1
|
Ray J, Clegg B, Grembecka J, Cierpicki T. Drug-resistant menin variants retain high binding affinity and interactions with MLL1. J Biol Chem 2024; 300:107777. [PMID: 39276940 PMCID: PMC11490872 DOI: 10.1016/j.jbc.2024.107777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024] Open
Abstract
Menin is an essential oncogenic cofactor of MLL1 fusion proteins in acute leukemias and inhibitors of the menin-MLL1 interaction are under evaluation in clinical trials. Recent studies found emerging resistance to menin inhibitor treatment in patients with leukemia as a result of somatic mutations in menin. To understand how patient mutations in menin affect the interaction with MLL1, we performed systematic characterization of the binding affinity of these menin mutants (T349M, M327I, G331R and G331D) and the N-terminal fragment of MLL1. We also determined the crystal structures of menin patient mutants and their complexes with MLL1-derived peptides. We found that drug-resistant mutations in menin occur at a site adjacent to the MLL1 binding site, but they do not affect MLL1 binding to menin. On the contrary, our structural analysis shows that all these point mutations in menin generate steric clash with menin inhibitors. We also found that mutation G331D results in a very slow dissociation of MLL1 from menin and this mutant might be particularly difficult to inhibit with small molecule drugs. This work provides structural information to support the development of a new generation of small molecule inhibitors that overcome resistance caused by menin mutations.
Collapse
Affiliation(s)
- Joshua Ray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley Clegg
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
2
|
Li H, Zhang D, Fu Q, Wang S, Zhang X, Lin Z, Wang Z, Song J, Su Z, Xue V, Liu S, Chen Y, Zhou L, Zhao N, Lu D. WDR54 exerts oncogenic roles in T-cell acute lymphoblastic leukemia. Cancer Sci 2023. [PMID: 37302808 PMCID: PMC10394158 DOI: 10.1111/cas.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
WDR54 has been recently identified as a novel oncogene in colorectal and bladder cancers. However, the expression and function of WDR54 in T-cell acute lymphoblastic leukemia (T-ALL) were not reported. In this study, we investigated the expression of WDR54 in T-ALL, as well as its function in T-ALL pathogenesis using cell lines and T-ALL xenograft. Bioinformatics analysis indicated high mRNA expression of WDR54 in T-ALL. We further confirmed that the expression of WDR54 was significantly elevated in T-ALL. Depletion of WDR54 dramatically inhibited cell viability and induced apoptosis and cell cycle arrest at S phase in T-ALL cells in vitro. Moreover, knockdown of WDR54 impeded the process of leukemogenesis in a Jurkat xenograft model in vivo. Mechanistically, the expression of PDPK1, phospho-AKT (p-AKT), total AKT, phospho-ERK (p-ERK), Bcl-2 and Bcl-xL were downregulated, while cleaved caspase-3 and cleaved caspase-9 were upregulated in T-ALL cells with WDR54 knockdown. Additionally, RNA-seq analysis indicated that WDR54 might regulate the expression of some oncogenic genes involved in multiple signaling pathways. Taken together, these findings suggest that WDR54 may be involved in the pathogenesis of T-ALL and serve as a potential therapeutic target for the treatment of T-ALL.
Collapse
Affiliation(s)
- Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Danlan Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxia Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Zhixian Lin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Zhongyuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Jiaxing Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - VivianWeiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liang Zhou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Na Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
3
|
Hu X, Feng C, Ling T, Chen M. Deep learning frameworks for protein–protein interaction prediction. Comput Struct Biotechnol J 2022; 20:3223-3233. [PMID: 35832624 PMCID: PMC9249595 DOI: 10.1016/j.csbj.2022.06.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/12/2022] [Indexed: 11/26/2022] Open
|
4
|
Garcia M, Hoffer L, Leblanc R, Benmansour F, Feracci M, Derviaux C, Egea-Jimenez AL, Roche P, Zimmermann P, Morelli X, Barral K. Fragment-based drug design targeting syntenin PDZ2 domain involved in exosomal release and tumour spread. Eur J Med Chem 2021; 223:113601. [PMID: 34153575 DOI: 10.1016/j.ejmech.2021.113601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/17/2022]
Abstract
Syntenin stimulates exosome production and its expression is upregulated in many cancers and implicated in the spread of metastatic tumor. These effects are supported by syntenin PDZ domains interacting with syndecans. We therefore aimed to develop, through a fragment-based drug design approach, novel inhibitors targeting syntenin-syndecan interactions. We describe here the optimization of a fragment, 'hit' C58, identified by in vitro screening of a PDZ-focused fragment library, which binds specifically to the syntenin-PDZ2 domain at the same binding site as the syndecan-2 peptide. X-ray crystallographic structures and computational docking were used to guide our optimization process and lead to compounds 45 and 57 (IC50 = 33 μM and 47 μM; respectively), two representatives of syntenin-syndecan interactions inhibitors, that selectively affect the syntenin-exosome release. These findings demonstrate that it is possible to identify small molecules inhibiting syntenin-syndecan interaction and exosome release that may be useful for cancer therapy.
Collapse
Affiliation(s)
- Manon Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Laurent Hoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Raphaël Leblanc
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Fatiha Benmansour
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Mikael Feracci
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Carine Derviaux
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Antonio Luis Egea-Jimenez
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Philippe Roche
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Pascale Zimmermann
- Equipe Labellisée Ligue 2018, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille Université, Inserm1068, CNRS7258, Institut Paoli-Calmettes, 13009 Marseille, France; Department of Human Genetics, K. U. Leuven, B-3000, Leuven, Belgium
| | - Xavier Morelli
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France
| | - Karine Barral
- Centre de Recherche en Cancérologie de Marseille (CRCM), Integrative Structural & Chemical Biology, Aix-Marseille Université, Inserm 1068, CNRS 7258, Institut Paoli Calmettes, 13009, Marseille, France.
| |
Collapse
|
5
|
Kuusk A, Boyd H, Chen H, Ottmann C. Small-molecule modulation of p53 protein-protein interactions. Biol Chem 2021; 401:921-931. [PMID: 32049643 DOI: 10.1515/hsz-2019-0405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/22/2022]
Abstract
Small-molecule modulation of protein-protein interactions (PPIs) is a very promising but also challenging area in drug discovery. The tumor suppressor protein p53 is one of the most frequently altered proteins in human cancers, making it an attractive target in oncology. 14-3-3 proteins have been shown to bind to and positively regulate p53 activity by protecting it from MDM2-dependent degradation or activating its DNA binding affinity. PPIs can be modulated by inhibiting or stabilizing specific interactions by small molecules. Whereas inhibition has been widely explored by the pharmaceutical industry and academia, the opposite strategy of stabilizing PPIs still remains relatively underexploited. This is rather interesting considering the number of natural compounds like rapamycin, forskolin and fusicoccin that exert their activity by stabilizing specific PPIs. In this review, we give an overview of 14-3-3 interactions with p53, explain isoform specific stabilization of the tumor suppressor protein, explore the approach of stabilizing the 14-3-3σ-p53 complex and summarize some promising small molecules inhibiting the p53-MDM2 protein-protein interaction.
