1
|
Miyazaki M, Miyazaki K. The Function of E2A in B-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:97-113. [PMID: 39017841 DOI: 10.1007/978-3-031-62731-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Helix-loop-helix (HLH) transcription factors (TFs) play a key role in various cellular differentiation and function through the regulation of enhancer activity. E2A, a member of the mammalian E-protein family (class I HLH protein), is well known to play an important role in hematopoiesis, especially in adaptive lymphocyte development. E2A instructs B- and T-cell lineage development through the regulation of enhancer activity for B- or T-cell signature gene expression, including Rag1 and Rag2 (Rag1/2) genes. In this chapter, we mainly focus on the function of E2A in B-cell development and on the roles of E2A in establishing the enhancer landscape through the recruitment of EP300/KAT3B, chromatin remodeling complex, mediator, cohesion, and TET proteins. Finally, we demonstrate how E2A orchestrates the assembly of the Rag1/2 gene super-enhancer (SE) formation by changing the chromatin conformation across the Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Morgan RC, Frank C, Greger M, Attaway M, Sigvardsson M, Bartom ET, Kee BL. TGF-β Promotes the Postselection Thymic Development and Peripheral Function of IFN-γ-Producing Invariant NKT cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1376-1384. [PMID: 37702745 PMCID: PMC10592054 DOI: 10.4049/jimmunol.2200809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
IFN-γ-producing invariant NKT (iNKT)1 cells are lipid-reactive innate-like lymphocytes that are resident in the thymus and peripheral tissues where they protect against pathogenic infection. The thymic functions of iNKT1 cells are not fully elucidated, but subsets of thymic iNKT cells modulate CD8 T cell, dendritic cell, B cell, and thymic epithelial cell numbers or function. In this study, we show that a subset of murine thymic iNKT1 cells required TGF-β-induced signals for their postselection development, to maintain hallmark TGF-β-induced genes, and for expression of the adhesion receptors CD49a and CD103. However, the residency-associated receptor CD69 was not TGF-β signaling-dependent. Recently described CD244+ c2 thymic iNKT1 cells, which produce IFN-γ without exogenous stimulation and have NK-like characteristics, reside in this TGF-β-responsive population. Liver and spleen iNKT1 cells do not share this TGF-β gene signature, but nonetheless TGF-β impacts liver iNKT1 cell phenotype and function. Our findings provide insight into the heterogeneity of mechanisms guiding iNKT1 cell development in different tissues and suggest a close association between a subset of iNKT1 cells and TGF-β-producing cells in the thymus that support their development.
Collapse
Affiliation(s)
- Roxroy C. Morgan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
| | - Cameron Frank
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
| | - Munmun Greger
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| | - Mary Attaway
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| | | | - Elizabeth T. Bartom
- Dept. of Biochemistry and Molecular Genetics, Northwestern Feinberg School of Medicine, Chicago IL
| | - Barbara L. Kee
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637
- Dept. of Pathology, The University of Chicago, Chicago, IL 60637
- Committees on Cancer Biology and Immunology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
3
|
Oswald J, Constantine M, Adegbuyi A, Omorogbe E, Dellomo AJ, Ehrlich ES. E3 Ubiquitin Ligases in Gammaherpesviruses and HIV: A Review of Virus Adaptation and Exploitation. Viruses 2023; 15:1935. [PMID: 37766341 PMCID: PMC10535929 DOI: 10.3390/v15091935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
For productive infection and replication to occur, viruses must control cellular machinery and counteract restriction factors and antiviral proteins. Viruses can accomplish this, in part, via the regulation of cellular gene expression and post-transcriptional and post-translational control. Many viruses co-opt and counteract cellular processes via modulation of the host post-translational modification machinery and encoding or hijacking kinases, SUMO ligases, deubiquitinases, and ubiquitin ligases, in addition to other modifiers. In this review, we focus on three oncoviruses, Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human immunodeficiency virus (HIV) and their interactions with the ubiquitin-proteasome system via viral-encoded or cellular E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Elana S. Ehrlich
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
4
|
You M, Liu J, Li J, Ji C, Ni H, Guo W, Zhang J, Jia W, Wang Z, Zhang Y, Yao Y, Yu G, Ji H, Wang X, Han D, Du X, Xu MM, Yu S. Mettl3-m 6A-Creb1 forms an intrinsic regulatory axis in maintaining iNKT cell pool and functional differentiation. Cell Rep 2023; 42:112584. [PMID: 37267102 DOI: 10.1016/j.celrep.2023.112584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023] Open
Abstract
N6-methyladenosine (m6A) methyltransferase Mettl3 is involved in conventional T cell immunity; however, its role in innate immune cells remains largely unknown. Here, we show that Mettl3 intrinsically regulates invariant natural killer T (iNKT) cell development and function in an m6A-dependent manner. Conditional ablation of Mettl3 in CD4+CD8+ double-positive (DP) thymocytes impairs iNKT cell proliferation, differentiation, and cytokine secretion, which synergistically causes defects in B16F10 melanoma resistance. Transcriptomic and epi-transcriptomic analyses reveal that Mettl3 deficiency disturbs the expression of iNKT cell-related genes with altered m6A modification. Strikingly, Mettl3 modulates the stability of the Creb1 transcript, which in turn controls the protein and phosphorylation levels of Creb1. Furthermore, conditional targeting of Creb1 in DP thymocytes results in similar phenotypes of iNKT cells lacking Mettl3. Importantly, ectopic expression of Creb1 largely rectifies such developmental defects in Mettl3-deficient iNKT cells. These findings reveal that the Mettl3-m6A-Creb1 axis plays critical roles in regulating iNKT cells at the post-transcriptional layer.
Collapse
Affiliation(s)
- Menghao You
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jingjing Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China; Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenhui Guo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiarui Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Weiwei Jia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajiao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yingpeng Yao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guotao Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huanyu Ji
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohu Wang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dali Han
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Shuyang Yu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
MacNabb BW, Rothenberg EV. Speed and navigation control of thymocyte development by the fetal T-cell gene regulatory network. Immunol Rev 2023; 315:171-196. [PMID: 36722494 PMCID: PMC10771342 DOI: 10.1111/imr.13190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
T-cell differentiation is a tightly regulated developmental program governed by interactions between transcription factors (TFs) and chromatin landscapes and affected by signals received from the thymic stroma. This process is marked by a series of checkpoints: T-lineage commitment, T-cell receptor (TCR)β selection, and positive and negative selection. Dynamically changing combinations of TFs drive differentiation along the T-lineage trajectory, through mechanisms that have been most extensively dissected in adult mouse T-lineage cells. However, fetal T-cell development differs from adult in ways that suggest that these TF mechanisms are not fully deterministic. The first wave of fetal T-cell differentiation occurs during a unique developmental window during thymic morphogenesis, shows more rapid kinetics of differentiation with fewer rounds of cell division, and gives rise to unique populations of innate lymphoid cells (ILCs) and invariant γδT cells that are not generated in the adult thymus. As the characteristic kinetics and progeny biases are cell-intrinsic properties of thymic progenitors, the differences could be based on distinct TF network circuitry within the progenitors themselves. Here, we review recent single-cell transcriptome data that illuminate the TF networks involved in T-cell differentiation in the fetal and adult mouse thymus.
Collapse
Affiliation(s)
- Brendan W MacNabb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
6
|
Papanastasatou M, Verykokakis M. Innate-like T lymphocytes in chronic liver disease. Front Immunol 2023; 14:1114605. [PMID: 37006304 PMCID: PMC10050337 DOI: 10.3389/fimmu.2023.1114605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
In addition to its metabolic activities, it is now clear that the liver hosts a number of diverse immune cell types that control tissue homeostasis. Foremost among these are innate-like T lymphocytes, including natural killer T (NKT) and mucosal-associated innate T (MAIT) cells, which are a population of specialized T cells with innate characteristics that express semi-invariant T cell receptors with non-peptide antigen specificity. As primary liver residents, innate-like T cells have been associated with immune tolerance in the liver, but also with a number of hepatic diseases. Here, we focus on the biology of NKT and MAIT cells and how they operate during the course of chronic inflammatory diseases that eventually lead to hepatocellular carcinoma.
