1
|
Wei M, Chen W, Dong Y, Gu Y, Wei D, Zhang J, Ren Y. Hypoxia-Inducible Factor-1α-Activated Protein Switch Based on Allosteric Self-Splicing Reduces Nonspecific Cytotoxicity of Pharmaceutical Drugs. Mol Pharm 2024; 21:5335-5347. [PMID: 39213620 DOI: 10.1021/acs.molpharmaceut.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Protein-based therapeutic agents currently used for targeted tumor therapy exhibit limited penetrability, nonspecific toxicity, and a short circulation half-life. Although targeting cell surface receptors improves cancer selectivity, the receptors are also slightly expressed in normal cells; consequently, the nonspecific toxicity of recombinant protein-based therapeutic agents has not been eliminated. In this study, an allosteric-regulated protein switch was designed that achieved cytoplasmic reorganization of engineered immunotoxins in tumor cells via interactions between allosteric self-splicing elements and cancer markers. It can target the accumulated HIF-1α in hypoxic cancer cells and undergo allosteric activation, and the splicing products were present in hypoxic cancer cells but were absent in normoxic cells, selectively killing tumor cells and reducing nonspecific toxicity to normal cells. The engineered pro-protein provides a platform for targeted therapy of tumors while offering a novel universal strategy for combining the activation of therapeutic functions with specific cancer markers. The allosteric self-splicing element is a powerful tool that significantly reduces the nonspecific cytotoxicity of therapeutic proteins.
Collapse
Affiliation(s)
- Min Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenxin Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiyang Gu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Gill SK, Sugiman-Marangos SN, Beilhartz GL, Mei E, Taipale M, Melnyk RA. An enhanced intracellular delivery platform based on a distant diphtheria toxin homolog that evades pre-existing antitoxin antibodies. EMBO Mol Med 2024; 16:2638-2651. [PMID: 39160301 PMCID: PMC11473700 DOI: 10.1038/s44321-024-00116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Targeted intracellular delivery of therapeutic proteins remains a significant unmet challenge in biotechnology. A promising approach is to leverage the intrinsic capabilities of bacterial toxins like diphtheria toxin (DT) to deliver a potent cytotoxic enzyme into cells with an associated membrane translocation moiety. Despite showing promising clinical efficacy, widespread deployment of DT-based therapeutics is complicated by the prevalence of pre-existing antibodies in the general population arising from childhood DT toxoid vaccinations, which impact the exposure, efficacy, and safety of these potent molecules. Here, we describe the discovery and characterization of a distant DT homolog from the ancient reptile pathogen Austwickia chelonae that we have dubbed chelona toxin (ACT). We show that ACT is comparable to DT structure and function in all respects except that it is not recognized by pre-existing anti-DT antibodies circulating in human sera. Furthermore, we demonstrate that ACT delivers heterologous therapeutic cargos into target cells more efficiently than DT. Our findings highlight ACT as a promising new chassis for building next-generation immunotoxins and targeted delivery platforms with improved pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Shivneet K Gill
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Seiji N Sugiman-Marangos
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Greg L Beilhartz
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Elizabeth Mei
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Roman A Melnyk
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
3
|
Xie H, Li L, Guo Y, Zhou L, Ma L, He A, Lai H, He Y, Liu Y, Chen H, Luo L, Huang Y, Sha X, Zhang H, Yan J, Zhang Q, Tao A. Pseudomonas aeruginosa exotoxin A as a novel allergen induced Non-T H2 inflammation in a murine model of steroid-insensitive asthma. Heliyon 2024; 10:e37512. [PMID: 39315215 PMCID: PMC11417555 DOI: 10.1016/j.heliyon.2024.e37512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Background Despite the immediate in vivo occurrence of anaphylactic and allergic reactions following treatment with Pseudomonas aeruginosa exotoxin A (PEA)-based immunotoxins, the immunological role of PEA in asthma pathogenesis remains unclear. Objective This study investigated the allergenic potential of PEA and the specific type of asthma induced. Methods Recombinant PEA (rPEA) lacking domain Ia (to eliminate non-specific cytotoxicity) was expressed, purified, and employed to detect serum PEA-specific IgE levels in asthmatic patients. Competitive ELISA assays were used to assess rPEA's IgE binding capacity and allergenicity. Additionally, rPEA-challenged C57BL/6 mice were subjected to inflammatory endotyping and therapeutic assays to characterize the allergic nature of PEA. Results PEA-specific IgE was identified in 17 (14.2 %) of 120 asthma patients. The rPEA-sensitized and challenged mice had increased PEA-specific