Collapse
Affiliation(s)
- Ave Kuusk
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, NL-5600MB Eindhoven, The Netherlands
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, S-43183 Mölndal, Sweden
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, AstraZeneca, Cambridge, UK
| | - Hongming Chen
- Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Science Park, Guangzhou 510530, China
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, NL-5600MB Eindhoven, The Netherlands
- Department of Chemistry, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
6
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
7
|
Wang L, Shen Q, Liao H, Fu H, Wang Q, Yu J, Zhang W, Chen C, Dong Y, Yang X, Guo Q, Zhang J, Zhang J, Zhang W, Lin H, Duan Y. Multi-Arm PEG/Peptidomimetic Conjugate Inhibitors of DR6/APP Interaction Block Hematogenous Tumor Cell Extravasation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003558. [PMID: 34105277 PMCID: PMC8188212 DOI: 10.1002/advs.202003558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/16/2021] [Indexed: 05/05/2023]
Abstract
The binding of amyloid precursor protein (APP) expressed on tumor cells to death receptor 6 (DR6) could initiate the necroptosis pathway, which leads to necroptotic cell death of vascular endothelial cells (ECs) and results in tumor cells (TCs) extravasation and metastasis. This study reports the first inhibitor of DR6/APP interaction as a novel class of anti-hematogenous metastatic agent. By rationally utilizing three combined strategies including selection based on phage display library, d-retro-inverso modification, and multiple conjugation of screened peptidomimetic with 4-arm PEG, the polymer-peptidomimetic conjugate PEG-tAHP-DRI (tetra-(D-retro-inverso isomer of AHP-12) substitued 4-arm PEG5k ) is obtained as the most promising agent with the strongest binding potency (KD = 51.12 × 10-9 m) and excellent pharmacokinetic properties. Importantly, PEG-tAHP-DRI provides efficient protection against TC-induced ECs necroptosis both in vitro and in vivo. Moreover, this ligand exhibits prominent anti-hematogenous metastatic activity in serval different metastatic mouse models (B16F10, 4T1, CT26, and spontaneous lung metastasis of 4T1 orthotopic tumor model) and displays no apparent detrimental effects in preliminary safety evaluation. Collectively, this study demonstrates the feasibility of exploiting DR6/APP interaction to regulate hematogenous tumor cells transendothelial migration and provides PEG-tAHP-DRI as a novel and promising inhibitor of DR6/APP interaction for developments of anti-hematogenous metastatic therapies.
Collapse
Affiliation(s)
- Liting Wang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Qing Shen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Hongze Liao
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hao Fu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jian Yu
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Wei Zhang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Chuanrong Chen
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Yang Dong
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Xupeng Yang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Qianqian Guo
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Jiali Zhang
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Jian Zhang
- Department of PathophysiologyKey Laboratory of Cell Differentiation and Apoptosis of Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wei Zhang
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Houwen Lin
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Research Center for Marine DrugsState Key Laboratory of Oncogenes and Related GenesDepartment of PharmacyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteSchool of Biomedical EngineeringRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
8
|
Wang Z, Li Z, Ji H. Direct targeting of β-catenin in the Wnt signaling pathway: Current progress and perspectives. Med Res Rev 2021; 41:2109-2129. [PMID: 33475177 DOI: 10.1002/med.21787] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/30/2020] [Accepted: 01/05/2021] [Indexed: 12/28/2022]
Abstract
Aberrant activation of the Wnt/β-catenin signaling circuit is associated with cancer recurrence and relapse, cancer invasion and metastasis, and cancer immune evasion. Direct targeting of β-catenin, the central hub in this signaling pathway, is a promising strategy to suppress the hyperactive β-catenin signaling but has proven to be highly challenging. Substantial efforts have been made to discover compounds that bind with β-catenin, block β-catenin-mediated protein-protein interactions, and suppress β-catenin signaling. Herein, we characterize potential small-molecule binding sites in β-catenin, summarize bioactive small molecules that directly target β-catenin, and review structure-based inhibitor optimization, structure-activity relationship, and biological activities of reported inhibitors. This knowledge will benefit future inhibitor development and β-catenin-related drug discovery.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Zilu Li
- Department of Chemistry, University of South Florida, Tampa, Florida, USA
| | - Haitao Ji
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA.,Department of Chemistry, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Leblanc R, Kashyap R, Barral K, Egea-Jimenez AL, Kovalskyy D, Feracci M, Garcia M, Derviaux C, Betzi S, Ghossoub R, Platonov M, Roche P, Morelli X, Hoffer L, Zimmermann P. Pharmacological inhibition of syntenin PDZ2 domain impairs breast cancer cell activities and exosome loading with syndecan and EpCAM cargo. J Extracell Vesicles 2020; 10:e12039. [PMID: 33343836 PMCID: PMC7737769 DOI: 10.1002/jev2.12039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/02/2020] [Accepted: 11/14/2020] [Indexed: 12/17/2022] Open
Abstract
Exosomes support cell-to-cell communication in physiology and disease, including cancer. We currently lack tools, such as small chemicals, capable of modifying exosome composition and activity in a specific manner. Building on our previous understanding of how syntenin, and its PDZ partner syndecan (SDC), impact on exosome composition we optimized a small chemical compound targeting the PDZ2 domain of syntenin. In vitro , in tests on MCF-7 breast carcinoma cells, this compound is non-toxic and impairs cell proliferation, migration and primary sphere formation. It does not affect the size or the number of secreted particles, yet it decreases the amounts of exosomal syntenin, ALIX and SDC4 while leaving other exosomal markers unaffected. Interestingly, it also blocks the sorting of EpCAM, a bona fide target used for carcinoma exosome immunocapture. Our study highlights the first characterization of a small pharmacological inhibitor of the syntenin-exosomal pathway, of potential interest for exosome research and oncology.
Collapse
Affiliation(s)
- R Leblanc
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - R Kashyap
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - K Barral
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - A L Egea-Jimenez
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - D Kovalskyy
- Enamine Ltd. Kyiv Ukraine.,Taras Shevchenko National University of Kyiv Kyiv Ukraine
| | - M Feracci
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - M Garcia
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - C Derviaux
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - S Betzi
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - R Ghossoub
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France
| | - M Platonov
- Enamine Ltd. Kyiv Ukraine.,Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - P Roche
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - X Morelli
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - L Hoffer
- Centre de Recherche en Cancérologie de Marseille Integrative Structural & Chemical Biology Aix-Marseille Université, Inserm, CNRS, Institut Paoli Calmettes Marseille France
| | - Pascale Zimmermann
- Equipe labellisée Ligue 2018 Centre de Recherche en Cancérologie de Marseille (CRCM) Aix-Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes Marseille France.,Department of Human Genetics K. U. Leuven Leuven Belgium
| |
Collapse
|
10
|
Dike PP, Bhowmick S, Eldesoky GE, Wabaidur SM, Patil PC, Islam MA. In silico identification of small molecule modulators for disruption of Hsp90-Cdc37 protein-protein interaction interface for cancer therapeutic application. J Biomol Struct Dyn 2020; 40:2082-2098. [PMID: 33095103 DOI: 10.1080/07391102.2020.1835714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protein-protein interactions (PPIs) in the biological systems are important to maintain a number of cellular processes. Several disorders including cancer may be developed due to dysfunction in the assembly of PPI networks. Hence, targeting intracellular PPIs can be considered as a crucial drug target for cancer therapy. Among the enormous and diverse group of cancer-enabling PPIs, the Hsp90-Cdc37 is prominent for cancer therapeutic development. The successful inhibition of Hsp90-Cdc37 PPI interface can be an important therapeutic option for cancer management. In the current study, a set of more than sixty thousand compounds belong to four databases were screened through a multi-steps molecular docking study in Glide against the Hsp90-Cdc37 interaction interface. The Glide-score and Prime-MM-GBSA based binding free energy of DCZ3112, standard Hsp90-Cdc37 inhibitor were found to be -6.96 and -40.46 kcal/mol, respectively. The above two parameters were used as cut-off score to reduce the chemical space from all successfully docked molecules. Furthermore, the in-silico pharmacokinetics parameters, common-feature pharmacophore analyses and the molecular binding interactions were used to wipe out the inactive molecules. Finally, four molecules were found to be important to modulate the Hsp90-Cdc37 interface. The potentiality of the final four molecules was checked through several drug-likeness characteristics. The molecular dynamics (MD) simulation study explained that all four molecules retained inside the interface of Hsp90-Cdc37. The binding free energy of each molecule obtained from the MD simulation trajectory was clearly explained the strong affection towards the Hsp90-Cdc37. Hence, the proposed molecule might be crucial for successful inhibition of the Hsp90-Cdc37 interface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prajakta Prakash Dike
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Gaber E Eldesoky
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saikh M Wabaidur
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Preeti Chunarkar Patil
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University, Pune, India
| | - Md Ataul Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,School of Health Sciences, University of Kwazulu-Natal, Durban, South Africa.,Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| |
Collapse
|
11
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, Bueno C, Mora J, Peinado H, Segovia JC, Menendez P, Rodriguez-Perales S. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020. [PMID: 33033246 DOI: 10.1038/s41467-020-18875-x.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.