Collapse
|
7
|
Miyazaki M, Miyazaki K. The E-Id Axis Specifies Adaptive and Innate Lymphoid Lineage Cell Fates. J Biochem 2022; 172:259-264. [PMID: 36000775 DOI: 10.1093/jb/mvac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Our bodies are constantly threatened with the invasion of pathogens, such as bacteria and virus. Immune responses against pathogens are evoked in collaboration with adaptive and innate immune systems. Adaptive immune cells including T and B cells recognize various antigens from pathogens through the antigen recognition receptors such as Immunoglobulin (Ig) and T cell receptor (TCR), and they evoke antigen-specific immune responses to eliminate the pathogens. This specific recognition of a variety of antigens relies on the V(D)J DNA recombination of Ig and TCR genes, which is generated by the Rag (recombination activation gene) 1/Rag2 protein complex. The expression of Rag1/2 genes are stringently controlled during the T and B cell development; Rag1/2 gene expression indicates the commitment towards adaptive lymphocyte lineages. In this review article, we will discuss the developmental bifurcation between adaptive and innate lymphoid cells, and the role of transcription factors, especially the E and Id proteins, upon the lineage commitment, and the regulation of Rag gene locus.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Gao X, Shen X, Liu K, Lu C, Fan Y, Xu Q, Meng X, Hong S, Huang Z, Liu X, Lu L, Wang L. The Transcription Factor ThPOK Regulates ILC3 Lineage Homeostasis and Function During Intestinal Infection. Front Immunol 2022; 13:939033. [PMID: 35844574 PMCID: PMC9285022 DOI: 10.3389/fimmu.2022.939033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Innate lymphoid cells (ILCs) have been identified as a heterogeneous population of lymphocytes that mirrors the cytokine and transcriptional profile of adaptive T cells. The dynamic balance between key transcription factors determines the heterogeneity, plasticity, and functions of ILC subsets. The transcription factor ThPOK is highly conserved in biological evolution and exerts pivotal functions in the differentiation of T cells. However, the function of ThPOK in ILC3s has not been identified. Here, we found that ThPOK regulated the homeostasis of ILC3s, as mice lacking ThPOK showed decreased NKp46+ ILC3s and increased CCR6- NKp46- ILC3s. ThPOK-deficient mice were more sensitive to S. typhimurium infection due to the impaired IFN-γ secretion of NKp46+ ILC3s. Furthermore, ThPOK participates in ILC3-mediated control of C. rodentium infection by negatively regulating IL-17A secretion. ThPOK preserves the identity of NKp46+ ILC3s by repressing RORγt, which indirectly releases T-bet expression. On the molecular level, ThPOK directly binds to Rorc and Il23r to restrain their expression which further modulates IL-17A secretion. Collectively, our analysis revealed a critical role of ThPOK in the homeostasis and functions of ILC3 subsets.
Collapse
Affiliation(s)
- Xianzhi Gao
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Shen
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kuai Liu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenyu Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Fan
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Meng
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | | | - Xia Liu
- Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Linrong Lu
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lie Wang
- Institute of Immunology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Lie Wang,
| |
Collapse
|
9
|
Combs LR, Spires LM, Alonso JD, Papp B, Toth Z. KSHV RTA Induces Degradation of the Host Transcription Repressor ID2 To Promote the Viral Lytic Cycle. J Virol 2022; 96:e0010122. [PMID: 35604218 PMCID: PMC9215225 DOI: 10.1128/jvi.00101-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
The immediate early viral protein replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is essential for activating the lytic cycle of KSHV. RTA induces the KSHV lytic cycle by several mechanisms, acting as a viral transcription factor that directly induces viral and host genes and acting as a viral E3 ubiquitin ligase by degrading host proteins that block viral lytic replication. Recently, we have characterized the global gene expression changes in primary effusion lymphoma (PEL) upon lytic reactivation of KSHV, which also led to the identification of rapidly downregulated genes such as ID2, an inhibitor of basic helix-loop-helix transcription factors. Here, we demonstrate that ID2 overexpression in PEL ablates KSHV lytic reactivation, indicating that ID2 inhibits the KSHV lytic cycle. Furthermore, we show that while ID2 is highly expressed during latency, its protein level is rapidly reduced by 4 h postinduction during lytic reactivation. Our results indicate that RTA binds to ID2 and induces its degradation during the KSHV lytic cycle by N-terminal ubiquitination through the ubiquitin-proteasome pathway. Importantly, we found that not only KSHV RTA but also its Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68) homologs interact with ID2, and they can induce the degradation of all four members of the ID protein family, suggesting an evolutionarily conserved interplay between gammaherpesvirus RTAs and ID proteins. Taken together, we propose that ID2 acts as a repressor of the KSHV lytic cycle, which is counteracted by its RTA-mediated degradation. We also predict that ID proteins may act as restriction factors of the lytic phase of the other gammaherpesviruses as well. IMPORTANCE In addition to its transcription regulatory role, RTA is also known to have an E3 ubiquitin ligase activity, which RTA utilizes for inducing protein degradation. However, it is still largely unknown what host factors are downregulated during KSHV lytic reactivation by RTA-mediated protein degradation and what the biological significance of the degradation of these host factors is. In this study, we discovered that RTA employs N-terminal ubiquitination to induce degradation of ID2, a potent transcription repressor of host genes, via the ubiquitin-proteasome pathway to promote KSHV lytic reactivation in PEL cells. Furthermore, we found that not only KSHV RTA but also RTA of EBV and MHV68 gammaherpesviruses can induce the degradation of all four human ID proteins, indicating that the interplay between gammaherpesvirus RTAs and ID proteins is evolutionarily conserved.
Collapse
Affiliation(s)
- Lauren R. Combs
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Juan D. Alonso
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
- University of Florida Health Cancer Center, Gainesville, Florida, USA
- University of Florida Center for Orphaned Autoimmune Disorders, Gainesville, Florida, USA
- University of Florida Informatics Institute, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
- University of Florida Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
10
|
Hidaka R, Miyazaki K, Miyazaki M. The E-Id Axis Instructs Adaptive Versus Innate Lineage Cell Fate Choice and Instructs Regulatory T Cell Differentiation. Front Immunol 2022; 13:890056. [PMID: 35603170 PMCID: PMC9120639 DOI: 10.3389/fimmu.2022.890056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses are primarily mediated by adaptive and innate immune cells. Adaptive immune cells, such as T and B cells, evoke antigen-specific responses through the recognition of specific antigens. This antigen-specific recognition relies on the V(D)J recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes mediated by recombination-activating gene (Rag)1 and Rag2 (Rag1/2). In addition, T and B cells employ cell type-specific developmental pathways during their activation processes, and the regulation of these processes is strictly regulated by the transcription factor network. Among these factors, members of the basic helix-loop-helix (bHLH) transcription factor mammalian E protein family, including E12, E47, E2-2, and HEB, orchestrate multiple adaptive immune cell development, while their antagonists, Id proteins (Id1-4), function as negative regulators. It is well established that a majority of T and B cell developmental trajectories are regulated by the transcriptional balance between E and Id proteins (the E-Id axis). E2A is critically required not only for B cell but also for T cell lineage commitment, whereas Id2 and Id3 enforce the maintenance of naïve T cells and naïve regulatory T (Treg) cells. Here, we review the current knowledge of E- and Id-protein function in T cell lineage commitment and Treg cell differentiation.
