonzalez Pisfil
- Core Facility Bioimaging and Walter-Brendel-Centre of Experimental Medicine at the Biomedical Center, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Sebastian Theurich
- Cancer and Immunometabolism Research Group at the Gene Center, Ludwig-Maximilians-Universität in Munich, Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität in Munich, Munich, Germany
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
- Technische Universität München, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Munich, Germany
| | - Dierk Niessing
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany.
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
6
|
Hoefig KP, Reim A, Gallus C, Wong EH, Behrens G, Conrad C, Xu M, Kifinger L, Ito-Kureha T, Defourny KAY, Geerlof A, Mautner J, Hauck SM, Baumjohann D, Feederle R, Mann M, Wierer M, Glasmacher E, Heissmeyer V. Defining the RBPome of primary T helper cells to elucidate higher-order Roquin-mediated mRNA regulation. Nat Commun 2021; 12:5208. [PMID: 34471108 PMCID: PMC8410761 DOI: 10.1038/s41467-021-25345-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Post-transcriptional gene regulation in T cells is dynamic and complex as targeted transcripts respond to various factors. This is evident for the Icos mRNA encoding an essential costimulatory receptor that is regulated by several RNA-binding proteins (RBP), including Roquin-1 and Roquin-2. Here, we identify a core RBPome of 798 mouse and 801 human T cell proteins by utilizing global RNA interactome capture (RNA-IC) and orthogonal organic phase separation (OOPS). The RBPome includes Stat1, Stat4 and Vav1 proteins suggesting unexpected functions for these transcription factors and signal transducers. Based on proximity to Roquin-1, we select ~50 RBPs for testing coregulation of Roquin-1/2 targets by induced expression in wild-type or Roquin-1/2-deficient T cells. Besides Roquin-independent contributions from Rbms1 and Cpeb4 we also show Roquin-1/2-dependent and target-specific coregulation of Icos by Celf1 and Igf2bp3. Connecting the cellular RBPome in a post-transcriptional context, we find contributions from multiple RBPs to the prototypic regulation of mRNA targets by individual trans-acting factors. An extensive RNA binding protein atlas (RBPome) for primary T cells would be a useful resource. Here the authors use two different methods to characterise the mouse and human T cell RBPome and show regulation of Roquin-1/2 dependent and independent pathways.
Collapse
Affiliation(s)
- Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany
| | - Alexander Reim
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Christian Gallus
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Munich, Germany
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Gesine Behrens
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany
| | - Christine Conrad
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Meng Xu
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany
| | - Lisa Kifinger
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Taku Ito-Kureha
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Kyra A Y Defourny
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.,Department of Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Josef Mautner
- Research Unit Gene Vectors, Helmholtz Center Munich & Children's Hospital, TU Munich, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Munich, Germany
| | - Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.,Medical Clinic III for Oncology, Immuno-Oncology and Rheumatology University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany. .,Proteomics Research Infrastructure, University of Copenhagen, Copenhagen, Denmark.
| | - Elke Glasmacher
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Munich, Germany. .,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany.
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Center Munich, Munich, Germany. .,Institute for Immunology, Biomedical Center, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany.
| |
Collapse
|
7
|
Lu W, Zhou M, Wang B, Liu X, Li B. Roquin1 inhibits the proliferation of breast cancer cells by inducing G1/S cell cycle arrest via selectively destabilizing the mRNAs of cell cycle-promoting genes. J Exp Clin Cancer Res 2020; 39:255. [PMID: 33228782 PMCID: PMC7686734 DOI: 10.1186/s13046-020-01766-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Dysregulation of cell cycle progression is a common feature of human cancer cells; however, its mechanism remains unclear. This study aims to clarify the role and the underlying mechanisms of Roquin1 in cell cycle arrest in breast cancer. METHODS Public cancer databases were analyzed to identify the expression pattern of Roquin1 in human breast cancers and its association with patient survival. Quantitative real-time PCR and Western blots were performed to detect the expression of Roquin1 in breast cancer samples and cell lines. Cell counting, MTT assays, flow cytometry, and in vivo analyses were conducted to investigate the effects of Roquin1 on cell proliferation, cell cycle progression and tumor progression. RNA sequencing was applied to identify the differentially expressed genes regulated by Roquin1. RNA immunoprecipitation assay, luciferase reporter assay, mRNA half-life detection, RNA affinity binding assay, and RIP-ChIP were used to explore the molecular mechanisms of Roquin1. RESULTS We showed that Roquin1 expression in breast cancer tissues and cell lines was inhibited, and the reduction in Roquin1 expression was associated with poor overall survival and relapse-free survival of patients with breast cancer. Roquin1 overexpression inhibited cell proliferation and induced G1/S cell cycle arrest without causing significant apoptosis. In contrast, knockdown of Roquin1 promoted cell growth and cycle progression. Moreover, in vivo induction of Roquin1 by adenovirus significantly suppressed breast tumor growth and metastasis. Mechanistically, Roquin1 selectively destabilizes cell cycle-promoting genes, including Cyclin D1, Cyclin E1, cyclin dependent kinase 6 (CDK6) and minichromosome maintenance 2 (MCM2), by targeting the stem-loop structure in the 3' untranslated region (3'UTR) of mRNAs via its ROQ domain, leading to the downregulation of cell cycle-promoting mRNAs. CONCLUSIONS Our findings demonstrated that Roquin1 is a novel breast tumor suppressor and could induce G1/S cell cycle arrest by selectively downregulating the expression of cell cycle-promoting genes, which might be a potential molecular target for breast cancer treatment.