Collapse
Affiliation(s)
- M Martinez-Lage
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - R Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain. .,Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.
| | - P Puig-Serra
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - P Moreno-Gaona
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - F J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - O Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - S Garcia-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - A M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - P Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain.,Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - H Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - J C Segovia
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain.,Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, 08010, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
12
|
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, Bueno C, Mora J, Peinado H, Segovia JC, Menendez P, Rodriguez-Perales S. In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun 2020; 11:5060. [PMID: 33033246 PMCID: PMC7544871 DOI: 10.1038/s41467-020-18875-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.
Collapse
Affiliation(s)
- M Martinez-Lage
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - R Torres-Ruiz
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain.
| | - P Puig-Serra
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - P Moreno-Gaona
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - M C Martin
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - F J Moya
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain
| | - O Quintana-Bustamante
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - S Garcia-Silva
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - A M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - P Petazzi
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - C Bueno
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
| | - J Mora
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
- Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, 08950, Barcelona, Spain
| | - H Peinado
- Microenvironment and Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre, 28029, Madrid, Spain
| | - J C Segovia
- Differentiation and Cytometry Unit, Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
- Advanced Therapies Mixed Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD, UAM), 28040, Madrid, Spain
| | - P Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, 08036, Barcelona, Spain
- Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys, 08010, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER-ONC), ISCIII, Barcelona, Spain
| | - S Rodriguez-Perales
- Molecular Cytogenetics and Genome Editing Unit, Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029, Madrid, Spain.
| |
Collapse
|
13
|
Fragment screening targeting Ebola virus nucleoprotein C-terminal domain identifies lead candidates. Antiviral Res 2020; 180:104822. [PMID: 32446802 PMCID: PMC7894038 DOI: 10.1016/j.antiviral.2020.104822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 01/24/2023]
Abstract
The Ebola Virus is a causative agent of viral hemorrhagic fever outbreaks and a potential global health risk. The outbreak in West Africa (2013-2016) led to 11,000+ deaths and 30,000+ Ebola infected individuals. The current outbreak in the Democratic Republic of Congo (DRC) with 3000+ confirmed cases and 2000+ deaths attributed to Ebola virus infections provides a reminder that innovative countermeasures are still needed. Ebola virus encodes 7 open reading frames (ORFs). Of these, the nucleocapsid protein (eNP) encoded by the first ORF plays many significant roles, including a role in viral RNA synthesis. Here we describe efforts to target the C-terminal domain of eNP (eNP-CTD) that contains highly conserved residues 641-739 as a pan-Ebola antiviral target. Interactions of eNP-CTD with Ebola Viral Protein 30 (eVP30) and Viral Protein 40 (eVP40) have been shown to be crucial for viral RNA synthesis, virion formation, and virion transport. We used nuclear magnetic response (NMR)-based methods to screened the eNP-CTD against a fragment library. Perturbations of 1D 1H NMR spectra identified of 48 of the 439 compounds screened as potential eNP CTD interactors. Subsequent analysis of these compounds to measure chemical shift perturbations in 2D 1H,15N NMR spectra of 15N-labeled protein identified six with low millimolar affinities. All six perturbed an area consisting mainly of residues at or near the extreme C-terminus that we named "Site 1" while three other sites were perturbed by other compounds. Our findings here demonstrate the potential utility of eNP as a target, several fragment hits, and provide an experimental pipeline to validate viral-viral interactions as potential panfiloviral inhibitor targets.
Collapse
|
14
|
Cheng J, Maurer LM, Kang H, Lucas PC, McAllister-Lucas LM. Critical protein-protein interactions within the CARMA1-BCL10-MALT1 complex: Take-home points for the cell biologist. Cell Immunol 2020; 355:104158. [PMID: 32721634 DOI: 10.1016/j.cellimm.2020.104158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
The CBM complex, which is composed of the proteins CARMA1, BCL10, and MALT1, serves multiple pivotal roles as a mediator of T-cell receptor and B-cell receptor-dependent NF-κB induction and lymphocyte activation. CARMA1, BCL10, and MALT1 are each proto-oncoproteins and dysregulation of CBM signaling, as a result of somatic gain-of-function mutation or chromosomal translocation, is a hallmark of multiple lymphoid malignancies including Activated B-cell Diffuse Large B-cell Lymphoma. Moreover, loss-of-function as well as gain-of-function germline mutations in CBM complex proteins have been associated with a range of immune dysregulation syndromes. A wealth of detailed structural information has become available over the past decade through meticulous interrogation of the interactions between CBM components. Here, we review key findings regarding the biochemical nature of these protein-protein interactions which have ultimately led the field to a sophisticated understanding of how these proteins assemble into high-order filamentous CBM complexes. To date, approaches to therapeutic inhibition of the CBM complex for the treatment of lymphoid malignancy and/or auto-immunity have focused on blocking MALT1 protease function. We also review key studies relating to the structural impact of MALT1 protease inhibitors on key protein-protein interactions.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Lisa M Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
15
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Cheng SS, Yang GJ, Wang W, Leung CH, Ma DL. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J Hematol Oncol 2020; 13:26. [PMID: 32228680 PMCID: PMC7106679 DOI: 10.1186/s13045-020-00850-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are central to a variety of biological processes, and their dysfunction is implicated in the pathogenesis of a range of human diseases, including cancer. Hence, the inhibition of PPIs has attracted significant attention in drug discovery. Covalent inhibitors have been reported to achieve high efficiency through forming covalent bonds with cysteine or other nucleophilic residues in the target protein. Evidence suggests that there is a reduced risk for the development of drug resistance against covalent drugs, which is a major challenge in areas such as oncology and infectious diseases. Recent improvements in structural biology and chemical reactivity have enabled the design and development of potent and selective covalent PPI inhibitors. In this review, we will highlight the design and development of therapeutic agents targeting PPIs for cancer therapy.