Collapse
|
11
|
Yan J, Yu J, Liu K, Liu Y, Mao C, Gao W. The Pathogenic Roles of IL-22 in Colitis: Its Transcription Regulation by Musculin in T Helper Subsets and Innate Lymphoid Cells. Front Immunol 2021; 12:758730. [PMID: 34992594 PMCID: PMC8724035 DOI: 10.3389/fimmu.2021.758730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
IL-22 plays a crucial role in promoting inflammation, antimicrobial immunity and tissue repair at barrier surfaces. The role of IL-22 in colitis is still controversial: while IL-22 has a protective effect on gut epithelium in acute injuries, it also enhances colitis in a context-dependent manner. Here, we summarize the Yin and Yang of IL-22 in colitis. Particularly, we emphasize the role of innate lymphoid cells (ILCs) in IL-22 production and regulation. A previously underappreciated transcription factor, Musculin (MSC), has been recently identified to be expressed in not only Th17 cells, but also RORγt+/Id2+ IL-22-producing group 3 ILCs in the gut of naïve mice. We hypothesize that the co-expression and interaction of MSC with the key transcription repressor Id2 in developing lymphoid cells (e.g., in LTi cells) and ILC precursors might fine tune the developmental programs or regulate the plasticity of adaptive Th subset and innate ILCs. The much-elevated expression of IL-22 in MSC-/- ILC3s suggests that MSC may function as: 1) a transcription suppressor for cytokines, particularly for IL-22, and/or 2) a gatekeeper for specific lineages of Th cells and innate ILCs as well. Amelioration of colitis symptoms in MSC-/- mice by IL-22-blocking agent IL-22BP-Fc suggests a counterintuitive pathogenic role of IL-22 in the absence of MSC as a checkpoint. The theory that exuberant production of IL-22 under pathological conditions (e.g., in human inflammatory bowel disease, IBD) may cause epithelial inflammation due to endoplasmic reticulum (ER) stress response is worth further investigation. Rheostatic regulation of IL-22 may be of therapeutic value to restore homeostatic balance and promote intestinal health in human colitis.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ke Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yijia Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Wenda Gao
- Antagen Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
12
|
Kupke P, Werner JM. Hepatitis E Virus Infection-Immune Responses to an Underestimated Global Threat. Cells 2021; 10:cells10092281. [PMID: 34571931 PMCID: PMC8468229 DOI: 10.3390/cells10092281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Infection with the hepatitis E virus (HEV) is one of the main ubiquitous causes for developing an acute hepatitis. Moreover, chronification plays a predominant role in immunocompromised patients such as transplant recipients with more frequent severe courses. Unfortunately, besides reduction of immunosuppression and off-label use of ribavirin or pegylated interferon alfa, there is currently no specific anti-viral treatment to prevent disease progression. So far, research on involved immune mechanisms induced by HEV is limited. It is very difficult to collect clinical samples especially from the early phase of infection since this is often asymptomatic. Nevertheless, it is certain that the outcome of HEV-infected patients correlates with the strength of the proceeding immune response. Several lymphoid cells have been identified in contributing either to disease progression or achieving sustained virologic response. In particular, a sufficient immune control by both CD4+ and CD8+ T cells is necessary to prevent chronic viral replication. Especially the mechanisms underlying fulminant courses are poorly understood. However, liver biopsies indicate the involvement of cytotoxic T cells in liver damage. In this review, we aimed to highlight different parts of the lymphoid immune response against HEV and point out questions that remain unanswered regarding this underestimated global threat.
Collapse
|
13
|
Huang X, Ferris ST, Kim S, Choudhary MNK, Belk JA, Fan C, Qi Y, Sudan R, Xia Y, Desai P, Chen J, Ly N, Shi Q, Bagadia P, Liu T, Guilliams M, Egawa T, Colonna M, Diamond MS, Murphy TL, Satpathy AT, Wang T, Murphy KM. Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity 2021; 54:1417-1432.e7. [PMID: 34004142 PMCID: PMC8282756 DOI: 10.1016/j.immuni.2021.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
The transcriptional repressor ZEB2 regulates development of many cell fates among somatic, neural, and hematopoietic lineages, but the basis for its requirement in these diverse lineages is unclear. Here, we identified a 400-basepair (bp) region located 165 kilobases (kb) upstream of the Zeb2 transcriptional start site (TSS) that binds the E proteins at several E-box motifs and was active in hematopoietic lineages. Germline deletion of this 400-bp region (Zeb2Δ-165mice) specifically prevented Zeb2 expression in hematopoietic stem cell (HSC)-derived lineages. Zeb2Δ-165 mice lacked development of plasmacytoid dendritic cells (pDCs), monocytes, and B cells. All macrophages in Zeb2Δ-165 mice were exclusively of embryonic origin. Using single-cell chromatin profiling, we identified a second Zeb2 enhancer located at +164-kb that was selectively active in embryonically derived lineages, but not HSC-derived ones. Thus, Zeb2 expression in adult, but not embryonic, hematopoiesis is selectively controlled by the -165-kb Zeb2 enhancer.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Stephen T Ferris
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Sunkyung Kim
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Mayank N K Choudhary
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Changxu Fan
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Yanyan Qi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Raki Sudan
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Yu Xia
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Jing Chen
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Nghi Ly
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Quanming Shi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Prachi Bagadia
- Department of Oncology, Amgen, 1120 Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Tiantian Liu
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Martin Guilliams
- Unit of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Theresa L Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Yoshikawa G, Miyazaki K, Ogata H, Miyazaki M. The Evolution of Rag Gene Enhancers and Transcription Factor E and Id Proteins in the Adaptive Immune System. Int J Mol Sci 2021; 22:ijms22115888. [PMID: 34072618 PMCID: PMC8199221 DOI: 10.3390/ijms22115888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptive immunity relies on the V(D)J DNA recombination of immunoglobulin (Ig) and T cell receptor (TCR) genes, which enables the recognition of highly diverse antigens and the elicitation of antigen-specific immune responses. This process is mediated by recombination-activating gene (Rag) 1 and Rag2 (Rag1/2), whose expression is strictly controlled in a cell type-specific manner; the expression of Rag1/2 genes represents a hallmark of lymphoid lineage commitment. Although Rag genes are known to be evolutionally conserved among jawed vertebrates, how Rag genes are regulated by lineage-specific transcription factors (TFs) and how their regulatory system evolved among vertebrates have not been fully elucidated. Here, we reviewed the current body of knowledge concerning the cis-regulatory elements (CREs) of Rag genes and the evolution of the basic helix-loop-helix TF E protein regulating Rag gene CREs, as well as the evolution of the antagonist of this protein, the Id protein. This may help to understand how the adaptive immune system develops along with the evolution of responsible TFs and enhancers.
Collapse
Affiliation(s)
- Genki Yoshikawa
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
| | - Kazuko Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroyuki Ogata
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan;
- Correspondence: (H.O.); (M.M.)
| | - Masaki Miyazaki
- Laboratory of Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan;
- Correspondence: (H.O.); (M.M.)
| |
Collapse
|
15
|
Sidwell T, Rothenberg EV. Epigenetic Dynamics in the Function of T-Lineage Regulatory Factor Bcl11b. Front Immunol 2021; 12:669498. [PMID: 33936112 PMCID: PMC8079813 DOI: 10.3389/fimmu.2021.669498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/23/2021] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Bcl11b is critically required to support the development of diverse cell types, including T lymphocytes, type 2 innate lymphoid cells, neurons, craniofacial mesenchyme and keratinocytes. Although in T cell development its onset of expression is tightly linked to T-lymphoid lineage commitment, the Bcl11b protein in fact regulates substantially different sets of genes in different lymphocyte populations, playing strongly context-dependent roles. Somewhat unusually for lineage-defining transcription factors with site-specific DNA binding activity, much of the reported chromatin binding of Bcl11b appears to be indirect, or guided in large part by interactions with other transcription factors. We describe evidence suggesting that a further way in which Bcl11b exerts such distinct stage-dependent functions is by nucleating changes in regional suites of epigenetic modifications through recruitment of multiple families of chromatin-modifying enzyme complexes. Herein we explore what is - and what remains to be - understood of the roles of Bcl11b, its cofactors, and how it modifies the epigenetic state of the cell to enforce its diverse set of context-specific transcriptional and developmental programs.