Collapse
Affiliation(s)
- Wenbao Lu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, #69 Dongdan Beidajie, DongCheng District, Beijing, 100005, China.
| | - Meicen Zhou
- Department of Endocrinology, Beijing Jishuitan Hospatial, The 4th Clinical Medical College of Peking University, Beijing, 100035, China
| | - Bing Wang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, #69 Dongdan Beidajie, DongCheng District, Beijing, 100005, China
| | - Xueting Liu
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, #69 Dongdan Beidajie, DongCheng District, Beijing, 100005, China
| | - Bingwei Li
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, #69 Dongdan Beidajie, DongCheng District, Beijing, 100005, China
| |
Collapse
|
8
|
Mondragón L, Mhaidly R, De Donatis GM, Tosolini M, Dao P, Martin AR, Pons C, Chiche J, Jacquin M, Imbert V, Proïcs E, Boyer L, Doye A, Luciano F, Neels JG, Coutant F, Fabien N, Sormani L, Rubio-Patiño C, Bossowski JP, Muller F, Marchetti S, Villa E, Peyron JF, Gaulard P, Lemonnier F, Asnafi V, Genestier L, Benhida R, Fournié JJ, Passeron T, Ricci JE, Verhoeyen E. GAPDH Overexpression in the T Cell Lineage Promotes Angioimmunoblastic T Cell Lymphoma through an NF-κB-Dependent Mechanism. Cancer Cell 2019; 36:268-287.e10. [PMID: 31447347 DOI: 10.1016/j.ccell.2019.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 04/17/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
GAPDH is emerging as a key player in T cell development and function. To investigate the role of GAPDH in T cells, we generated a transgenic mouse model overexpressing GAPDH in the T cell lineage. Aged mice developed a peripheral Tfh-like lymphoma that recapitulated key molecular, pathological, and immunophenotypic features of human angioimmunoblastic T cell lymphoma (AITL). GAPDH induced non-canonical NF-κB pathway activation in mouse T cells, which was strongly activated in human AITL. We developed a NIK inhibitor to reveal that targeting the NF-κB pathway prolonged AITL-bearing mouse survival alone and in combination with anti-PD-1. These findings suggest the therapeutic potential of targeting NF-κB signaling in AITL and provide a model for future AITL therapeutic investigations.
Collapse
Affiliation(s)
| | - Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Marie Tosolini
- Pôle Technologique du CRCT - Plateau Bioinformatique INSERM-UMR 1037, Toulouse, France
| | - Pascal Dao
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Anthony R Martin
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Caroline Pons
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Marie Jacquin
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Emma Proïcs
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Laurent Boyer
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Anne Doye
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Jaap G Neels
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | - Frédéric Coutant
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France; Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon, Edouard Herriot Hospital, Lyon, France
| | - Nicole Fabien
- Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Laura Sormani
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | | | | | | | - Elodie Villa
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France
| | | | - Philippe Gaulard
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France; Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil, Institut Mondor de Recherche Biomédicale, INSERM U955, Créteil, France; Unité hémopathies lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - Vahid Asnafi
- Université Paris 5, Institut Necker-Enfants Malades (INEM), Institut National de Recherche Médicale (INSERM) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Paris, France
| | - Laurent Genestier
- CRCL, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon I, 69921 Oullins Cedex, France
| | - Rachid Benhida
- Institut de Chimie de Nice UMR UNS-CNRS 7272, Université Nice Sophia Antipolis, Parc Valrose, 06108 Nice, France
| | - Jean-Jacques Fournié
- CRCT, INSERM U1037 - Université Paul Sabatier - CNRS ERL5294, Université de Toulouse, Laboratoire d'Excellence TOUCAN, Programme Hospitalo-Universitaire en Cancérologie CAPTOR, Toulouse, France; IUCT, 31037 Toulouse, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France; Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Department of Dermatology, 06204 Nice, France
| | | | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204 Nice, France; CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, CNRS, UMR 5308, 69007 Lyon, France.
| |
Collapse
|
9
|
von Gamm M, Schaub A, Jones AN, Wolf C, Behrens G, Lichti J, Essig K, Macht A, Pircher J, Ehrlich A, Davari K, Chauhan D, Busch B, Wurst W, Feederle R, Feuchtinger A, Tschöp MH, Friedel CC, Hauck SM, Sattler M, Geerlof A, Hornung V, Heissmeyer V, Schulz C, Heikenwalder M, Glasmacher E. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med 2019; 216:1700-1723. [PMID: 31126966 PMCID: PMC6605757 DOI: 10.1084/jem.20181762] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/15/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.
Collapse
Affiliation(s)
- Matthias von Gamm
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Christine Wolf
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gesine Behrens
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Lichti
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Essig
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Anna Macht
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | | | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Technische Universität München-Weihenstephan, Neuherberg-Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany .,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
10
|
Abstract
The ubiquitin proteasome system (UPS) plays a critical function in cellular homeostasis. The misregulation of UPS is often found in human diseases, including cancer. Kelch-like protein 6 (KLHL6) is an E3 ligase gene mutated in diffused large B-cell lymphoma (DLBCL). This review discusses the function of KLHL6 as a cullin3-RING ligase and how cancer-associated mutations disrupt the interaction with the cullin3, resulting in the loss of KLHL6 function. Furthermore, the mRNA decay factor Roquin2 is discussed as the first bona fide substrate of KLHL6 in the context of B-cell receptor activation and B-cell lymphoma. Importantly, the tumor-suppressing mechanism of KLHL6 via the degradation of Roquin2 and the mRNA decay in the context of the NF-κB pathway is summarized.
Collapse
Affiliation(s)
- Jaewoo Choi
- a Department of Cancer Biology , University of Pennsylvania , Philadelphia , PA , USA ; Perelman School of Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Nan Zhou
- a Department of Cancer Biology , University of Pennsylvania , Philadelphia , PA , USA ; Perelman School of Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Busino
- a Department of Cancer Biology , University of Pennsylvania , Philadelphia , PA , USA ; Perelman School of Medicine and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Wu H, Deng Y, Zhao M, Zhang J, Zheng M, Chen G, Li L, He Z, Lu Q. Molecular Control of Follicular Helper T cell Development and Differentiation. Front Immunol 2018; 9:2470. [PMID: 30410493 PMCID: PMC6209674 DOI: 10.3389/fimmu.2018.02470] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
Follicular helper T cells (Tfh) are specialized helper T cells that are predominantly located in germinal centers and provide help to B cells. The development and differentiation of Tfh cells has been shown to be regulated by transcription factors, such as B-cell lymphoma 6 protein (Bcl-6), signal transducer and activator of transcription 3 (STAT3) and B lymphocyte-induced maturation protein-1 (Blimp-1). In addition, cytokines, including IL-21, have been found to be important for Tfh cell development. Moreover, several epigenetic modifications have also been reported to be involved in the determination of Tfh cell fate. The regulatory network is complicated, and the number of novel molecules demonstrated to control the fate of Tfh cells is increasing. Therefore, this review aims to summarize the current knowledge regarding the molecular regulation of Tfh cell development and differentiation at the protein level and at the epigenetic level to elucidate Tfh cell biology and provide potential targets for clinical interventions in the future.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaxiong Deng
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China.,Immunology Section, Lund University, Lund, Sweden
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Zhang
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Min Zheng
- Department of Dermatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Genghui Chen
- Beijing Wenfeng Tianji Pharmaceuticals Ltd., Beijing, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhibiao He
- Department of Emergency, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Essig K, Kronbeck N, Guimaraes JC, Lohs C, Schlundt A, Hoffmann A, Behrens G, Brenner S, Kowalska J, Lopez-Rodriguez C, Jemielity J, Holtmann H, Reiche K, Hackermüller J, Sattler M, Zavolan M, Heissmeyer V. Roquin targets mRNAs in a 3'-UTR-specific manner by different modes of regulation. Nat Commun 2018; 9:3810. [PMID: 30232334 PMCID: PMC6145892 DOI: 10.1038/s41467-018-06184-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The RNA-binding proteins Roquin-1 and Roquin-2 redundantly control gene expression and cell-fate decisions. Here, we show that Roquin not only interacts with stem–loop structures, but also with a linear sequence element present in about half of its targets. Comprehensive analysis of a minimal response element of the Nfkbid 3′-UTR shows that six stem–loop structures cooperate to exert robust and profound post-transcriptional regulation. Only binding of multiple Roquin proteins to several stem–loops exerts full repression, which redundantly involved deadenylation and decapping, but also translational inhibition. Globally, most Roquin targets are regulated by mRNA decay, whereas a small subset, including the Nfat5 mRNA, with more binding sites in their 3′-UTRs, are also subject to translational inhibition. These findings provide insights into how the robustness and magnitude of Roquin-mediated regulation is encoded in complex cis-elements. Roquin targets are known to contain two types of sequence-structure motifs, the constitutive and the alternative decay elements (CDE and ADE). Here, the authors describe a linear Roquin binding element (LBE) also involved in target recognition, and show that Roquin binding affects the translation of a subset of targeted mRNAs.