Collapse
Affiliation(s)
- Sha-Sha Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Guan-Jun Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chung-Hang Leung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, SAR, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong, China.
| |
Collapse
|
17
|
Catz SD, McLeish KR. Therapeutic targeting of neutrophil exocytosis. J Leukoc Biol 2020; 107:393-408. [PMID: 31990103 PMCID: PMC7044074 DOI: 10.1002/jlb.3ri0120-645r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of neutrophil activation causes disease in humans. Neither global inhibition of neutrophil functions nor neutrophil depletion provides safe and/or effective therapeutic approaches. The role of neutrophil granule exocytosis in multiple steps leading to recruitment and cell injury led each of our laboratories to develop molecular inhibitors that interfere with specific molecular regulators of secretion. This review summarizes neutrophil granule formation and contents, the role granule cargo plays in neutrophil functional responses and neutrophil-mediated diseases, and the mechanisms of granule release that provide the rationale for development of our exocytosis inhibitors. We present evidence for the inhibition of granule exocytosis in vitro and in vivo by those inhibitors and summarize animal data indicating that inhibition of neutrophil exocytosis is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Sergio D. Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Kenneth R. McLeish
- Department of Medicine, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
18
|
Manna T, Pal K, Jana K, Misra AK. Anti-cancer potential of novel glycosylated 1,4-substituted triazolylchalcone derivatives. Bioorg Med Chem Lett 2019; 29:126615. [DOI: 10.1016/j.bmcl.2019.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022]
|
19
|
Targeting uracil-DNA glycosylases for therapeutic outcomes using insights from virus evolution. Future Med Chem 2019; 11:1323-1344. [PMID: 31161802 DOI: 10.4155/fmc-2018-0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ung-type uracil-DNA glycosylases are frontline defenders of DNA sequence fidelity in bacteria, plants and animals; Ungs also directly assist both innate and humoral immunity. Critically important in viral pathogenesis, whether acting for or against viral DNA persistence, Ungs also have therapeutic relevance to cancer, microbial and parasitic diseases. Ung catalytic specificity is uniquely conserved, yet selective antiviral drugging of the Ung catalytic pocket is tractable. However, more promising precision therapy approaches present themselves via insights from viral strategies, including sequestration or adaptation of Ung for noncanonical roles. A universal Ung inhibition mechanism, converged upon by unrelated viruses, could also inform design of compounds to inhibit specific distinct Ungs. Extrapolating current developments, the character of such novel chemical entities is proposed.
Collapse
|
20
|
Costamagna A, Rossi Sebastiano M, Natalini D, Simoni M, Valabrega G, Defilippi P, Visentin S, Ermondi G, Turco E, Caron G, Cabodi S. Modeling ErbB2-p130Cas interaction to design new potential anticancer agents. Sci Rep 2019; 9:3089. [PMID: 30816273 PMCID: PMC6395809 DOI: 10.1038/s41598-019-39510-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/11/2019] [Indexed: 12/02/2022] Open
Abstract
The ErbB2 receptor tyrosine kinase is overexpressed in approximately 15–20% of breast tumors and associated with aggressive disease and poor clinical outcome. p130Cas represents a nodal scaffold protein regulating cell survival, migration and proliferation in normal and pathological contexts. p130Cas overexpression in ErbB2 human breast cancer correlates with poor prognosis and metastasis formation. Recent data indicate that p130Cas association to ErbB2 protects ErbB2 from degradation, thus enhancing tumorigenesis. Therefore, inhibiting p130Cas/ErbB2 interaction might represent a new therapeutic strategy to target breast cancer. Here we demonstrate by performing Molecular Modeling, Molecular Dynamics, dot blot, ELISA and fluorescence quenching experiments, that p130Cas binds directly to ErbB2. Then, by structure-based virtual screening, we identified two potential inhibitors of p130Cas/ErbB2 interaction. Their experimental validation was performed in vitro and in ErbB2-positive breast cancer cellular models. The results highlight that both compounds interfere with p130Cas/ErbB2 binding and significantly affect cell proliferation and sensitivity to Trastuzumab. Overall, this study identifies p130Cas/ErbB2 complex as a potential breast cancer target revealing new therapeutic perspectives for protein-protein interaction (PPI).
Collapse
Affiliation(s)
- Andrea Costamagna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Matilde Simoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | | | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
21
|
Yuan Y, Qi G, Shen H, Guo A, Cao F, Zhu Y, Xiao C, Chang W, Zheng S. Clinical significance and biological function of WD repeat domain 54 as an oncogene in colorectal cancer. Int J Cancer 2018; 144:1584-1595. [PMID: 29987896 DOI: 10.1002/ijc.31736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/29/2018] [Accepted: 06/20/2018] [Indexed: 01/23/2023]
Abstract
In recent years, protein-protein interactions have become an attractive candidate for identifying biomarkers and drug targets for various diseases. However, WD40 repeat (WDR) domain proteins, some of the most abundant mediators of protein interactions, are largely unexplored. In our study, 57 of 361 known WDR proteins were identified as hub nodes, and a hub (WDR54) with elevated mRNA in colorectal cancer (CRC) was selected for further study. Immunohistochemistry of specimens from 945 patients confirmed the elevated expression of WDR54 in CRC, and we found that patients with WDR54-high tumors typically had a shorter disease-specific survival (DSS) than those with WDR54-low tumors, especially for the subgroup without well-differentiated tumors. Multivariate analysis showed that WDR54-high tumors were an independent risk factor for DSS, with a hazard ratio of 2.981 (95% confidence interval, 1.425-6.234; p = 0.004). Knockdown of WDR54 significantly inhibited the growth and aggressiveness of CRC cells and reduced tumor growth in a xenograft model. Each WDR54 isoform (a, b, and c) was found to reverse the inhibitory effect of WDR54 knockdown; however, only isoform c, which exhibited the highest expression, was increased in CRC cells. Sensitization of WDR54 knockdown to an SHP2 inhibitor was consistently found in CRC cells, and the underlying mechanism involved their common function in regulating AKT and ERK signaling. In conclusion, the present study is the first to investigate the significance of WDR54 in cancer and to conclude that WDR54 serves as an oncogene in CRC and may be a potential prognostic marker and therapeutic target.
Collapse
Affiliation(s)
- Yuncang Yuan
- School of Medicine, Yunnan University, Kunming, China
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Guoxiang Qi
- School of Medicine, Yunnan University, Kunming, China
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Hao Shen
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | - Aizhen Guo
- Department of General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuao Cao
- Department of Colorectal Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chunjie Xiao
- School of Medicine, Yunnan University, Kunming, China
| | - Wenjun Chang
- Department of Environmental Hygiene, Second Military Medical University, Shanghai, China
| | | |
Collapse
|
22
|
Optimization of a Bioluminescence Resonance Energy Transfer-Based Assay for Screening of Trypanosoma cruzi Protein/Protein Interaction Inhibitors. Mol Biotechnol 2018; 60:369-379. [PMID: 29600316 DOI: 10.1007/s12033-018-0078-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chagas disease, a parasitic disease caused by Trypanosoma cruzi, is a major public health burden in poor rural populations of Central and South America and a serious emerging threat outside the endemic region, since the number of infections in non-endemic countries continues to rise. In order to develop more efficient anti-trypanosomal treatments to replace the outdated therapies, new molecular targets need to be explored and new drugs discovered. Trypanosoma cruzi has distinctive structural and functional characteristics with respect to the human host. These exclusive features could emerge as interesting drug targets. In this work, essential and differential protein-protein interactions for the parasite, including the ribosomal P proteins and proteins involved in mRNA processing, were evaluated in a bioluminescence resonance energy transfer-based assay as a starting point for drug screening. Suitable conditions to consider using this simple and robust methodology to screening compounds and natural extracts able to inhibit protein-protein interactions were set in living cells and lysates.
Collapse
|
23
|
Inhibition of protein interactions: co-crystalized protein-protein interfaces are nearly as good as holo proteins in rigid-body ligand docking. J Comput Aided Mol Des 2018; 32:769-779. [PMID: 30003468 DOI: 10.1007/s10822-018-0124-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
Modulating protein interaction pathways may lead to the cure of many diseases. Known protein-protein inhibitors bind to large pockets on the protein-protein interface. Such large pockets are detected also in the protein-protein complexes without known inhibitors, making such complexes potentially druggable. The inhibitor-binding site is primary defined by the side chains that form the largest pocket in the protein-bound conformation. Low-resolution ligand docking shows that the success rate for the protein-bound conformation is close to the one for the ligand-bound conformation, and significantly higher than for the apo conformation. The conformational change on the protein interface upon binding to the other protein results in a pocket employed by the ligand when it binds to that interface. This proof-of-concept study suggests that rather than using computational pocket-opening procedures, one can opt for an experimentally determined structure of the target co-crystallized protein-protein complex as a starting point for drug design.