Collapse
Affiliation(s)
- Tom Sidwell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V Rothenberg
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
16
|
Fernando N, Sciumè G, O'Shea JJ, Shih HY. Multi-Dimensional Gene Regulation in Innate and Adaptive Lymphocytes: A View From Regulomes. Front Immunol 2021; 12:655590. [PMID: 33841440 PMCID: PMC8034253 DOI: 10.3389/fimmu.2021.655590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
The precise control of cytokine production by innate lymphoid cells (ILCs) and their T cell adaptive system counterparts is critical to mounting a proper host defense immune response without inducing collateral damage and autoimmunity. Unlike T cells that differentiate into functionally divergent subsets upon antigen recognition, ILCs are developmentally programmed to rapidly respond to environmental signals in a polarized manner, without the need of T cell receptor (TCR) signaling. The specification of cytokine production relies on dynamic regulation of cis-regulatory elements that involve multi-dimensional epigenetic mechanisms, including DNA methylation, transcription factor binding, histone modification and DNA-DNA interactions that form chromatin loops. How these different layers of gene regulation coordinate with each other to fine tune cytokine production, and whether ILCs and their T cell analogs utilize the same regulatory strategy, remain largely unknown. Herein, we review the molecular mechanisms that underlie cell identity and functionality of helper T cells and ILCs, focusing on networks of transcription factors and cis-regulatory elements. We discuss how higher-order chromatin architecture orchestrates these components to construct lineage- and state-specific regulomes that support ordered immunoregulation.
Collapse
Affiliation(s)
- Nilisha Fernando
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Giuseppe Sciumè
- Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.,National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Transcriptome and chromatin landscape of iNKT cells are shaped by subset differentiation and antigen exposure. Nat Commun 2021; 12:1446. [PMID: 33664261 PMCID: PMC7933435 DOI: 10.1038/s41467-021-21574-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) differentiate into thymic and peripheral NKT1, NKT2 and NKT17 subsets. Here we use RNA-seq and ATAC-seq analyses and show iNKT subsets are similar, regardless of tissue location. Lung iNKT cell subsets possess the most distinct location-specific features, shared with other innate lymphocytes in the lung, possibly consistent with increased activation. Following antigenic stimulation, iNKT cells undergo chromatin and transcriptional changes delineating two populations: one similar to follicular helper T cells and the other NK or effector like. Phenotypic analysis indicates these changes are observed long-term, suggesting that iNKT cells gene programs are not fixed, but they are capable of chromatin remodeling after antigen to give rise to additional subsets. Invariant natural killer T cells are known to be composed of a number of phenotypic and functionally distinct populations. Here the authors use transcriptomic and epigenomic analysis to further characterize the peripheral iNKT compartment before and after antigenic stimulation.
Collapse
|
18
|
Miccoli A, Picchietti S, Fausto AM, Scapigliati G. Evolution of immune defence responses as incremental layers among Metazoa. EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1849435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- A. Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - S. Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - A. M. Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| | - G. Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell’Università Snc, Viterbo, Italy
| |
Collapse
|
19
|
Inhibition of E protein activity facilitates the quiescence exit of naïve CD4+ T cells through modulating PI3K-AKT signaling and TCR microcluster formation. Cell Immunol 2020; 351:104065. [DOI: 10.1016/j.cellimm.2020.104065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 11/24/2022]
|
20
|
Bagadia P, Huang X, Liu TT, Murphy KM. Shared Transcriptional Control of Innate Lymphoid Cell and Dendritic Cell Development. Annu Rev Cell Dev Biol 2019; 35:381-406. [PMID: 31283378 PMCID: PMC6886469 DOI: 10.1146/annurev-cellbio-100818-125403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Innate immunity and adaptive immunity consist of highly specialized immune lineages that depend on transcription factors for both function and development. In this review, we dissect the similarities between two innate lineages, innate lymphoid cells (ILCs) and dendritic cells (DCs), and an adaptive immune lineage, T cells. ILCs, DCs, and T cells make up four functional immune modules and interact in concert to produce a specified immune response. These three immune lineages also share transcriptional networks governing the development of each lineage, and we discuss the similarities between ILCs and DCs in this review.
Collapse
Affiliation(s)
- Prachi Bagadia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Xiao Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Tian-Tian Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63108, USA;
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| |
Collapse
|
21
|
Peters AL, Luo Z, Li J, Mourya R, Wang Y, Dexheimer P, Shivakumar P, Aronow B, Bezerra JA. Single cell RNA sequencing reveals regional heterogeneity of hepatobiliary innate lymphoid cells in a tissue-enriched fashion. PLoS One 2019; 14:e0215481. [PMID: 31022195 PMCID: PMC6483339 DOI: 10.1371/journal.pone.0215481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 12/29/2022] Open
Abstract
IL-33 promotes type 2 immunity, epithelial repair, and tissue fibrosis by activating group 2 innate lymphoid cells (ILC2). ILC2 lack all known surface markers of mature T, B, NK, and myeloid cell lineages (Linneg), express the IL-33 receptor ST2, and release type 2 cytokines which contribute to cholangiocyte proliferation and activation of hepatic stellate cells. This pathway results in massive proliferation of the extrahepatic bile duct (EHBD) but also exacerbates liver fibrosis, suggesting that there may be tissue-specific subpopulations of IL-33-induced ILC. To determine the tissue-specific subsets of ILC in the hepatobiliary system, we analyzed CD45+Linneg mononuclear cells from IL-33 treated adult Balb/c mouse liver or EHBD by single cell RNA sequencing. Principal component analysis identified 6 major CD45+Linneg cell classes, two of which were restricted to the EHBD. One of these classes, biliary immature myeloid (BIM) cells, was predicted to interact with ILC2 by a network of shared receptor-ligand pairs. BIM highly expressed Gp49 and ST2 receptors on the cell surface while lacking surface expression of markers for mature myeloid cells. In conclusion, single cell RNA sequencing identified IL-33 responsive cell groups regionally confined to the liver or extrahepatic bile duct, including a novel population of CD45+Linneg Gp49-expressing mononuclear cells.