Collapse
Affiliation(s)
- Katharina Essig
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Nina Kronbeck
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Joao C Guimaraes
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Claudia Lohs
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany
| | - Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Gesine Behrens
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Sven Brenner
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Cristina Lopez-Rodriguez
- Immunology Unit, Department of Experimental and Health Sciences, Pompeu Fabra University, 08003, Barcelona, Spain
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | - Helmut Holtmann
- Institute of Biochemistry, Hannover Medical School, 30623, Hannover, Germany
| | - Kristin Reiche
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Bioinformatics Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology-IZI, Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, 85748, Garching, Germany
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany. .,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, München, Germany.
| |
Collapse
|
13
|
Baumjohann D, Heissmeyer V. Posttranscriptional Gene Regulation of T Follicular Helper Cells by RNA-Binding Proteins and microRNAs. Front Immunol 2018; 9:1794. [PMID: 30108596 PMCID: PMC6079247 DOI: 10.3389/fimmu.2018.01794] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
T follicular helper (Tfh) cells are critically involved in the establishment of potent antibody responses against infectious pathogens, such as viruses and bacteria, but their dysregulation may also result in aberrant antibody responses that frequently coincide with autoimmune diseases or allergies. The fate and identity of Tfh cells is tightly controlled by gene regulation on the transcriptional and posttranscriptional level. Here, we provide deeper insights into the posttranscriptional mechanisms that regulate Tfh cell differentiation, function, and plasticity through the actions of RNA-binding proteins (RBPs) and small endogenously expressed regulatory RNAs called microRNAs (miRNAs). The Roquin family of RBPs has been shown to dampen spontaneous activation and differentiation of naïve CD4+ T cells into Tfh cells, since CD4+ T cells with Roquin mutations accumulate as Tfh cells and provide inappropriate B cell help in the production of autoantibodies. Moreover, Regnase-1, an endoribonuclease that regulates a set of targets, which strongly overlaps with that of Roquin, is crucial for the prevention of autoantibody production. Interestingly, both Roquin and Regnase-1 proteins are cleaved and inactivated after TCR stimulation by the paracaspase MALT1. miRNAs are expressed in naïve CD4+ T cells and help preventing spontaneous differentiation into effector cells. While most miRNAs are downregulated upon T cell activation, several miRNAs have been shown to regulate the fate of these cells by either promoting (e.g., miR-17-92 and miR-155) or inhibiting (e.g., miR-146a) Tfh cell differentiation. Together, these different aspects highlight a complex and dynamic regulatory network of posttranscriptional gene regulation in Tfh cells that may also be active in other T helper cell populations, including Th1, Th2, Th17, and Treg.
Collapse
Affiliation(s)
- Dirk Baumjohann
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
14
|
Hoefig KP, Heissmeyer V. Posttranscriptional regulation of T helper cell fate decisions. J Cell Biol 2018; 217:2615-2631. [PMID: 29685903 PMCID: PMC6080923 DOI: 10.1083/jcb.201708075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 02/19/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Hoefig and Heissmeyer review how microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate T helper cell differentiation downstream of transcription. T helper cell subsets orchestrate context- and pathogen-specific responses of the immune system. They mostly do so by secreting specific cytokines that attract or induce activation and differentiation of other immune or nonimmune cells. The differentiation of T helper 1 (Th1), Th2, T follicular helper, Th17, and induced regulatory T cell subsets from naive T cells depends on the activation of intracellular signal transduction cascades. These cascades originate from T cell receptor and costimulatory receptor engagement and also receive critical input from cytokine receptors that sample the cytokine milieu within secondary lymphoid organs. Signal transduction then leads to the expression of subset-specifying transcription factors that, in concert with other transcription factors, up-regulate downstream signature genes. Although regulation of transcription is important, recent research has shown that posttranscriptional and posttranslational regulation can critically shape or even determine the outcome of Th cell differentiation. In this review, we describe how specific microRNAs, long noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate their targets to skew cell fate decisions.
Collapse
Affiliation(s)
- Kai P Hoefig
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany
| | - Vigo Heissmeyer
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany .,Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Cortes JR, Ambesi-Impiombato A, Couronné L, Quinn SA, Kim CS, da Silva Almeida AC, West Z, Belver L, Martin MS, Scourzic L, Bhagat G, Bernard OA, Ferrando AA, Palomero T. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell 2018; 33:259-273.e7. [PMID: 29398449 PMCID: PMC5811310 DOI: 10.1016/j.ccell.2018.01.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/06/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
Angioimmunoblastic T cell lymphoma (AITL) is an aggressive tumor derived from malignant transformation of T follicular helper (Tfh) cells. AITL is characterized by loss-of-function mutations in Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val) in the RHOA small GTPase. Yet, the specific role of RHOA G17V in AITL remains unknown. Expression of Rhoa G17V in CD4+ T cells induces Tfh cell specification; increased proliferation associated with inducible co-stimulator (ICOS) upregulation and increased phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase signaling. Moreover, RHOA G17V expression together with Tet2 loss resulted in development of AITL in mice. Importantly, Tet2-/-RHOA G17V tumor proliferation in vivo can be inhibited by ICOS/PI3K-specific blockade, supporting a driving role for ICOS signaling in Tfh cell transformation.