Collapse
|
24
|
Christensen MD, Nitiyanandan R, Meraji S, Daer R, Godeshala S, Goklany S, Haynes K, Rege K. An inhibitor screen identifies histone-modifying enzymes as mediators of polymer-mediated transgene expression from plasmid DNA. J Control Release 2018; 286:210-223. [PMID: 29964136 DOI: 10.1016/j.jconrel.2018.06.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
Effective transgene expression in mammalian cells relies on successful delivery, cytoplasmic trafficking, and nuclear translocation of the delivered vector, but delivery is impeded by several formidable physicochemical barriers on the surface of and within the target cell. Although methods to overcome cellular exclusion and endosomal entrapment have been studied extensively, strategies to overcome inefficient nuclear entry and subsequent intranuclear barriers to effective transient gene expression have only been sparsely explored. In particular, the role of nuclear packaging of DNA with histone proteins, which governs endogenous gene expression, has not been extensively elucidated in the case of exogenously delivered plasmids. In this work, a parallel screen of small molecule inhibitors of chromatin-modifying enzymes resulted in the identification of class I/II HDACs, sirtuins, LSD1, HATs, and the methyltransferases EZH2 and MLL as targets whose inhibition led to the enhancement of transgene expression following polymer-mediated delivery of plasmid DNA. Quantitative PCR studies revealed that HDAC inhibition enhances the amount of plasmid DNA delivered to the nucleus in UMUC3 human bladder cancer cells. Native chromatin immunoprecipitation (N-ChIP)-qPCR experiments in CHO-K1 cells indicated that plasmids indeed interact with intracellular core Histone H3, and inhibitors of HDAC and LSD1 proteins are able to modulate this interaction. Pair-wise treatments of effective inhibitors led to synergistic enhancement of transgene expression to varying extents in both cell types. Our results demonstrate that the ability to modulate enzymes that play a role in epigenetic processes can enhance the efficacy of non-viral gene delivery, resulting in significant implications for gene therapy and industrial biotechnology.
Collapse
Affiliation(s)
| | | | | | - René Daer
- Biological Design, Arizona State University, Tempe, AZ, USA
| | | | - Sheba Goklany
- Chemical Engineering, Arizona State University, Tempe, AZ, USA
| | - Karmella Haynes
- Biomedical Engineering, Arizona State University, Tempe, AZ, USA
| | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
25
|
Structural and ligand-binding analysis of the YAP-binding domain of transcription factor TEAD4. Biochem J 2018; 475:2043-2055. [DOI: 10.1042/bcj20180225] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022]
Abstract
The oncoprotein YAP (Yes-associated protein) requires the TEAD family of transcription factors for the up-regulation of genes important for cell proliferation. Disrupting YAP–TEAD interaction is an attractive strategy for cancer therapy. Targeting TEADs using small molecules that either bind to the YAP-binding pocket or the palmitate-binding pocket is proposed to disrupt the YAP–TEAD interaction. There is a need for methodologies to facilitate robust and reliable identification of compounds that occupy either YAP-binding pocket or palmitate-binding pocket. Here, using NMR spectroscopy, we validated compounds that bind to these pockets and also identify the residues in mouse TEAD4 (mTEAD4) that interact with these compounds. Flufenamic acid (FA) was used as a positive control for validation of palmitate-binding pocket-occupying compounds by NMR. Furthermore, we identify a hit from a fragment screen and show that it occupies a site close to YAP-binding pocket on the TEAD surface. Our results also indicate that purified mTEAD4 can catalyze autopalmitoylation. NMR studies on mTEAD4 revealed that exchanges exist in TEAD as NMR signal broadening was observed for residues close to the palmitoylation site. Mutating the palmitoylated cysteine (C360S mutant) abolished palmitoylation, while no significant changes in the NMR spectrum were observed for the mutant which still binds to YAP. We also show that FA inhibits TEAD autopalmitoylation. Our studies highlight the utility of NMR spectroscopy in identifying small molecules that bind to TEAD pockets and reinforce the notion that both palmitate-binding pocket and YAP-binding pocket are targetable.
Collapse
|
26
|
Borkin D, Klossowski S, Pollock J, Miao H, Linhares BM, Kempinska K, Jin Z, Purohit T, Wen B, He M, Sun D, Cierpicki T, Grembecka J. Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction. J Med Chem 2018; 61:4832-4850. [PMID: 29738674 PMCID: PMC7029623 DOI: 10.1021/acs.jmedchem.8b00071] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The protein-protein interaction between menin and mixed-lineage leukemia 1 (MLL1) plays an important role in development of acute leukemia with translocations of the MLL1 gene and in solid tumors. Here, we report the development of a new generation of menin-MLL1 inhibitors identified by structure-based optimization of the thienopyrimidine class of compounds. This work resulted in compound 28 (MI-1481), which showed very potent inhibition of the menin-MLL1 interaction (IC50 = 3.6 nM), representing the most potent reversible menin-MLL1 inhibitor reported to date. The crystal structure of the menin-28 complex revealed a hydrogen bond with Glu366 and hydrophobic interactions, which contributed to strong inhibitory activity of 28. Compound 28 also demonstrates pronounced activity in MLL leukemia cells and in vivo in MLL leukemia models. Thus, 28 is a valuable menin-MLL1 inhibitor that can be used for potential therapeutic applications and in further studies regarding the role of menin in cancer.
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Szymon Klossowski
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Pollock
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brian M. Linhares
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Zhuang Jin
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Trupta Purohit
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA,Corresponding author; Jolanta Grembecka, PhD, Associate Professor, Department of Pathology, University of Michigan, 1150 West Medical Center Dr, MSRB I, Room 4510D, Ann Arbor, MI, 48108, , Tel. 734-615-9319
| |
Collapse
|
27
|
Frenkel-Morgenstern M, Gorohovski A, Tagore S, Sekar V, Vazquez M, Valencia A. ChiPPI: a novel method for mapping chimeric protein-protein interactions uncovers selection principles of protein fusion events in cancer. Nucleic Acids Res 2017; 45:7094-7105. [PMID: 28549153 PMCID: PMC5499553 DOI: 10.1093/nar/gkx423] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 05/07/2017] [Indexed: 12/20/2022] Open
Abstract
Fusion proteins, comprising peptides deriving from the translation of two parental genes, are produced in cancer by chromosomal aberrations. The expressed fusion protein incorporates domains of both parental proteins. Using a methodology that treats discrete protein domains as binding sites for specific domains of interacting proteins, we have cataloged the protein interaction networks for 11 528 cancer fusions (ChiTaRS-3.1). Here, we present our novel method, chimeric protein–protein interactions (ChiPPI) that uses the domain–domain co-occurrence scores in order to identify preserved interactors of chimeric proteins. Mapping the influence of fusion proteins on cell metabolism and pathways reveals that ChiPPI networks often lose tumor suppressor proteins and gain oncoproteins. Furthermore, fusions often induce novel connections between non-interactors skewing interaction networks and signaling pathways. We compared fusion protein PPI networks in leukemia/lymphoma, sarcoma and solid tumors finding distinct enrichment patterns for each disease type. While certain pathways are enriched in all three diseases (Wnt, Notch and TGF β), there are distinct patterns for leukemia (EGFR signaling, DNA replication and CCKR signaling), for sarcoma (p53 pathway and CCKR signaling) and solid tumors (FGFR and EGFR signaling). Thus, the ChiPPI method represents a comprehensive tool for studying the anomaly of skewed cellular networks produced by fusion proteins in cancer.