Collapse
Affiliation(s)
- Anna L. Peters
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Zhenhua Luo
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jun Li
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Reena Mourya
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Yunguan Wang
- Department of Pediatrics, Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Phillip Dexheimer
- Department of Pediatrics, Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Pranav Shivakumar
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Bruce Aronow
- Department of Pediatrics, Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jorge A. Bezerra
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
22
|
Fonseca W, Rasky AJ, Ptaschinski C, Morris SH, Best SK, Phillips M, Malinczak CA, Lukacs NW. Group 2 innate lymphoid cells (ILC2) are regulated by stem cell factor during chronic asthmatic disease. Mucosal Immunol 2019; 12:445-456. [PMID: 30617299 PMCID: PMC6375742 DOI: 10.1038/s41385-018-0117-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/19/2018] [Accepted: 11/16/2018] [Indexed: 02/04/2023]
Abstract
Stem cell factor (SCF) binds to the receptor c-Kit that is expressed on a number of myeloid and lymphoid cell populations, including Type 2 innate lymphoid cells (ILC2). However the importance of the SCF/c-Kit interaction in ILC2 has not been studied. Here we investigate the role of a specific SCF isoform, SCF248, in the allergic asthmatic response and SCF/c-Kit in ILC2 activation during chronic allergy. We observed that mice treated with a monoclonal antibody specific for SCF248 attenuated the development of chronic asthmatic disease by decreasing the number of mast cells, ILC2 and eosinophils, as well as reducing the accompanying pathogenic cytokine responses. These data were supported using SCFfl/fl-Col1-Cre-ERT mice and W/Wv mice that demonstrated the importance of the stem cell factor/c-Kit activation during chronic allergy and the accumulation of c-kit+ cells. Finally, these data demonstrate for the first time that SCF could activate ILC2 cells in vitro for the production of key allergic cytokines. Together these findings indicate that SCF is a critical cytokine involved in the activation of ILC2 that lead to more severe outcomes during chronic allergy and that the SCF248 isoform could be an important therapeutic target to control the disease progression.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Susan H Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Shannon K.K. Best
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
23
|
Cherrier DE, Serafini N, Di Santo JP. Innate Lymphoid Cell Development: A T Cell Perspective. Immunity 2019; 48:1091-1103. [PMID: 29924975 DOI: 10.1016/j.immuni.2018.05.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 02/08/2023]
Abstract
Innate lymphoid cells (ILCs) and natural killer (NK) cells have garnered considerable interest due to their unique functional properties in immune defense and tissue homeostasis. Our current understanding of how these cells develop has been greatly facilitated by knowledge of T cell biology. Models of T cell differentiation provided the basis for a conceptual classification of these innate effectors and inspired a scheme of their activation and regulation. In this review, we discuss NK cell and ILC development from a "T cell standpoint" in an attempt to extend the analogy between adaptive T cells and their innate ILC and NK cell counterparts.
Collapse
Affiliation(s)
- Dylan E Cherrier
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France; Université Paris Diderot, Paris 75013, France
| | - Nicolas Serafini
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, Paris 75015, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1223, Paris 75015, France.
| |
Collapse
|
24
|
Zook EC, Li ZY, Xu Y, de Pooter RF, Verykokakis M, Beaulieu A, Lasorella A, Maienschein-Cline M, Sun JC, Sigvardsson M, Kee BL. Transcription factor ID2 prevents E proteins from enforcing a naïve T lymphocyte gene program during NK cell development. Sci Immunol 2019; 3:3/22/eaao2139. [PMID: 29703840 DOI: 10.1126/sciimmunol.aao2139] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/04/2018] [Accepted: 02/27/2018] [Indexed: 12/14/2022]
Abstract
All innate lymphoid cells (ILCs) require the small helix-loop-helix transcription factor ID2, but the functions of ID2 are not well understood in these cells. We show that mature natural killer (NK) cells, the prototypic ILCs, developed in mice lacking ID2 but remained as precursor CD27+CD11b- cells that failed to differentiate into CD27-CD11b+ cytotoxic effectors. We show that ID2 limited chromatin accessibility at E protein binding sites near naïve T lymphocyte-associated genes including multiple chemokine receptors, cytokine receptors, and signaling molecules and altered the NK cell response to inflammatory cytokines. In the absence of ID2, CD27+CD11b- NK cells expressed ID3, a helix-loop-helix protein associated with naïve T cells, and they transitioned from a CD8 memory precursor-like to a naïve-like chromatin accessibility state. We demonstrate that ID3 was required for the development of ID2-deficient NK cells, indicating that completely unfettered E protein function is incompatible with NK cell development. These data solidify the roles of ID2 and ID3 as mediators of effector and naïve gene programs, respectively, and revealed a critical role for ID2 in promoting a chromatin state and transcriptional program in CD27+CD11b- NK cells that supports cytotoxic effector differentiation and cytokine responses.
Collapse
Affiliation(s)
- Erin C Zook
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | - Zhong-Yin Li
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | - Yiying Xu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | - Renée F de Pooter
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | - Mihalis Verykokakis
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60657, USA
| | - Aimee Beaulieu
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Lasorella
- Institute for Cancer Genetics and Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark Maienschein-Cline
- Core for Research Informatics, Research Resources Center, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Joseph C Sun
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Barbara L Kee
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, IL 60657, USA.
| |
Collapse
|
25
|
Scapigliati G, Fausto AM, Picchietti S. Fish Lymphocytes: An Evolutionary Equivalent of Mammalian Innate-Like Lymphocytes? Front Immunol 2018; 9:971. [PMID: 29867952 PMCID: PMC5949566 DOI: 10.3389/fimmu.2018.00971] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022] Open
Abstract
Lymphocytes are the responsible of adaptive responses, as they are classically described, but evidence shows that subpopulations of mammalian lymphocytes may behave as innate-like cells, engaging non-self rapidly and without antigen presentation. The innate-like lymphocytes of mammals have been mainly identified as γδT cells and B1-B cells, exert their activities principally in mucosal tissues, may be involved in human pathologies and their functions and tissue(s) of origin are not fully understood. Due to similarities in the morphology and immunobiology of immune system between fish and mammals, and to the uniqueness of having free-living larval stages where the development can be precisely monitored and engineered, teleost fish are proposed as an experimental model to investigate human immunity. However, the homology between fish lymphocytes and mammalian innate-like lymphocytes is an issue poorly considered in comparative immunology. Increasing experimental evidence suggests that fish lymphocytes could have developmental, morphological, and functional features in common with innate-like lymphocytes of mammals. Despite such similarities, information on possible links between conventional fish lymphocytes and mammalian innate-like lymphocytes is missing. The aim of this review is to summarize and describe available findings about the similarities between fish lymphocytes and mammalian innate-like lymphocytes, supporting the hypothesis that mammalian γδT cells and B1-B cells could be evolutionarily related to fish lymphocytes.
Collapse
Affiliation(s)
- Giuseppe Scapigliati
- Dipartimento per l'Innovazione nei sistemi biologici, agroalimentari e forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna M Fausto
- Dipartimento per l'Innovazione nei sistemi biologici, agroalimentari e forestali, Università degli Studi della Tuscia, Viterbo, Italy
| | - Simona Picchietti
- Dipartimento per l'Innovazione nei sistemi biologici, agroalimentari e forestali, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
26
|
Transcriptional and epigenetic regulation of innate-like T lymphocyte development. Curr Opin Immunol 2018; 51:39-45. [PMID: 29452898 DOI: 10.1016/j.coi.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/29/2018] [Indexed: 01/19/2023]
Abstract
Invariant Natural Killer T (iNKT) cells are a heterogeneous innate T cell population that recognizes lipid antigens. Despite the monospecific nature of their T cell receptor, iNKT cells differentiate into stable sublineages during thymic development, before foreign antigen encounter. How iNKT cell subsets acquire and maintain their functional programs is a central question in innate lymphocyte biology. Global transcriptional and epigenetic profiling of iNKT subsets has provided insights into the internal wiring of these subsets that defines their identity. Comparison of the iNKT transcriptional programs with those of other adaptive and innate lymphocyte lineages revealed common core regulatory circuits that may dictate effector functions. In this review, we summarize recent advances on the molecular mechanisms involved in iNKT cell development.
Collapse
|
27
|
Shah SV, Manickam C, Ram DR, Reeves RK. Innate Lymphoid Cells in HIV/SIV Infections. Front Immunol 2017; 8:1818. [PMID: 29326704 PMCID: PMC5733347 DOI: 10.3389/fimmu.2017.01818] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Over the past several years, new populations of innate lymphocytes have been described in mice and primates that are critical for mucosal homeostasis, microbial regulation, and immune defense. Generally conserved from mice to humans, innate lymphoid cells (ILC) have been divided primarily into three subpopulations based on phenotypic and functional repertoires: ILC1 bear similarities to natural killer cells; ILC2 have overlapping functions with TH2 cells; and ILC3 that share many functions with TH17/TH22 cells. ILC are specifically enriched at mucosal surfaces and are possibly one of the earliest responders during viral infections besides being involved in the homeostasis of gut-associated lymphoid tissue and maintenance of gut epithelial barrier integrity. Burgeoning evidence also suggests that there is an early and sustained abrogation of ILC function and numbers during HIV and pathogenic SIV infections, most notably ILC3 in the gastrointestinal tract, which leads to disruption of the mucosal barrier and dysregulation of the local immune system. A better understanding of the direct or indirect mechanisms of loss and dysfunction will be critical to immunotherapeutics aimed at restoring these cells. Herein, we review the current literature on ILC with a particular emphasis on ILC3 and their role(s) in mucosal immunology and the significance of disrupting the ILC niche during HIV and SIV infections.