Collapse
Affiliation(s)
- Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Lucile Couronné
- Department of Adult Hematology, Necker Hospital, Paris 75993, France; INSERM U 1163, CNRS ERL 8254, Institut Imagine, Paris 75015, France; Paris Descartes University, Paris 75006, France
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Christine S Kim
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Zachary West
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Laurianne Scourzic
- Gustave Roussy, Villejuif 94805, France; INSERM U1170, Villejuif 94805, France; Université Paris-Sud, Orsay 91400, France
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Avenue, ICRC-401B, New York, NY 10032, USA
| | - Olivier A Bernard
- Gustave Roussy, Villejuif 94805, France; INSERM U1170, Villejuif 94805, France; Université Paris-Sud, Orsay 91400, France
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Avenue, ICRC-401B, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Avenue, ICRC-401B, New York, NY 10032, USA.
| |
Collapse
|
16
|
Rehage N, Davydova E, Conrad C, Behrens G, Maiser A, Stehklein JE, Brenner S, Klein J, Jeridi A, Hoffmann A, Lee E, Dianzani U, Willemsen R, Feederle R, Reiche K, Hackermüller J, Leonhardt H, Sharma S, Niessing D, Heissmeyer V. Binding of NUFIP2 to Roquin promotes recognition and regulation of ICOS mRNA. Nat Commun 2018; 9:299. [PMID: 29352114 PMCID: PMC5775257 DOI: 10.1038/s41467-017-02582-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 12/12/2017] [Indexed: 12/02/2022] Open
Abstract
The ubiquitously expressed RNA-binding proteins Roquin-1 and Roquin-2 are essential for appropriate immune cell function and postnatal survival of mice. Roquin proteins repress target mRNAs by recognizing secondary structures in their 3'-UTRs and by inducing mRNA decay. However, it is unknown if other cellular proteins contribute to target control. To identify cofactors of Roquin, we used RNA interference to screen ~1500 genes involved in RNA-binding or mRNA degradation, and identified NUFIP2 as a cofactor of Roquin-induced mRNA decay. NUFIP2 binds directly and with high affinity to Roquin, which stabilizes NUFIP2 in cells. Post-transcriptional repression of human ICOS by endogenous Roquin proteins requires two neighboring non-canonical stem-loops in the ICOS 3'-UTR. This unconventional cis-element as well as another tandem loop known to confer Roquin-mediated regulation of the Ox40 3'-UTR, are bound cooperatively by Roquin and NUFIP2. NUFIP2 therefore emerges as a cofactor that contributes to mRNA target recognition by Roquin.
Collapse
Affiliation(s)
- Nina Rehage
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, München, Germany
| | - Elena Davydova
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Christine Conrad
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Gesine Behrens
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Andreas Maiser
- Center for Integrated Protein Science at the Department of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Jenny E Stehklein
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, München, Germany
| | - Sven Brenner
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, München, Germany
| | - Juliane Klein
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany
| | - Aicha Jeridi
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, München, Germany
| | - Anne Hoffmann
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science; and Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Eunhae Lee
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- The Functional Genomics Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Umberto Dianzani
- Department of Health Sciences, Universita' del Piemonte Orientale, via Solaroli 17, 28100, Novara, Italy
| | - Rob Willemsen
- CBG Department of Clinical Genetics, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, Netherlands
| | - Regina Feederle
- Monoclonal Antibody Core Facility and Research Group, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, München, Germany
| | - Kristin Reiche
- Bioinformatic Unit, Department of Diagnostics, Fraunhofer Institute for Cell Therapy and Immunology- IZI, 04103, Leipzig, Germany
| | - Jörg Hackermüller
- Young Investigators Group Bioinformatics and Transcriptomics, Department Molecular Systems Biology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Heinrich Leonhardt
- Center for Integrated Protein Science at the Department of Biology, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Sonia Sharma
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- The Functional Genomics Center, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
| | - Dierk Niessing
- Group Intracellular Transport and RNA Biology, Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany.
- Department of Cell Biology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
- Institute of Pharmaceutical Biotechnology, Ulm University, James Franck Ring N27, 89081, Ulm, Germany.
| | - Vigo Heissmeyer
- Institute for Immunology at the Biomedical Center, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, 82152, Planegg-Martinsried, Germany.
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Marchioninistrasse 25, 81377, München, Germany.
| |
Collapse
|
17
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
18
|
Lownik JC, Luker AJ, Damle SR, Cooley LF, El Sayed R, Hutloff A, Pitzalis C, Martin RK, El Shikh MEM, Conrad DH. ADAM10-Mediated ICOS Ligand Shedding on B Cells Is Necessary for Proper T Cell ICOS Regulation and T Follicular Helper Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2305-2315. [PMID: 28814605 PMCID: PMC5605448 DOI: 10.4049/jimmunol.1700833] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022]
Abstract
The proper regulation of ICOS and ICOS ligand (ICOSL) has been shown to be essential for maintaining proper immune homeostasis. Loss of either protein results in defective humoral immunity, and overexpression of ICOS results in aberrant Ab production resembling lupus. How ICOSL is regulated in response to ICOS interaction is still unclear. We demonstrate that a disintegrin and metalloproteinase (ADAM)10 is the primary physiological sheddase of ICOSL in mice and humans. Using an in vivo system in which ADAM10 is deleted only on B cells, elevated levels of ICOSL were seen. This increase is also seen when ADAM10 is deleted from human B cell lines. Identification of the primary sheddase has allowed the characterization of a novel mechanism of ICOS regulation. In wild-type mice, interaction of ICOS/ICOSL results in ADAM10-induced shedding of ICOSL on B cells and moderate ICOS internalization on T cells. When this shedding is blocked, excessive ICOS internalization occurs. This results in severe defects in T follicular helper development and TH2 polarization, as seen in a house dust mite exposure model. In addition, enhanced TH1 and TH17 immune responses are seen in experimental autoimmune encephalomyelitis. Blockade of ICOSL rescues T cell ICOS surface expression and rescues, at least in part, T follicular helper numbers and the abnormal Ab production previously reported in these mice. Overall, we propose a novel regulation of the ICOS/ICOSL axis, with ADAM10 playing a direct role in regulating ICOSL, as well as indirectly regulating ICOS, thus controlling ICOS/ICOSL-dependent responses.