Collapse
Affiliation(s)
| | | | - Somnath Tagore
- Faculty of Medicine, Bar-Ilan-University, Henrietta Szold 8, Safed 1311502, Israel
| | - Vaishnovi Sekar
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), M.F.Almagro 3, 28029 Madrid, Spain
| | - Miguel Vazquez
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), M.F.Almagro 3, 28029 Madrid, Spain
| | - Alfonso Valencia
- Structural Biology and BioComputing Programme, Spanish National Cancer Research Centre (CNIO), M.F.Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
28
|
Jedwabny W, Kłossowski S, Purohit T, Cierpicki T, Grembecka J, Dyguda-Kazimierowicz E. Theoretical models of inhibitory activity for inhibitors of protein-protein interactions: targeting menin-mixed lineage leukemia with small molecules. MEDCHEMCOMM 2017; 8:2216-2227. [PMID: 29456828 PMCID: PMC5774433 DOI: 10.1039/c7md00170c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022]
Abstract
A computationally affordable, non-empirical model based on electrostatic multipole and dispersion terms successfully predicts the binding affinity of inhibitors of menin–MLL protein–protein interactions.
Development and binding affinity predictions of inhibitors targeting protein–protein interactions (PPI) still represent a major challenge in drug discovery efforts. This work reports application of a predictive non-empirical model of inhibitory activity for PPI inhibitors, exemplified here for small molecules targeting the menin–mixed lineage leukemia (MLL) interaction. Systematic ab initio analysis of menin–inhibitor complexes was performed, revealing the physical nature of these interactions. Notably, the non-empirical protein–ligand interaction energy comprising electrostatic multipole and approximate dispersion terms (E(10)El,MTP + EDas) produced a remarkable correlation with experimentally measured inhibitory activities and enabled accurate activity prediction for new menin–MLL inhibitors. Importantly, this relatively simple and computationally affordable non-empirical interaction energy model outperformed binding affinity predictions derived from commonly used empirical scoring functions. This study demonstrates high relevance of the non-empirical model we developed for binding affinity prediction of inhibitors targeting protein–protein interactions that are difficult to predict using empirical scoring functions.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department of Chemistry , Wrocław University of Science and Technology , Wyb. Wyspiańskiego 27 , 50-370 Wrocław , Poland . ; Tel: +48 71 320 3200
| | - Szymon Kłossowski
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Trupta Purohit
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Tomasz Cierpicki
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Jolanta Grembecka
- Department of Pathology , University of Michigan , 1150 W. Medical Center Dr, MSRBI, Rm 4510D , Ann Arbor , MI 48109 , USA . ; ; Tel: +734 615 9319
| | - Edyta Dyguda-Kazimierowicz
- Department of Chemistry , Wrocław University of Science and Technology , Wyb. Wyspiańskiego 27 , 50-370 Wrocław , Poland . ; Tel: +48 71 320 3200
| |
Collapse
|
29
|
Latysheva NS, Oates ME, Maddox L, Flock T, Gough J, Buljan M, Weatheritt RJ, Babu MM. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer. Mol Cell 2017; 63:579-592. [PMID: 27540857 PMCID: PMC5003813 DOI: 10.1016/j.molcel.2016.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/14/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
Abstract
Gene fusions are common cancer-causing mutations, but the molecular principles by which fusion protein products affect interaction networks and cause disease are not well understood. Here, we perform an integrative analysis of the structural, interactomic, and regulatory properties of thousands of putative fusion proteins. We demonstrate that genes that form fusions (i.e., parent genes) tend to be highly connected hub genes, whose protein products are enriched in structured and disordered interaction-mediating features. Fusion often results in the loss of these parental features and the depletion of regulatory sites such as post-translational modifications. Fusion products disproportionately connect proteins that did not previously interact in the protein interaction network. In this manner, fusion products can escape cellular regulation and constitutively rewire protein interaction networks. We suggest that the deregulation of central, interaction-prone proteins may represent a widespread mechanism by which fusion proteins alter the topology of cellular signaling pathways and promote cancer.
Collapse
Affiliation(s)
- Natasha S Latysheva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Matt E Oates
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Louis Maddox
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Tilman Flock
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian Gough
- Department of Computer Science, University of Bristol, Bristol BS8 1UB, UK
| | - Marija Buljan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Robert J Weatheritt
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
30
|
Studying protein-protein interactions: progress, pitfalls and solutions. Biochem Soc Trans 2017; 44:994-1004. [PMID: 27528744 DOI: 10.1042/bst20160092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Indexed: 12/27/2022]
Abstract
Signalling proteins are intrinsic to all biological processes and interact with each other in tightly regulated and orchestrated signalling complexes and pathways. Characterization of protein binding can help to elucidate protein function within signalling pathways. This information is vital for researchers to gain a more comprehensive knowledge of cellular networks which can then be used to develop new therapeutic strategies for disease. However, studying protein-protein interactions (PPIs) can be challenging as the interactions can be extremely transient downstream of specific environmental cues. There are many powerful techniques currently available to identify and confirm PPIs. Choosing the most appropriate range of techniques merits serious consideration. The aim of this review is to provide a starting point for researchers embarking on a PPI study. We provide an overview and point of reference for some of the many methods available to identify interactions from in silico analysis and large scale screening tools through to the methods used to validate potential PPIs. We discuss the advantages and disadvantages of each method and we also provide a workflow chart to highlight the main experimental questions to consider when planning cell lysis to maximize experimental success.
Collapse
|
31
|
Zarei O, Hamzeh-Mivehroud M, Benvenuti S, Ustun-Alkan F, Dastmalchi S. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation. Adv Pharm Bull 2017; 7:141-150. [PMID: 28507948 PMCID: PMC5426727 DOI: 10.15171/apb.2017.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Purpose: Implication of protein-protein interactions (PPIs) in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP) is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ). Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Sarvagalla S, Coumar MS. Protein-Protein Interactions (PPIs) as an Alternative to Targeting the ATP Binding Site of Kinase. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most of the developed kinase inhibitor drugs are ATP competitive and suffer from drawbacks such as off-target kinase activity, development of resistance due to mutation in the ATP binding pocket and unfavorable intellectual property situations. Besides the ATP binding pocket, protein kinases have binding sites that are involved in Protein-Protein Interactions (PPIs); these PPIs directly or indirectly regulate the protein kinase activity. Of recent, small molecule inhibitors of PPIs are emerging as an alternative to ATP competitive agents. Rational design of inhibitors for kinase PPIs could be carried out using molecular modeling techniques. In silico tools available for the prediction of hot spot residues and cavities at the PPI sites and the means to utilize this information for the identification of inhibitors are discussed. Moreover, in silico studies to target the Aurora B-INCENP PPI sites are discussed in context. Overall, this chapter provides detailed in silico strategies that are available to the researchers for carrying out structure-based drug design of PPI inhibitors.