Collapse
Affiliation(s)
- Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
28
|
Sciumè G, Shih HY, Mikami Y, O'Shea JJ. Epigenomic Views of Innate Lymphoid Cells. Front Immunol 2017; 8:1579. [PMID: 29250060 PMCID: PMC5715337 DOI: 10.3389/fimmu.2017.01579] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022] Open
Abstract
The discovery of innate lymphoid cells (ILCs) with selective production of cytokines typically attributed to subsets of T helper cells forces immunologists to reassess the mechanisms by which selective effector functions arise. The parallelism between ILCs and T cells extends beyond these two cell types and comprises other innate-like T lymphocytes. Beyond the recognition of specialized effector functionalities in diverse lymphocytes, features typical of T cells, such as plasticity and memory, are also relevant for innate lymphocytes. Herein, we review what we have learned in terms of the molecular mechanisms underlying these shared functions, focusing on insights provided by next generation sequencing technologies. We review data on the role of lineage-defining- and signal-dependent transcription factors (TFs). ILC regulomes emerge developmentally whereas the much of the open chromatin regions of T cells are generated acutely, in an activation-dependent manner. And yet, these regions of open chromatin in T cells and ILCs have remarkable overlaps, suggesting that though accessibility is acquired by distinct modes, the end result is that convergent signaling pathways may be involved. Although much is left to be learned, substantial progress has been made in understanding how TFs and epigenomic status contribute to ILC biology in terms of differentiation, specification, and plasticity.
Collapse
Affiliation(s)
- Giuseppe Sciumè
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Han-Yu Shih
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | - Yohei Mikami
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| | - John J O'Shea
- Lymphocyte and Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, United States
| |
Collapse
|
29
|
Abstract
The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.
Collapse
Affiliation(s)
- Isabel E Ishizuka
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Department of Pathology, The University of Chicago, Illinois 60637
| | - Michael G Constantinides
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Department of Pathology, The University of Chicago, Illinois 60637.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892
| | - Herman Gudjonson
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Institute of Biophysical Dynamics, The University of Chicago, Illinois 60637.,Department of Chemistry, The University of Chicago, Illinois 60637
| | - Albert Bendelac
- Committee on Immunology, The University of Chicago, Illinois 60637; .,Department of Pathology, The University of Chicago, Illinois 60637
| |
Collapse
|
30
|
Zhong C, Zhu J. Transcriptional regulators dictate innate lymphoid cell fates. Protein Cell 2017; 8:242-254. [PMID: 28108952 PMCID: PMC5359184 DOI: 10.1007/s13238-017-0369-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/20/2016] [Indexed: 12/15/2022] Open
Abstract
Research on innate lymphoid cells (ILC) has recently been a fast paced topic of immunological research. As ILCs are able to produce signature Th cytokine, ILCs have garnered considerable attention and have been described to represent the innate counterpart of the CD4+ T helper (Th) cells. The development and function of ILCs are precisely regulated by a network of crucial transcription factors, which are also involved in the development or differentiation of conventional natural killer (cNK) cells and T cells. In this review, we will summarize the key transcriptional regulators and their functions through each phases of ILC development. With the phase of ILC lineage commitment, we will focus in particular on the roles of the transcription regulators Id2 and GATA-3, which in collaboration with other transcriptional factors, are critically involved in the generation of ILC fate determined progenitors. Once an ILC lineage has been established, several other transcription factors are required for the specification and functional regulation of distinct mature ILC subsets. Thus, a comprehensive understanding of the interactions and regulatory mechanisms mediated by these transcription factors will help us to further understand how ILCs exert their helper-like functions and bridge the innate and adaptive immunity.
Collapse
Affiliation(s)
- Chao Zhong
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191 China
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
31
|
Mora-Velandia LM, Castro-Escamilla O, Méndez AG, Aguilar-Flores C, Velázquez-Avila M, Tussié-Luna MI, Téllez-Sosa J, Maldonado-García C, Jurado-Santacruz F, Ferat-Osorio E, Martínez-Barnetche J, Pelayo R, Bonifaz LC. A Human Lin - CD123 + CD127 low Population Endowed with ILC Features and Migratory Capabilities Contributes to Immunopathological Hallmarks of Psoriasis. Front Immunol 2017; 8:176. [PMID: 28303135 PMCID: PMC5332395 DOI: 10.3389/fimmu.2017.00176] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
Innate lymphoid cells (ILC) are members of a heterogeneous family with a lymphoid origin that mimics the T helper (Th) cytokine profile. ILC are involved in early effector cytokine-mediated responses during infections in peripheral tissues. ILC also play an important role in chronic skin inflammatory diseases, including psoriasis. Although classical ILC express CD127, it has been recently reported that the presence of non-classical CD127- ILC populations and an early ILC precursor (EILP) CD127low. ILC development has predominately been investigated in mouse models. However, in humans, different transcription factors have been described for ILC identification. NFIL3 (nuclear factor, IL-3 regulated) is crucial for ILC development in response to IL-7. CD123 (IL-3Rα) is usually used to exclude basophils during ILC identification, however, it is unknown if in response to IL-3, NFIL3 could be relevant to induce ILC features in Lin- CD123+ populations in addition, is also unknown whether peripheral blood (PB) population with ILC features may have skin-homing potential to participate in skin inflammatory chronic diseases. Here, we report a Lin- CD123+ CD127low CD7+ CLA+ population that share some phenotypic properties with basophils, but expresses several transcription factors for ILC commitment such as inhibitor of DNA binding 2 (Id2), NFIL3, promyelocytic leukemia zinc finger (PLZF), thymocyte selection-associated high-mobility group box protein (TOX), and T cell factor-1 (TCF-1). In addition, this population expresses different ILC markers: CD132, CD90, CD161, α4 integrin, c-Kit, CRTH2, AhR, and IL-23R. IL-3 prevents apoptosis and increases their NFIL3, TOX, and PLZF expression. In PB, the CD123+ CD127low population is predominantly a conspicuous population that expresses T-bet and RORγt. The Lin- CD123+ CD127low population in PB has a limited Th type cytokine expression and highly expresses IL-8. The Lin- CD123+ CD127low population expresses skin-homing receptors (cutaneous lymphocyte antigen and CXCR4) and transmigrates through endothelial cells in response to SDF-1. An equivalent Lin- CD123low population was identified in control skin, which shows a broader phenotypic diversity and cytokine production, including IL-22 and IL-17. Remarkably, the CD123low population in the lesion and non-lesion skin of psoriasis patients expresses IL-17 and IL-22. Our findings suggest the identification of an alternative Lin- CD123+ CD127low population with ILC features endowed with migratory capabilities that might contribute to immunopathological hallmarks of psoriasis.