Collapse
Affiliation(s)
- Joseph C Lownik
- Center for Clinical and Translational Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Andrea J Luker
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Sheela R Damle
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Lauren Folgosa Cooley
- Center for Clinical and Translational Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Riham El Sayed
- Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Department of Clinical and Chemical Pathology, Kasr Al-Ainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; and
| | - Andreas Hutloff
- German Rheumatism Research Centre Berlin, 10117 Berlin, Germany
| | - Costantino Pitzalis
- Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Mohey Eldin M El Shikh
- Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298;
| |
Collapse
|
19
|
Abstract
T follicular helper (Tfh) cells are a distinct type of CD4+ T cell specialized in providing help to B cells during the germinal centre (GC) reaction. As such, they are critical determinants of the quality of an antibody response following antigen challenge. Excessive production of Tfh cells can result in autoimmunity whereas too few can result in inadequate protection from infection. Hence, their differentiation and maintenance must be tightly regulated to ensure appropriate but limited help to B cells. Unlike the majority of other CD4+ T-cell subsets, Tfh cell differentiation occurs in three phases defined by their anatomical location. During each phase of differentiation the emerging Tfh cells express distinct patterns of co-receptors, which work together with the T-cell receptor (TCR) to drive Tfh differentiation. These signals provided by both TCR and co-receptors during Tfh differentiation alter proliferation, survival, metabolism, cytokine production and transcription factor expression. This review will discuss how engagement of TCR and co-receptors work together to shape the formation and function of Tfh cells.
Collapse
Affiliation(s)
- Louise M C Webb
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| | - Michelle A Linterman
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, UK
| |
Collapse
|
20
|
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Methods 2017; 118-119:119-136. [PMID: 28315749 DOI: 10.1016/j.ymeth.2017.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies.
Collapse
|
21
|
Sgromo A, Raisch T, Bawankar P, Bhandari D, Chen Y, Kuzuoğlu-Öztürk D, Weichenrieder O, Izaurralde E. A CAF40-binding motif facilitates recruitment of the CCR4-NOT complex to mRNAs targeted by Drosophila Roquin. Nat Commun 2017; 8:14307. [PMID: 28165457 PMCID: PMC5303829 DOI: 10.1038/ncomms14307] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
Human (Hs) Roquin1 and Roquin2 are RNA-binding proteins that promote mRNA target degradation through the recruitment of the CCR4-NOT deadenylase complex and are implicated in the prevention of autoimmunity. Roquin1 recruits CCR4-NOT via a C-terminal region that is not conserved in Roquin2 or in invertebrate Roquin. Here we show that Roquin2 and Drosophila melanogaster (Dm) Roquin also interact with the CCR4-NOT complex through their C-terminal regions. The C-terminal region of Dm Roquin contains multiple motifs that mediate CCR4-NOT binding. One motif binds to the CAF40 subunit of the CCR4-NOT complex. The crystal structure of the Dm Roquin CAF40-binding motif (CBM) bound to CAF40 reveals that the CBM adopts an α-helical conformation upon binding to a conserved surface of CAF40. Thus, despite the lack of sequence conservation, the C-terminal regions of Roquin proteins act as an effector domain that represses the expression of mRNA targets via recruitment of the CCR4-NOT complex. Roquin proteins downregulate target mRNA expression by recruiting effectors such as the CCR4-NOT deadenylase complex. Here the authors provide molecular details of how Roquin proteins recruit the CCR4-NOT complex to repress the expression of its targets.
Collapse
Affiliation(s)
- Annamaria Sgromo
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Tobias Raisch
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Praveen Bawankar
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Dipankar Bhandari
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Ying Chen
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Duygu Kuzuoğlu-Öztürk
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen 72076, Germany
| |
Collapse
|
22
|
Hao Z, Sheng Y, Duncan GS, Li WY, Dominguez C, Sylvester J, Su YW, Lin GHY, Snow BE, Brenner D, You-Ten A, Haight J, Inoue S, Wakeham A, Elford A, Hamilton S, Liang Y, Zúñiga-Pflücker JC, He HH, Ohashi PS, Mak TW. K48-linked KLF4 ubiquitination by E3 ligase Mule controls T-cell proliferation and cell cycle progression. Nat Commun 2017; 8:14003. [PMID: 28084302 PMCID: PMC5241832 DOI: 10.1038/ncomms14003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation of antigen-specific CD8+ T cells with reduced cytokine production, and fail to clear LCMV infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell proliferation, autoimmunity and antiviral immune responses in vivo. The E3 ligase Mule has been previously reported to be essential for B cell development and function by modulating p53 ubiquitination and degradation. Here Hao et al. identify KLF4 as a novel ubiquitination target of Mule and show it controls T cell proliferation and autoimmunity.
Collapse
Affiliation(s)
- Zhenyue Hao
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,The Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, and Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, Ontario, Canada M5S3E1
| | - Yi Sheng
- Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Gordon S Duncan
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Wanda Y Li
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Carmen Dominguez
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Jennifer Sylvester
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Yu-Wen Su
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Gloria H Y Lin
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Bryan E Snow
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, Esch-sur-Alzette L-4354, Luxembourg.,Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense DK-5000 Denmark
| | - Annick You-Ten
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Jillian Haight
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Satoshi Inoue
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Alisha Elford
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Sara Hamilton
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Yi Liang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9
| | - Juan C Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada M4N 3M5
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Pamela S Ohashi
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada M5G 2M9.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 2C1.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada M5G 2C1
| |
Collapse
|
23
|
Gao SF, Zhong B, Lin D. Regulation of T helper cell differentiation by E3 ubiquitin ligases and deubiquitinating enzymes. Int Immunopharmacol 2016; 42:150-156. [PMID: 27914308 DOI: 10.1016/j.intimp.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 12/22/2022]
Abstract
CD4 T cells are essential components of adaptive immunity and play a critical role in anti-pathogenic or anti-tumor responses as well as autoimmune and allergic diseases. Naive CD4 T cells differentiate into distinct subsets of T helper (Th) cells by various signals including TCR, costimulatory and cytokine signals. Accumulating evidence suggests that these signaling pathways are critically regulated by ubiquitination and deubiquitination, two reversible posttranslational modifications mediated by E3 ubiquitin ligases and deubiquitinating enzymes (DUBs), respectively. In this review, we briefly introduce the signaling pathways that control the differentiation of Th cells and then focused on the roles of E3s- and DUBs-mediated ubiquitin modification or demodification in regulating Th cell differentiation.