immunoglobulins (such as IgE, IgG1 and IgG2a) and developed asthma-like phenotypes with airway hyperresponsiveness, severe airway inflammation, and airway remodeling. Lungs from these mice displayed significant increases in neutrophils and IL-17A+ cells. Innate lymphoid cells (ILCs) produced type 2 cytokines (IL-4, IL-5, and IL-13), whereas Th cells did not. Nonetheless, airway inflammation, rather than hyperresponsiveness, was elicited in non-sensitized mice upon challenge with rPEA. Importantly, rPEA-induced asthmatic mice were unresponsive to dexamethasone treatment. Conclusion PEA is a novel allergen that sensitizes asthmatic patients. Furthermore, mice developed steroid-resistant asthma, characterized by an atypical cytokine profile associated with non-TH2 inflammation, only after being sensitized and challenged with rPEA. These findings suggest a potentially significant role for PEA in asthma development, warranting consideration in clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Huancheng Xie
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Linmei Li
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Yuhe Guo
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Linghui Zhou
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Linyi Ma
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Andong He
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - He Lai
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Ying He
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Yongping Liu
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Huifang Chen
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Liping Luo
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Yuyi Huang
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Xiangyin Sha
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Huanping Zhang
- , Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jie Yan
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| | - Qingling Zhang
- , Guangdong Provincial Key Laboratory of Allergy & Immunology, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Ailin Tao
- , The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 250 Changgang Road East, Guangzhou, 510260, China
| |
Collapse
|
4
|
Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201:104437. [PMID: 38977144 DOI: 10.1016/j.critrevonc.2024.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates. We explore strategies for targeting TME components, utilizing diverse antibodies such as neutralizing, immunomodulatory, immune checkpoint inhibitors, immunostimulatory, and bispecific antibodies. Additionally, we discuss different immunoconjugates, elucidating their mechanisms of action, advantages, limitations, and applications in cancer immunotherapy. Furthermore, we highlight emerging technologies enhancing the safety and efficacy of immunoconjugates, such as antibody engineering, combination therapies, and nanotechnology. Finally, we summarize current advancements, perspectives, and future developments of TME-targeted immunoconjugates.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
5
|
Mehrab R, Sedighian H, Sotoodehnejadnematalahi F, Halabian R, Imanifooladi AA. Anticancer and bioactivity effect of the AraA-IL13 fusion protein on the glioblastoma cell line. Res Pharm Sci 2024; 19:387-396. [PMID: 39399731 PMCID: PMC11468163 DOI: 10.4103/rps.rps_92_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 07/21/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Glioblastoma (GBM) is an aggressive and malignant brain cancer with the highest mortality and low survival rates. To discover a more specific and efficient treatment for GBM, we synthesized and examined the cytotoxic effect of arazyme-interleukin-13 (Ara-IL13) fusion protein on GBM cells. Experimental approach At first, the araA-IL13 chimeric gene in the pET28a (+) vector was designed and synthesized. After transformation into Escherichia coli BL21 (DE3), the chimeric gene was verified by colony polymerase chain reaction. Expression optimization and purification of the AraA-IL13 fusion protein was performed and subsequently evaluated by 10% SDS-PAGE. The protein was purified and concentrated using the Amicon® Ultra- 15 centrifugal filter unit. The presence of AraA-IL13 was investigated by the western blotting technique. The enzyme was evaluated for proteolytic activity after purification on skim milk agar. The cytotoxic effect of the AraA-IL13 fusion protein was evaluated by MTT assay on U251 and T98G cell lines in vitro. Findings/Results The chimeric protein had no proteolytic activity on skim milk agar despite high expression. Furthermore, no cytotoxic effect of this fusion protein (up to 400 μg/mL) was observed on the U251 and T98G cell lines. Conclusion and implications The lack of proteolytic activity and cytotoxic effect of AraA-IL13 may be due to the disruption of the three-dimensional structure of the protein or the large structure of the arazyme coupled with the ligand and the lack of proper folding of the arazyme to make the active site of the enzyme inaccessible.