Collapse
|
33
|
Laurenzana I, Caivano A, La Rocca F, Trino S, De Luca L, D'Alessio F, Schenone S, Falco G, Botta M, Del Vecchio L, Musto P. A Pyrazolo[3,4- d]pyrimidine Compound Reduces Cell Viability and Induces Apoptosis in Different Hematological Malignancies. Front Pharmacol 2016; 7:416. [PMID: 27872592 PMCID: PMC5098387 DOI: 10.3389/fphar.2016.00416] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 12/19/2022] Open
Abstract
Molecular targeted therapies are based upon drugs acting on tumors by interfering with specific targets involved in growth and spread of cancer. Many targeted therapies were approved by Food and Drug Administration as standard treatment, others were introduced into preclinical or clinical studies on hematological malignancies (HMs). The development of drug-resistance in some HMs and the lack of effective treatments in other ones emphasized the need for searching new molecular targets and therapeutic agents. The aim of this study was to evaluate the effects of 4c pyrazolo[3,4-d]pyrimidine compound, a Src inhibitor, on lymphoid and myeloid neoplasms. Here, we demonstrated its ability to reduce cell viability, induce apoptosis and cell cycle arrest in lymphoid cell lines such as Jurkat, SKMM1, Derl-2/7, and myeloid cell lines, such as Jurl-MK1. Moreover, we reported a high expression of a Src kinase, Fyn, in these cell lines compared to healthy subjects. This study was a starting point to investigate 4c pyrazolo[3,4-d]pyrimidine compound as a drug for HMs and Src kinases as its potential molecular targets.
Collapse
Affiliation(s)
- Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), Rionero in Vulture Potenza, Italy
| | - Antonella Caivano
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), Rionero in Vulture Potenza, Italy
| | - Francesco La Rocca
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), Rionero in Vulture Potenza, Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), Rionero in Vulture Potenza, Italy
| | - Luciana De Luca
- Laboratory of Preclinical and Translational Research, IRCCS - Referral Cancer Center of Basilicata (CROB), Rionero in Vulture Potenza, Italy
| | | | | | - Geppino Falco
- Department of Biology, University of Naples Federico II Naples, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Luigi Del Vecchio
- Biotecnologie Avanzate s.c.a.r.l., CEINGENapoli, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico IINaples, Italy
| | - Pellegrino Musto
- Scientific Direction, IRCCS - Referral Cancer Center of Basilicata (CROB), Rionero in Vulture Potenza, Italy
| |
Collapse
|
34
|
Zhong HJ, Lee BR, Boyle JW, Wang W, Ma DL, Hong Chan PW, Leung CH. Structure-based screening and optimization of cytisine derivatives as inhibitors of the menin-MLL interaction. Chem Commun (Camb) 2016; 52:5788-91. [PMID: 27004852 DOI: 10.1039/c6cc01079b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The natural product-like compound 1 was identified as a direct inhibitor of the menin-MLL interaction by in silico screening. Structure-based optimization furnished analogue 1a, which showed significantly higher potency than both the lead structure 1 and the reference compound MI-2.
Collapse
Affiliation(s)
- Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Borkin D, Pollock J, Kempinska K, Purohit T, Li X, Wen B, Zhao T, Miao H, Shukla S, He M, Sun D, Cierpicki T, Grembecka J. Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL). J Med Chem 2016; 59:892-913. [PMID: 26744767 PMCID: PMC5092235 DOI: 10.1021/acs.jmedchem.5b01305] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Development of potent small molecule inhibitors of protein-protein interactions with optimized druglike properties represents a challenging task in lead optimization process. Here, we report synthesis and structure-based optimization of new thienopyrimidine class of compounds, which block the protein-protein interaction between menin and MLL fusion proteins that plays an important role in acute leukemias with MLL translocations. We performed simultaneous optimization of both activity and druglike properties through systematic exploration of substituents introduced to the indole ring of lead compound 1 (MI-136) to identify compounds suitable for in vivo studies in mice. This work resulted in the identification of compound 27 (MI-538), which showed significantly increased activity, selectivity, polarity, and pharmacokinetic profile over 1 and demonstrated a pronounced effect in a mouse model of MLL leukemia. This study, which reports detailed structure-activity and structure-property relationships for the menin-MLL inhibitors, demonstrates challenges in optimizing inhibitors of protein-protein interactions for potential therapeutic applications.
Collapse
MESH Headings
- Animals
- Caco-2 Cells
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/metabolism
- Humans
- Injections, Intraventricular
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, SCID
- Models, Molecular
- Molecular Structure
- Myeloid-Lymphoid Leukemia Protein/chemistry
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Protein Binding/drug effects
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/metabolism
- Pyrimidines/administration & dosage
- Pyrimidines/chemistry
- Pyrimidines/pharmacology
- Small Molecule Libraries/administration & dosage
- Small Molecule Libraries/chemistry
- Small Molecule Libraries/pharmacology
- Structure-Activity Relationship
- Thiophenes/administration & dosage
- Thiophenes/chemistry
- Thiophenes/pharmacology
Collapse
Affiliation(s)
- Dmitry Borkin
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jonathan Pollock
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Katarzyna Kempinska
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Xiaoqin Li
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ting Zhao
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hongzhi Miao
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Shirish Shukla
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Miao He
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
36
|
Cau Y, Fiorillo A, Mori M, Ilari A, Botta M, Lalle M. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions. J Chem Inf Model 2015; 55:2611-22. [PMID: 26551337 DOI: 10.1021/acs.jcim.5b00452] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Giardiasis is a gastrointestinal diarrheal illness caused by the protozoan parasite Giardia duodenalis, which affects annually over 200 million people worldwide. The limited antigiardial drug arsenal and the emergence of clinical cases refractory to standard treatments dictate the need for new chemotherapeutics. The 14-3-3 family of regulatory proteins, extensively involved in protein-protein interactions (PPIs) with pSer/pThr clients, represents a highly promising target. Despite homology with human counterparts, the single 14-3-3 of G. duodenalis (g14-3-3) is characterized by a constitutive phosphorylation in a region critical for target binding, thus affecting the function and the conformation of g14-3-3/clients interaction. However, to approach the design of specific small molecule modulators of g14-3-3 PPIs, structural elucidations are required. Here, we present a detailed computational and crystallographic study exploring the implications of g14-3-3 phosphorylation on protein structure and target binding. Self-Guided Langevin Dynamics and classical molecular dynamics simulations show that phosphorylation affects locally and globally g14-3-3 conformation, inducing a structural rearrangement more suitable for target binding. Profitable features for g14-3-3/clients interaction were highlighted using a hydrophobicity-based descriptor to characterize g14-3-3 client peptides. Finally, the X-ray structure of g14-3-3 in complex with a mode-1 prototype phosphopeptide was solved and combined with structure-based simulations to identify molecular features relevant for clients binding to g14-3-3. The data presented herein provide a further and structural understanding of g14-3-3 features and set the basis for drug design studies.
Collapse
Affiliation(s)
- Ylenia Cau
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53019 Siena, Italy
| | - Annarita Fiorillo
- Dipartimento di Scienze Biochimiche, Sapienza Università di Roma , Piazzale A. Moro 5, 00185 Roma, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53019 Siena, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia , Viale Regina Elena 291, 00161 Roma, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology (IBPM), c/o Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza , P.le A. Moro 5, 00185 Roma, Italy
| | - Maurizo Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena , via Aldo Moro 2, 53019 Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , BioLife Science Building, Suite 333, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità , Viale Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|
37
|
Bazzoli A, Kelow SP, Karanicolas J. Enhancements to the Rosetta Energy Function Enable Improved Identification of Small Molecules that Inhibit Protein-Protein Interactions. PLoS One 2015; 10:e0140359. [PMID: 26484863 PMCID: PMC4617380 DOI: 10.1371/journal.pone.0140359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/24/2015] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interactions are among today’s most exciting and promising targets for therapeutic intervention. To date, identifying small-molecules that selectively disrupt these interactions has proven particularly challenging for virtual screening tools, since these have typically been optimized to perform well on more “traditional” drug discovery targets. Here, we test the performance of the Rosetta energy function for identifying compounds that inhibit protein interactions, when these active compounds have been hidden amongst pools of “decoys.” Through this virtual screening benchmark, we gauge the effect of two recent enhancements to the functional form of the Rosetta energy function: the new “Talaris” update and the “pwSHO” solvation model. Finally, we conclude by developing and validating a new weight set that maximizes Rosetta’s ability to pick out the active compounds in this test set. Looking collectively over the course of these enhancements, we find a marked improvement in Rosetta’s ability to identify small-molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Andrea Bazzoli
- Center for Computational Biology, University of Kansas, 2030 Becker Dr., Lawrence, Kansas, 66045–7534, United States of America
| | - Simon P. Kelow
- Center for Computational Biology, University of Kansas, 2030 Becker Dr., Lawrence, Kansas, 66045–7534, United States of America
| | - John Karanicolas
- Center for Computational Biology, University of Kansas, 2030 Becker Dr., Lawrence, Kansas, 66045–7534, United States of America
- Department of Molecular Biosciences, University of Kansas, 2030 Becker Dr., Lawrence, Kansas, 66045–7534, United States of America
- * E-mail:
| |
Collapse
|
38
|
Pollock J, Borkin D, Lund G, Purohit T, Dyguda-Kazimierowicz E, Grembecka J, Cierpicki T. Rational Design of Orthogonal Multipolar Interactions with Fluorine in Protein-Ligand Complexes. J Med Chem 2015; 58:7465-74. [PMID: 26288158 PMCID: PMC4584387 DOI: 10.1021/acs.jmedchem.5b00975] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Multipolar interactions involving
fluorine and the protein backbone
have been frequently observed in protein–ligand complexes.