Collapse
Affiliation(s)
- Si-Fa Gao
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China
| | - Bo Zhong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital, Wuhan University, Wuhan 430060, China.
| |
Collapse
|
24
|
Zhang N, Tai J, Qu Z, Zhang Z, Zhao S, He J, Zhang S, Jiang Y. Increased CD4 +CXCR5 +T follicular helper cells in diabetic nephropathy. Autoimmunity 2016; 49:405-413. [PMID: 27477820 DOI: 10.1080/08916934.2016.1196677] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND T follicular helper (Tfh) cells are known to regulate humoral immune response. In this study we examined the correlation of different subsets of peripheral blood Tfh cells in patients with diabetic nephropathy (DN). METHODS A total of 23 DN patients and 15 healthy controls (HC) were investigated for various subsets of Tfh cells by flow cytometry. The molecules ICOS+, PD-1+, CD28+, CD154+, IL-21+, IFN-γ+, IL-4+, IL-17+ Tfh cells were examined. The subsets of B cells were investigated by flow cytometry. The levels of 24 h urinary protein and estimated glomerular filtration rate (eGFR) were calculated. A potential correlation between the number of different subsets of Tfh cells, B cells and DN, was assessed. RESULTS The circulating CD4+CXCR5+PD-1+, PD-1+CD154+, PD-1+CD28+, PD-1+IL-21+, PD-1+IL-4+, PD-1+-IL-17+-Tfh cell counts, CD38+CD19+, CD38+CD19+CD40+ B cells and plasma levels of IL-21 were significantly increased in DN patients (p < 0.05), as compared to that in the HC group. Furthermore, the circulating CD4+CXCR5+PD-1+ Tfh cell counts negatively correlated with eGFR; Tfh cell counts positively correlated with 24 h urinary protein concentration in DN patients. Post-treatment, there was a significant reduction in the CD4+CXCR5+PD-1+ Tfh cell counts and its subsets, with a corresponding decrease in plasma levels of IL-6 and IL-17A (p < 0.05) in DN patients, as compared to the HCs. CONCLUSION An increased number of CD4+CXCR5+PD-1+ Tfh cells were observed in DN patients, which may be new targets for intervention in DN.
Collapse
Affiliation(s)
- Nan Zhang
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Jiandong Tai
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Zhihui Qu
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Zhihui Zhang
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Songchen Zhao
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Jiaxue He
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Songling Zhang
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China
| | - Yanfang Jiang
- a Genetic Diagnosis Center, The First Hospital of Jilin University , Changchun , PR China.,b Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University , Changchun , PR China , and.,c Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses , Yangzhou , PR China
| |
Collapse
|
25
|
Affiliation(s)
- Carola G. Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia;
| | - Michelle A. Linterman
- Lymphocyte Signalling and Development Institute Strategic Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom;
| | - Di Yu
- Laboratory for Molecular Immunomodulation, Department of Biochemistry and Molecular Biology, and Center for Inflammatory Diseases, Monash University, Melbourne, Victoria 3800, Australia;
| | - Ian C.M. MacLennan
- School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
26
|
Abstract
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy & Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Unit 902, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
27
|
Roquin recognizes a non-canonical hexaloop structure in the 3'-UTR of Ox40. Nat Commun 2016; 7:11032. [PMID: 27010430 PMCID: PMC5603727 DOI: 10.1038/ncomms11032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
The RNA-binding protein Roquin is required to prevent autoimmunity. Roquin controls T-helper cell activation and differentiation by limiting the induced expression of costimulatory receptors such as tumor necrosis factor receptor superfamily 4 (Tnfrs4 or Ox40). A constitutive decay element (CDE) with a characteristic triloop hairpin was previously shown to be recognized by Roquin. Here we use SELEX assays to identify a novel U-rich hexaloop motif, representing an alternative decay element (ADE). Crystal structures and NMR data show that the Roquin-1 ROQ domain recognizes hexaloops in the SELEX-derived ADE and in an ADE-like variant present in the Ox40 3'-UTR with identical binding modes. In cells, ADE-like and CDE-like motifs cooperate in the repression of Ox40 by Roquin. Our data reveal an unexpected recognition of hexaloop cis elements for the posttranscriptional regulation of target messenger RNAs by Roquin.
Collapse
|
28
|
Schlundt A, Niessing D, Heissmeyer V, Sattler M. RNA recognition by Roquin in posttranscriptional gene regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:455-69. [PMID: 26844532 DOI: 10.1002/wrna.1333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 11/08/2022]
Abstract
Posttranscriptional regulation of gene expression plays a central role in the initiation of innate and adaptive immune responses. This is exemplified by the protein Roquin, which has attracted great interest during the past decade owing to its ability to prevent autoimmunity. Roquin controls T-cell activation and T helper cell differentiation by limiting the induced expression of costimulatory receptors on the surface of T cells. It does so by recognizing cis regulatory RNA-hairpin elements in the 3' UTR of target transcripts via its ROQ domain-a novel RNA-binding fold-and triggering their degradation through recruitment of factors that mediate deadenylation and decapping. Recent structural studies have revealed molecular details of the recognition of RNA hairpin structures by the ROQ domain. Surprisingly, it was found that Roquin mainly relies on shape-specific recognition of the RNA. This observation implies that a much broader range of RNA motifs could interact with the protein, but it also complicates systematic searches for novel mRNA targets of Roquin. Thus, large-scale approaches, such as crosslinking and immunoprecipitation or systematic evolution of ligands by exponential enrichment experiments coupled with next-generation sequencing, will be required to identify the complete spectrum of its target RNAs. Together with structural analyses of their binding modes, this will enable us to unravel the intricate complexity of 3' UTR regulation by Roquin and other trans-acting factors. Here, we review our current understanding of Roquin-RNA interactions and their role for Roquin function. WIREs RNA 2016, 7:455-469. doi: 10.1002/wrna.1333 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Andreas Schlundt
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Cell Biology, Biomedical Center of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute of Molecular Immunology, Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, München, Germany.,Institute for Immunology, Biomedical Center of the Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| |
Collapse
|
29
|
New Insights into the RNA-Binding and E3 Ubiquitin Ligase Activities of Roquins. Sci Rep 2015; 5:15660. [PMID: 26489670 PMCID: PMC4614863 DOI: 10.1038/srep15660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/29/2015] [Indexed: 02/08/2023] Open
Abstract
Roquins are a family of highly conserved RNA-binding proteins that also contain a RING-type E3 ubiquitin ligase domain. They repress constitutive decay elements containing mRNAs and play a critical role in RNA homeostasis and immunological self-tolerance. Here we present the crystal structures of the RNA-binding region of Roquin paralog RC3H2 in both apo- and RNA-bound forms. The RNA-binding region has a bipartite architecture composed of ROQ and HEPN domains, and can bind to stem-loop and double-stranded RNAs simultaneously. The two domains undergo a large orientation change to accommodate RNA duplex binding. We profiled E2 ubiquitin-conjugating enzymes that pair with Roquins and found that RC3H1 and RC3H2 interact with two sets of overlapping but not identical E2 enzymes to drive the assembly of polyubiquitin chains of different linkages. Crystal structures, small-angle X-ray scattering, and E2 profiling revealed that while the two paralogs are highly homologous, RC3H2 and RC3H1 are different in their structures and functions. We also demonstrated that RNA duplex binding to RC3H2 cross-talks with its E3 ubiquitin ligase function using an in vitro auto-ubiquitination assay.