Collapse
Affiliation(s)
- Rezvan Mehrab
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imanifooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Vasco A, Taylor RJ, Méndez Y, Bernardes GJL. On-Demand Thio-Succinimide Hydrolysis for the Assembly of Stable Protein-Protein Conjugates. J Am Chem Soc 2024; 146:20709-20719. [PMID: 39012647 PMCID: PMC11295205 DOI: 10.1021/jacs.4c03721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
Chemical post-translational protein-protein conjugation is an important technique with growing applications in biotechnology and pharmaceutical research. Maleimides represent one of the most widely employed bioconjugation reagents. However, challenges associated with the instability of first- and second-generation maleimide technologies are yet to be fully addressed. We report the development of a novel class of maleimide reagents that can undergo on-demand ring-opening hydrolysis of the resulting thio-succinimide. This strategy enables rapid post-translational assembly of protein-protein conjugates. Thio-succinimide hydrolysis, triggered upon application of chemical, photochemical, or enzymatic stimuli, allowed homobifunctional bis-maleimide reagents to be applied in the production of stable protein-protein conjugates, with complete temporal control. Bivalent and bispecific protein-protein dimers constructed from small binders targeting antigens of oncological importance, PD-L1 and HER2, were generated with high purity, stability, and improved functionality compared to monomeric building blocks. The modularity of the approach was demonstrated through elaboration of the linker moiety through a bioorthogonal propargyl handle to produce protein-protein-fluorophore conjugates. Furthermore, extending the functionality of the homobifunctional reagents by temporarily masking reactive thiols included in the linker allowed the assembly of higher order trimeric and tetrameric single-domain antibody conjugates. The potential for the approach to be extended to proteins of greater biochemical complexity was demonstrated in the production of immunoglobulin single-domain antibody conjugates. On-demand control of thio-succinimide hydrolysis combined with the facile assembly of chemically defined homo- and heterodimers constitutes an important expansion of the chemical methods available for generating stable protein-protein conjugates.
Collapse
Affiliation(s)
| | | | - Yanira Méndez
- Yusuf Hamied Department of
Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K.
| | | |
Collapse
|
7
|
Tang NC, Su JC, Shmidov Y, Kelly G, Deshpande S, Sirohi P, Peterson N, Chilkoti A. Synthetic intrinsically disordered protein fusion tags that enhance protein solubility. Nat Commun 2024; 15:3727. [PMID: 38697982 PMCID: PMC11066018 DOI: 10.1038/s41467-024-47519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/03/2024] [Indexed: 05/05/2024] Open
Abstract
We report the de novo design of small (<20 kDa) and highly soluble synthetic intrinsically disordered proteins (SynIDPs) that confer solubility to a fusion partner with minimal effect on the activity of the fused protein. To identify highly soluble SynIDPs, we create a pooled gene-library utilizing a one-pot gene synthesis technology to create a large library of repetitive genes that encode SynIDPs. We identify three small (<20 kDa) and highly soluble SynIDPs from this gene library that lack secondary structure and have high solvation. Recombinant fusion of these SynIDPs to three known inclusion body forming proteins rescue their soluble expression and do not impede the activity of the fusion partner, thereby eliminating the need for removal of the SynIDP tag. These findings highlight the utility of SynIDPs as solubility tags, as they promote the soluble expression of proteins in E. coli and are small, unstructured proteins that minimally interfere with the biological activity of the fused protein.