Collapse
Affiliation(s)
- Luz María Mora-Velandia
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Octavio Castro-Escamilla
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico; Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Andrés González Méndez
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Cristina Aguilar-Flores
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Martha Velázquez-Avila
- Unidad de Investigación en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional 'Siglo XXI' , Mexico City , Mexico
| | - María Isabel Tussié-Luna
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico; Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México "Federico Gómez", Mexico City, Mexico
| | - Juan Téllez-Sosa
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública , Cuernavaca, Morelos , Mexico
| | - César Maldonado-García
- Centro Dermatológico "Dr. Ladislao de la Pascua", Secretaria de Salud de la Ciudad de México , Mexico City , Mexico
| | - Fermín Jurado-Santacruz
- Centro Dermatológico "Dr. Ladislao de la Pascua", Secretaria de Salud de la Ciudad de México , Mexico City , Mexico
| | - Eduardo Ferat-Osorio
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| | - Jesus Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública , Cuernavaca, Morelos , Mexico
| | - Rosana Pelayo
- Unidad de Investigación en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional 'Siglo XXI' , Mexico City , Mexico
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , Mexico
| |
Collapse
|
32
|
Georgiev H, Ravens I, Benarafa C, Förster R, Bernhardt G. Distinct gene expression patterns correlate with developmental and functional traits of iNKT subsets. Nat Commun 2016; 7:13116. [PMID: 27721447 PMCID: PMC5062562 DOI: 10.1038/ncomms13116] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Invariant natural killer T (iNKT) cells comprise a subpopulation of innate lymphocytes developing in thymus. A new model proposes subdividing murine iNKT cells into iNKT1, 2 and 17 cells. Here, we use transcriptome analyses of iNKT1, 2 and 17 subsets isolated from BALB/c and C57BL/6 thymi to identify candidate genes that may affect iNKT cell development, migration or function. We show that Fcɛr1γ is involved in generation of iNKT1 cells and that SerpinB1 modulates frequency of iNKT17 cells. Moreover, a considerable proportion of iNKT17 cells express IL-4 and IL-17 simultaneously. The results presented not only validate the usefulness of the iNKT1/2/17-concept but also provide new insights into iNKT cell biology.
Collapse
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| | - Inga Ravens
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, Freisestrasse 1, Bern CH-3012, Switzerland
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Carl Neuberg Street 1, Hannover D-30625, Germany
| |
Collapse
|
33
|
O'Sullivan TE, Geary CD, Weizman OE, Geiger TL, Rapp M, Dorn GW, Overholtzer M, Sun JC. Atg5 Is Essential for the Development and Survival of Innate Lymphocytes. Cell Rep 2016; 15:1910-9. [PMID: 27210760 DOI: 10.1016/j.celrep.2016.04.082] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/11/2016] [Accepted: 04/21/2016] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an essential cellular survival mechanism that is required for adaptive lymphocyte development; however, its role in innate lymphoid cell (ILC) development remains unknown. Furthermore, the conditions that promote lymphocyte autophagy during homeostasis are poorly understood. Here, we demonstrate that Atg5, an essential component of the autophagy machinery, is required for the development of mature natural killer (NK) cells and group 1, 2, and 3 innate ILCs. Although inducible ablation of Atg5 was dispensable for the homeostasis of lymphocyte precursors and mature lymphocytes in lymphoreplete mice, we found that autophagy is induced in both adaptive and innate lymphocytes during homeostatic proliferation in lymphopenic hosts to promote their survival by limiting cell-intrinsic apoptosis. Induction of autophagy through metformin treatment following homeostatic proliferation increased lymphocyte numbers through an Atg5-dependent mechanism. These findings highlight the essential role for autophagy in ILC development and lymphocyte survival during lymphopenia.
Collapse
Affiliation(s)
- Timothy E O'Sullivan
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Clair D Geary
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Orr-El Weizman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Theresa L Geiger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz Rapp
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63105, USA
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
34
|
Shih HY, Sciumè G, Mikami Y, Guo L, Sun HW, Brooks SR, Urban JF, Davis FP, Kanno Y, O'Shea JJ. Developmental Acquisition of Regulomes Underlies Innate Lymphoid Cell Functionality. Cell 2016; 165:1120-1133. [PMID: 27156451 PMCID: PMC4874839 DOI: 10.1016/j.cell.2016.04.029] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/17/2016] [Accepted: 04/06/2016] [Indexed: 12/31/2022]
Abstract
Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis and mirror adaptive CD4(+) T helper (Th) cell subtypes in both usage of effector molecules and transcription factors. To better understand the relationship between ILC subsets and their Th cell counterparts, we measured genome-wide chromatin accessibility. We find that chromatin in proximity to effector genes is selectively accessible in ILCs prior to high-level transcription upon activation. Accessibility of these regions is acquired in a stepwise manner during development and changes little after in vitro or in vivo activation. Conversely, dramatic chromatin remodeling occurs in naive CD4(+) T cells during Th cell differentiation using a type-2-infection model. This alteration results in a substantial convergence of Th2 cells toward ILC2 regulomes. Our data indicate extensive sharing of regulatory circuitry across the innate and adaptive compartments of the immune system, in spite of their divergent developing pathways.
Collapse
Affiliation(s)
- Han-Yu Shih
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Giuseppe Sciumè
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yohei Mikami
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liying Guo
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA
| | - Fred P Davis
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
35
|
Zook EC, Ramirez K, Guo X, van der Voort G, Sigvardsson M, Svensson EC, Fu YX, Kee BL. The ETS1 transcription factor is required for the development and cytokine-induced expansion of ILC2. J Exp Med 2016; 213:687-96. [PMID: 27069114 PMCID: PMC4854726 DOI: 10.1084/jem.20150851] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
Zook et al. use a novel mouse model to demonstrate a requirement for the transcription factor ETS1 in the development and function of group 2 innate lymphoid cells. Group 2 innate lymphoid cells (ILC2s) are a subset of ILCs that play a protective role in the response to helminth infection, but they also contribute to allergic lung inflammation. Here, we report that the deletion of the ETS1 transcription factor in lymphoid cells resulted in a loss of ILC2s in the bone marrow and lymph nodes and that ETS1 promotes the fitness of the common progenitor of all ILCs. ETS1-deficient ILC2 progenitors failed to up-regulate messenger RNA for the E protein transcription factor inhibitor ID2, a critical factor for ILCs, and these cells were unable to expand in cytokine-driven in vitro cultures. In vivo, ETS1 was required for the IL-33–induced accumulation of lung ILC2s and for the production of the T helper type 2 cytokines IL-5 and IL-13. IL-25 also failed to elicit an expansion of inflammatory ILC2s when these cells lacked ETS1. Our data reveal ETS1 as a critical regulator of ILC2 expansion and cytokine production and implicate ETS1 in the regulation of Id2 at the inception of ILC2 development.
Collapse
Affiliation(s)
- Erin C Zook
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Kevin Ramirez
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | - Xiaohuan Guo
- Committee on Immunology, The University of Chicago, Chicago, IL 60637
| | | | - Mikael Sigvardsson
- Experimental Hematopoiesis Unit, Department of Clinical and Experimental Medicine, Faculty of Medicine for Health Sciences, Linköping University, 58183 Linköping, Sweden
| | - Eric C Svensson
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637
| | - Yang-Xin Fu
- Committee on Immunology, The University of Chicago, Chicago, IL 60637 Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Barbara L Kee
- Committee on Immunology, The University of Chicago, Chicago, IL 60637 Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
36
|
Stradner MH, Cheung KP, Lasorella A, Goldrath AW, D'Cruz LM. Id2 regulates hyporesponsive invariant natural killer T cells. Immunol Cell Biol 2016; 94:640-5. [PMID: 26880074 PMCID: PMC4980213 DOI: 10.1038/icb.2016.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 12/16/2022]
Abstract
While the invariant natural killer T (iNKT)-cell response to primary stimulation with the glycolipid, α-galactosylceramide (αGalCer), is robust, the secondary response to this stimulus is muted resulting in a hyporesponsive state characterized by anti-inflammatory interleukin-10 (IL-10) production and high expression of programmed cell death 1 (PD1) and neuropilin 1 (NRP1). The E protein transcription factors and their negative regulators, the Id proteins, have previously been shown to regulate iNKT cell thymic development, subset differentiation and peripheral survival. Here, we provide evidence that the expression of the transcriptional regulator Id2 is downregulated upon stimulation of iNKT cells with their cognate antigen. Moreover, loss of Id2 expression by iNKT cells resulted in a hyporesponsive state, with splenic Id2-deficient iNKT cells expressing low levels of TBET, high levels of PD1 and NRP1 and production of IL-10 upon stimulation. We propose that downregulation of Id2 expression is an essential component of induction of the anti-inflammatory, hyporesponsive state in iNKT cells.