Collapse
|
30
|
Newman R, McHugh J, Turner M. RNA binding proteins as regulators of immune cell biology. Clin Exp Immunol 2015. [PMID: 26201441 DOI: 10.1111/cei.12684] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sequence-specific RNA binding proteins (RBP) are important regulators of the immune response. RBP modulate gene expression by regulating splicing, polyadenylation, localization, translation and decay of target mRNAs. Increasing evidence suggests that RBP play critical roles in the development, activation and function of lymphocyte populations in the immune system. This review will discuss the post-transcriptional regulation of gene expression by RBP during lymphocyte development, with particular focus on the Tristetraprolin family of RBP.
Collapse
Affiliation(s)
- R Newman
- Babraham Institute, Cambridge, UK
| | - J McHugh
- Babraham Institute, Cambridge, UK
| | - M Turner
- Babraham Institute, Cambridge, UK
| |
Collapse
|
31
|
Dufner A, Kisser A, Niendorf S, Basters A, Reissig S, Schönle A, Aichem A, Kurz T, Schlosser A, Yablonski D, Groettrup M, Buch T, Waisman A, Schamel WW, Prinz M, Knobeloch KP. The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat Immunol 2015. [PMID: 26214742 DOI: 10.1038/ni.3230] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The modification of proteins by ubiquitin has a major role in cells of the immune system and is counteracted by various deubiquitinating enzymes (DUBs) with poorly defined functions. Here we identified the ubiquitin-specific protease USP8 as a regulatory component of the T cell antigen receptor (TCR) signalosome that interacted with the adaptor Gads and the regulatory molecule 14-3-3β. Caspase-dependent processing of USP8 occurred after stimulation of the TCR. T cell-specific deletion of USP8 in mice revealed that USP8 was essential for thymocyte maturation and upregulation of the gene encoding the cytokine receptor IL-7Rα mediated by the transcription factor Foxo1. Mice with T cell-specific USP8 deficiency developed colitis that was promoted by disturbed T cell homeostasis, a predominance of CD8(+) γδ T cells in the intestine and impaired regulatory T cell function. Collectively, our data reveal an unexpected role for USP8 as an immunomodulatory DUB in T cells.
Collapse
Affiliation(s)
- Almut Dufner
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Agnes Kisser
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Sandra Niendorf
- Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| | - Anja Basters
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Sonja Reissig
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Anne Schönle
- Institute of Neuropathology, University of Freiburg, Freiburg, Germany
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Thorsten Kurz
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Andreas Schlosser
- Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Deborah Yablonski
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Marcus Groettrup
- 1] Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland. [2] Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thorsten Buch
- 1] Institute for Medical Microbiology, Immunology, and Hygiene, Technische Universität München, Germany. [2] Institute of Laboratory Animal Sciences, University of Zurich, Zurich, Switzerland
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Wolfgang W Schamel
- 1] Department of Molecular Immunology, Faculty of Biology, and Center of Chronic Immunodeficiency, University of Freiburg, Freiburg, Germany. [2] BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- 1] Institute of Neuropathology, University of Freiburg, Freiburg, Germany. [2] BIOSS Center for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- 1] Institute of Neuropathology, University of Freiburg, Freiburg, Germany. [2] Leibniz Institute for Molecular Pharmacology, Berlin, Germany
| |
Collapse
|
32
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
33
|
Turner M, Galloway A, Vigorito E. Noncoding RNA and its associated proteins as regulatory elements of the immune system. Nat Immunol 2014; 15:484-91. [PMID: 24840979 DOI: 10.1038/ni.2887] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/01/2014] [Indexed: 12/11/2022]
Abstract
The rapid changes in gene expression that accompany developmental transitions, stress responses and proliferation are controlled by signal-mediated coordination of transcriptional and post-transcriptional mechanisms. In recent years, understanding of the mechanics of these processes and the contexts in which they are employed during hematopoiesis and immune challenge has increased. An important aspect of this progress is recognition of the importance of RNA-binding proteins and noncoding RNAs. These have roles in the development and function of the immune system and in pathogen life cycles, and they represent an important aspect of intracellular immunity.
Collapse
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Alison Galloway
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Elena Vigorito
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
34
|
Schaefer JS, Montufar-Solis D, Klein JR. A role for IL-10 in the transcriptional regulation of Roquin-1. Gene 2014; 549:134-40. [PMID: 25062971 DOI: 10.1016/j.gene.2014.07.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 01/25/2023]
Abstract
Roquin-1, a RING finger E3 ubiquitin ligase, functions as a modulator of inflammation; however, nothing is known about how Rc3h1 expression is regulated. Here, we describe an opposing relationship between Roquin-1 and the IL-17 proinflammatory cytokine by demonstrating that enforced expression of Rc3h1 restricts Il17a expression, and that exposure of T cells to IL-10, a cytokine with immunosuppressive activity, increases Rc3h1 expression. Luciferase reporter assays conducted using eight transcription factor plasmids (STAT1, STAT3, STAT5, GATA2, c-Rel, IKZF1, IKZF2, and IKZF3) demonstrated that STAT1, STAT3, GATA2, and c-Rel increased Rc3h1 promoter activity, whereas IKZF2 decreased activity. Gene expression of those five transcription factors increased in T cells exposed to IL-10. Transcription factor-specific siRNAs suppressed the IL-10 effect on Rc3h1 transcription. These findings identify a role for IL-10 in regulating Rc3h1 transcription, and they have implications for understanding how Roquin-1 controls the immune response.