Such fluorine–backbone interactions may substantially contribute
to the high affinity of small molecule inhibitors. Here we found that
introduction of trifluoromethyl groups into two different sites in
the thienopyrimidine class of menin–MLL inhibitors considerably
improved their inhibitory activity. In both cases, trifluoromethyl
groups are engaged in short interactions with the backbone of menin.
In order to understand the effect of fluorine, we synthesized a series
of analogues by systematically changing the number of fluorine atoms,
and we determined high-resolution crystal structures of the complexes
with menin. We found that introduction of fluorine at favorable geometry
for interactions with backbone carbonyls may improve the activity
of menin–MLL inhibitors as much as 5- to 10-fold. In order
to facilitate the design of multipolar fluorine–backbone interactions
in protein–ligand complexes, we developed a computational algorithm
named FMAP, which calculates fluorophilic sites in proximity to the
protein backbone. We demonstrated that FMAP could be used to rationalize
improvement in the activity of known protein inhibitors upon introduction
of fluorine. Furthermore, FMAP may also represent a valuable tool
for designing new fluorine substitutions and support ligand optimization
in drug discovery projects. Analysis of the menin–MLL inhibitor
complexes revealed that the backbone in secondary structures is particularly
accessible to the interactions with fluorine. Considering that secondary
structure elements are frequently exposed at protein interfaces, we
postulate that multipolar fluorine–backbone interactions may
represent a particularly attractive approach to improve inhibitors
of protein–protein interactions.
Collapse
Affiliation(s)
- Jonathan Pollock
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitry Borkin
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - George Lund
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Trupta Purohit
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Edyta Dyguda-Kazimierowicz
- Molecular Modeling and Quantum Chemistry Group, Department of Chemistry, Wrocław University of Technology , Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Gowthaman R, Miller SA, Rogers S, Khowsathit J, Lan L, Bai N, Johnson DK, Liu C, Xu L, Anbanandam A, Aubé J, Roy A, Karanicolas J. DARC: Mapping Surface Topography by Ray-Casting for Effective Virtual Screening at Protein Interaction Sites. J Med Chem 2015; 59:4152-70. [PMID: 26126123 DOI: 10.1021/acs.jmedchem.5b00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions represent an exciting and challenging target class for therapeutic intervention using small molecules. Protein interaction sites are often devoid of the deep surface pockets presented by "traditional" drug targets, and crystal structures reveal that inhibitors typically engage these sites using very shallow binding modes. As a consequence, modern virtual screening tools developed to identify inhibitors of traditional drug targets do not perform as well when they are instead deployed at protein interaction sites. To address the need for novel inhibitors of important protein interactions, here we introduce an alternate docking strategy specifically designed for this regime. Our method, termed DARC (Docking Approach using Ray-Casting), matches the topography of a surface pocket "observed" from within the protein to the topography "observed" when viewing a potential ligand from the same vantage point. We applied DARC to carry out a virtual screen against the protein interaction site of human antiapoptotic protein Mcl-1 and found that four of the top-scoring 21 compounds showed clear inhibition in a biochemical assay. The Ki values for these compounds ranged from 1.2 to 21 μM, and each had ligand efficiency comparable to promising small-molecule inhibitors of other protein-protein interactions. These hit compounds do not resemble the natural (protein) binding partner of Mcl-1, nor do they resemble any known inhibitors of Mcl-1. Our results thus demonstrate the utility of DARC for identifying novel inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Ragul Gowthaman
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Sven A Miller
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Steven Rogers
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Jittasak Khowsathit
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Lan Lan
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Nan Bai
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - David K Johnson
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Chunjing Liu
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Liang Xu
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Asokan Anbanandam
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Jeffrey Aubé
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - Anuradha Roy
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| | - John Karanicolas
- Center for Computational Biology, ‡Department of Molecular Biosciences, §Center of Biomedical Research Excellence, Center for Cancer Experimental Therapeutics, ∥Department of Radiation Oncology, ⊥Biomolecular NMR Laboratory, #Department of Medicinal Chemistry, and ∇High Throughput Screening Laboratory University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66045-7534, United States
| |
Collapse
|
40
|
Kuenemann MA, Sperandio O, Labbé CM, Lagorce D, Miteva MA, Villoutreix BO. In silico design of low molecular weight protein-protein interaction inhibitors: Overall concept and recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:20-32. [PMID: 25748546 DOI: 10.1016/j.pbiomolbio.2015.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/22/2022]
Abstract
Protein-protein interactions (PPIs) are carrying out diverse functions in living systems and are playing a major role in the health and disease states. Low molecular weight (LMW) "drug-like" inhibitors of PPIs would be very valuable not only to enhance our understanding over physiological processes but also for drug discovery endeavors. However, PPIs were deemed intractable by LMW chemicals during many years. But today, with the new experimental and in silico technologies that have been developed, about 50 PPIs have already been inhibited by LMW molecules. Here, we first focus on general concepts about protein-protein interactions, present a consensual view about ligandable pockets at the protein interfaces and the possibilities of using fast and cost effective structure-based virtual screening methods to identify PPI hits. We then discuss the design of compound collections dedicated to PPIs. Recent financial analyses of the field suggest that LMW PPI modulators could be gaining momentum over biologics in the coming years supporting further research in this area.
Collapse
Affiliation(s)
- Mélaine A Kuenemann
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris 75013, France; Inserm, U973, Paris 75013, France
| | - Olivier Sperandio
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris 75013, France; Inserm, U973, Paris 75013, France; CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse, 59000 Lille, France
| | - Céline M Labbé
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris 75013, France; Inserm, U973, Paris 75013, France; CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse, 59000 Lille, France
| | - David Lagorce
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris 75013, France; Inserm, U973, Paris 75013, France
| | - Maria A Miteva
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris 75013, France; Inserm, U973, Paris 75013, France
| | - Bruno O Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, UMRS 973 Inserm, Paris 75013, France; Inserm, U973, Paris 75013, France; CDithem, Faculté de Pharmacie, 1 rue du Prof Laguesse, 59000 Lille, France.
| |
Collapse
|
41
|
Carroll M. When cancer and immunology meet. Immunol Rev 2014; 263:2-5. [PMID: 25510267 DOI: 10.1111/imr.12250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Martin Carroll
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|