Collapse
Affiliation(s)
- Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Graz, Austria
| | - Kitty P Cheung
- Division of Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Lasorella
- Department of Pediatrics and Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ananda W Goldrath
- Division of Biology, University of California San Diego, La Jolla, CA, USA
| | - Louise M D'Cruz
- Department of Immunology, University of Pittsburgh, Biomedical Science Tower, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Roy S, Zhuang Y. Orchestration of invariant natural killer T cell development by E and Id proteins. Crit Rev Immunol 2016; 35:33-48. [PMID: 25746046 DOI: 10.1615/critrevimmunol.2015012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer T (NKT) cells are αβ T cells that express a semi-invariant T-cell receptor (TCR) along with natural killer (NK) cell markers and have an innate cell-like ability to produce a myriad of cytokines very quickly upon antigen exposure and subsequent activation. These cells are diverted from conventional single positive (SP) T-cell fate at the double positive (DP) stage, where TCR-mediated recognition of a lipid antigen presented on a CD1d molecule promotes their selection into the NKT lineage. Although many key regulatory molecules have been shown to play important roles in the development of NKT cells, the mechanism of lineage specification and acquisition of effector functions in these cells still remain to be fully addressed. In this review, we specifically discuss the role of a family of class-I helix-loop-helix proteins known as E proteins, and their antagonists Id proteins in NKT celldevelopment. Recent work has shown that these proteins play key roles in invariant NKT (iNKT) development, from the invariant TCR rearrangement to terminal differentiation and maturation. Elucidating these roles provides an opportunity to uncover the transcriptional network that separates NKT cells from concurrently developed conventional αβ T cells.
Collapse
Affiliation(s)
- Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
38
|
Georgiev H, Ravens I, Shibuya A, Förster R, Bernhardt G. CD155/CD226-interaction impacts on the generation of innate CD8+
thymocytes by regulating iNKT-cell differentiation. Eur J Immunol 2016; 46:993-1003. [DOI: 10.1002/eji.201546073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/06/2015] [Accepted: 12/16/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Hristo Georgiev
- Institute of Immunology; Hannover Medical School; Hannover Germany
| | - Inga Ravens
- Institute of Immunology; Hannover Medical School; Hannover Germany
| | - Akira Shibuya
- Department of Immunology; Faculty of Medicine; University of Tsukuba; Ibaraki Japan
| | - Reinhold Förster
- Institute of Immunology; Hannover Medical School; Hannover Germany
| | - Günter Bernhardt
- Institute of Immunology; Hannover Medical School; Hannover Germany
| |
Collapse
|
39
|
Abstract
Innate lymphoid cells (ILCs) are a recently described family of lymphoid effector cells that have important roles in immune defence, inflammation and tissue remodelling. It has been proposed that ILCs represent 'innate' homologues of differentiated effector T cells, and they have been categorized into three groups — namely, ILC1s, ILC2s and ILC3s — on the basis of their expression of cytokines and transcription factors that are typically associated with T helper 1 (T(H)1)-, T(H)2- and T(H)17-type immune responses, respectively. Indeed, remarkable similarity is seen between the specific transcription factors required for the development and diversification of different ILC groups and those that drive effector T cell differentiation. The recent identification of dedicated ILC precursors has provided a view of the mechanisms that control this first essential stage of ILC development. Here, we discuss the transcriptional mechanisms that regulate ILC development and diversification into distinct effector subsets with key roles in immunity and tissue homeostasis. We further caution against the current distinction between 'helper' versus 'killer' subsets in the evolving area of ILC nomenclature.
Collapse
|
40
|
Singh H. Transcriptional and epigenetic networks orchestrating immune cell development and function. Immunol Rev 2015; 261:5-8. [PMID: 25123273 DOI: 10.1111/imr.12210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Harinder Singh
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
41
|
Carr T, Krishnamoorthy V, Yu S, Xue HH, Kee BL, Verykokakis M. The transcription factor lymphoid enhancer factor 1 controls invariant natural killer T cell expansion and Th2-type effector differentiation. ACTA ACUST UNITED AC 2015; 212:793-807. [PMID: 25897173 PMCID: PMC4419352 DOI: 10.1084/jem.20141849] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 03/23/2015] [Indexed: 12/19/2022]
Abstract
The transcription factor LEF1 promotes the expansion and Th2-type polarization of invariant NKT cells in part by directly inducing the expression of the IL-7 receptor component CD127 and the transcription factors c-myc and Gata3. Invariant natural killer T cells (iNKT cells) are innate-like T cells that rapidly produce cytokines that impact antimicrobial immune responses, asthma, and autoimmunity. These cells acquire multiple effector fates during their thymic development that parallel those of CD4+ T helper cells. The number of Th2-type effector iNKT cells is variable in different strains of mice, and their number impacts CD8 T, dendritic, and B cell function. Here we demonstrate a unique function for the transcription factor lymphoid enhancer factor 1 (LEF1) in the postselection expansion of iNKT cells through a direct induction of the CD127 component of the receptor for interleukin-7 (IL-7) and the transcription factor c-myc. LEF1 also directly augments expression of the effector fate–specifying transcription factor GATA3, thus promoting the development of Th2-like effector iNKT cells that produce IL-4, including those that also produce interferon-γ. Our data reveal LEF1 as a central regulator of iNKT cell number and Th2-type effector differentiation.
Collapse
Affiliation(s)
- Tiffany Carr
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Veena Krishnamoorthy
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Shuyang Yu
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Hai-Hui Xue
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Barbara L Kee
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637 Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637 Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Mihalis Verykokakis
- Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637 Committee on Immunology, Committee on Molecular Pathogenesis and Molecular Medicine, and Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
42
|
Miyazaki M, Miyazaki K, Chen S, Chandra V, Wagatsuma K, Agata Y, Rodewald HR, Saito R, Chang AN, Varki N, Kawamoto H, Murre C. The E-Id protein axis modulates the activities of the PI3K-AKT-mTORC1-Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis. Genes Dev 2015; 29:409-25. [PMID: 25691468 PMCID: PMC4335296 DOI: 10.1101/gad.255331.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Miyazaki et al. show that Id2 and Id3 suppress the development and expansion of innate variant TFH cells by acting upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module. Mice depleted for Id2 and Id3 expression developed colitis and αβ T-cell lymphomas, and the transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naïve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells. We found that Id2 and Id3 induced Foxo1 and Foxp1 expression to antagonize the activation of a TFH transcription signature. We show that Id2 and Id3 acted upstream of the Hif1a/Foxo/AKT/mTORC1 pathway as well as the c-myc/p19Arf module to control cellular expansion. We found that mice depleted for Id2 and Id3 expression developed colitis and αβ T-cell lymphomas. Lymphomas depleted for Id2 and Id3 expression displayed elevated levels of c-myc, whereas p19Arf abundance declined. Transcription signatures of Id2- and Id3-depleted lymphomas revealed similarities to genetic deficiencies associated with Burkitt lymphoma. We propose that, in response to antigen receptor and/or cytokine signaling, the E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1–Hif1a and c-myc/p19Arf pathways to control cellular expansion and homeostatic proliferation.
Collapse
Affiliation(s)
- Masaki Miyazaki
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Kazuko Miyazaki
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Shuwen Chen
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Vivek Chandra
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Keisuke Wagatsuma
- Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan
| | - Yasutoshi Agata
- Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Rintaro Saito
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Aaron N Chang
- Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Nissi Varki
- Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA
| | - Hiroshi Kawamoto
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Cornelis Murre
- Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA;
| |
Collapse
|