Collapse
Affiliation(s)
- Jeremy S Schaefer
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - John R Klein
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.
| |
Collapse
|
35
|
The ROQ domain of Roquin recognizes mRNA constitutive-decay element and double-stranded RNA. Nat Struct Mol Biol 2014; 21:679-85. [PMID: 25026078 PMCID: PMC4125485 DOI: 10.1038/nsmb.2857] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/13/2014] [Indexed: 01/03/2023]
Abstract
A conserved stem-loop motif of the constitutive decay element (CDE) in the 3' UTR of mRNAs is recognized by the ROQ domain of Roquin, which mediates mRNA degradation. Here we report two crystal structures of the Homo sapiens ROQ domain in complex with CDE RNA. The ROQ domain has an elongated shape with three subdomains. The 19-nt Hmgxb3 CDE is bound as a stem-loop to domain III. The 23-nt TNF RNA is bound as a duplex to a separate site at the interface between domains I and II. Mutagenesis studies confirm that the ROQ domain has two separate RNA-binding sites, one for stem-loop RNA (A site) and the other for double-stranded RNA (B site). Mutation in either site perturbs the Roquin-mediated degradation of HMGXB3 and IL6 mRNAs in human cells, demonstrating the importance of both sites for mRNA decay.
Collapse
|
36
|
Montufar-Solis D, Vigneswaran N, Nakra N, Schaefer JS, Klein JR. Hematopoietic not systemic impairment of Roquin expression accounts for intestinal inflammation in Roquin-deficient mice. Sci Rep 2014; 4:4920. [PMID: 24815331 PMCID: PMC4017215 DOI: 10.1038/srep04920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 04/22/2014] [Indexed: 01/17/2023] Open
Abstract
Roquin, an E3 ligase, is involved in curtailing autoimmune pathology as seen from studies using mice with mutated (Rc3h1san/san) or disrupted (Rc3h1gt/gt) Rc3h1 gene. The extent to which intestinal immunopathology is caused by insufficient Roquin expression in the immune system, or by Roquin impairment in non-hematopoietic cells, has not been determined. Using bone marrow cells from Rc3h1gt/gt mice transferred into irradiated normal mice (Rc3h1gt/gt → NL chimeras), we show that inflammation developed in the small intestine, kidney, lung, liver, and spleen. Proinflammatory cytokine levels were elevated in lamina propria lymphocytes (LPLs). Inflammation in the liver was accompanied by areas of hepatocyte apoptosis. Lung inflammation consisted of an influx of both T cells and B cells. Small intestinal LPLs had increased numbers of CD44hi, CD62Llo, KLRG1+, ICOS+ short-lived effector cells, indicating an influx of activated T cells. Following oral infection with L. monocytogenes, Rc3h1gt/gt → NL chimeras had more liver pathology and greater numbers of bacteria in the Peyer's patches than NL → NL chimeras. These findings demonstrate that small intestinal inflammation in Rc3h1san/san and Rc3h1gt/gt mice is due to a failure of Roquin expression in the immune system and not to insufficient systemic Roquin expression.
Collapse
Affiliation(s)
- Dina Montufar-Solis
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Niyati Nakra
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - Jeremy S Schaefer
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| | - John R Klein
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054 USA
| |
Collapse
|
37
|
Cha Z, Guo H, Tu X, Zang Y, Gu H, Song H, Qian B. Alterations of circulating follicular helper T cells and interleukin 21 in diffuse large B-cell lymphoma. Tumour Biol 2014; 35:7541-6. [PMID: 24789434 DOI: 10.1007/s13277-014-1999-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 04/22/2014] [Indexed: 11/30/2022] Open
Abstract
CD4+ CXCR5+ T cell in peripheral blood is known as circulating follicular helper T cell (Tfh), which can produce interleukin 21 (IL-21). In the current study, we investigated changes of circulating Tfh and its correlation with IL-21 in diffuse large B-cell lymphoma (DLBCL). Circulating Tfh and its subtypes were detected by flow cytometry in the peripheral blood of 32 healthy donors and 62 DLBCL cases. Data demonstrated that percentage of circulating Tfh in CD4+ T cells was significantly increased in DLBCL (11.3 %) than in controls (8.5 %) (p = 0.001). Studying the subtypes of Tfh revealed that the upregulation of circulating Tfh was contributed by Tfh-Th2 subtype and Tfh-Th17 subtype. Also, we identified that prevalence of Tfh was significantly elevated in cases with advanced stages (stages III and IV). Interestingly, the elevation of circulating Tfh was negatively correlated with serum IL-21 in DLBCL patients. In addition, a positive correlation between circulating Tfh and IL-21 receptor on CD + 8 T cells was observed in patients. This study suggests involvement of circulating Tfh and IL-21 in the pathogenesis and progression of DLBCL and provides a potential target for treating this disease.
Collapse
Affiliation(s)
- Zhanshan Cha
- Department of Transfusion, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The ubiquitin system plays a pivotal role in the regulation of immune responses. This system includes a large family of E3 ubiquitin ligases of over 700 proteins and about 100 deubiquitinating enzymes, with the majority of their biological functions remaining unknown. Over the last decade, through a combination of genetic, biochemical, and molecular approaches, tremendous progress has been made in our understanding of how the process of protein ubiquitination and its reversal deubiquitination controls the basic aspect of the immune system including lymphocyte development, differentiation, activation, and tolerance induction and regulates the pathophysiological abnormalities such as autoimmunity, allergy, and malignant formation. In this review, we selected some of the published literature to discuss the roles of protein-ubiquitin conjugation and deubiquitination in T-cell activation and anergy, regulatory T-cell and T-helper cell differentiation, regulation of NF-κB signaling, and hematopoiesis in both normal and dysregulated conditions. A comprehensive understanding of the relationship between the ubiquitin system and immunity will provide insight into the molecular mechanisms of immune regulation and at the same time will advance new therapeutic intervention for human immunological diseases.
Collapse
Affiliation(s)
- Yoon Park
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Hyung-seung Jin
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Daisuke Aki
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Jeeho Lee
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Yun-Cai Liu
- La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.
| |
Collapse
|
39
|
Affiliation(s)
- K Mark Ansel
- Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|