Collapse
Affiliation(s)
- Nicholas C Tang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jonathan C Su
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Yulia Shmidov
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Garrett Kelly
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Sonal Deshpande
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nikhil Peterson
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
8
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
9
|
Baghini SS, Razeghian E, Malayer SK, Pecho RDC, Obaid M, Awfi ZS, Zainab HA, Shamsara M. Recent advances in the application of genetic and epigenetic modalities in the improvement of antibody-producing cell lines. Int Immunopharmacol 2023; 123:110724. [PMID: 37582312 DOI: 10.1016/j.intimp.2023.110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
There are numerous applications for recombinant antibodies (rAbs) in biological and toxicological research. Monoclonal antibodies are synthesized using genetic engineering and other related processes involved in the generation of rAbs. Because they can identify specific antigenic sites on practically any molecule, including medicines, hormones, microbial antigens, and cell receptors, rAbs are particularly useful in scientific research. The key benefits of rAbs are improved repeatability, control, and consistency, shorter manufacturing times than with hybridoma technology, an easier transition from one format of antibody to another, and an animal-free process. The engineering of the host cell has recently been developed method for enhancing the production efficiency and improving the quality of antibodies from mammalian cell lines. In this light, genetic engineering is mostly utilized to manage cellular chaperones, decrease cell death, increase cell viability, change the microRNAs (miRNAs) pattern in mammalian cells, and glycoengineered cell lines. Here, we shed light on how genetic engineering can be used therapeutically to produce antibodies at higher levels with greater potency and effectiveness.
Collapse
Affiliation(s)
- Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Setare Kakavand Malayer
- Department of Biology, Faculty of Biological Science, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Zinah Salem Awfi
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq.
| | - H A Zainab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
10
|
Naemi AA, Salmanian AH, Noormohammadi Z, Amani J. A novel EGFR-specific recombinant ricin-panitumumab (scFv) immunotoxin against breast and colorectal cancer cell lines; in silico and in vitro analyses. Eur J Pharmacol 2023; 955:175894. [PMID: 37429519 DOI: 10.1016/j.ejphar.2023.175894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023]
Abstract
The Epidermal Growth Factor Receptor (EGFR) has been of high importance as it is over expressed in a wide diversity of epithelial cancers, promoting cell proliferation and survival pathways. Recombinant immunotoxins (ITs) have emerged as a promising targeted therapy for cancer treatment. In this study, we aimed to investigate the antitumor activity of a novel recombinant immunotoxin designed against EGFR. Using an in silico approach, we confirmed the stability of the RTA-scFv fusion protein. The immunotoxin was successfully cloned and expressed in the pET32a vector, and the purified protein was analyzed by electrophoresis and western blotting. In vitro evaluations were conducted to assess the biological activities of the recombinant proteins (RTA-scFv, RTA, scFv). The novel immunotoxin demonstrated significant anti-proliferative and pro-apoptotic effects against cancer cell lines. The MTT cytotoxicity assay revealed a decrease in cell viability in the treated cancer cell lines. Additionally, Annexin V/Propidium iodide staining followed by flow cytometry analysis showed a significant induction of apoptosis in the cancer cell lines, with half maximal inhibitory concentration (IC50) values of 81.71 nM for MDA-MB-468 and 145.2 nM for HCT116 cells (P < 0.05). Furthermore, the EGFR-specific immunotoxin exhibited non-allergenic properties. The recombinant protein demonstrated high affinity binding to EGFR. Overall, this study presents a promising strategy for the development of recombinant immunotoxins as potential candidates for the treatment of EGFR-expressing cancers.
Collapse
Affiliation(s)
- Azam Almolok Naemi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Ali Hatef Salmanian
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| | - Zahra Noormohammadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Jafar Amani
- Department of Molecular Biology, Green Gene Company, Tehran, Iran.
| |
Collapse
|
11
|
Maiti R, Patel B, Patel N, Patel M, Patel A, Dhanesha N. Antibody drug conjugates as targeted cancer therapy: past development, present challenges and future opportunities. Arch Pharm Res 2023; 46:361-388. [PMID: 37071273 PMCID: PMC11345756 DOI: 10.1007/s12272-023-01447-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/26/2023] [Indexed: 04/19/2023]
Abstract
Antibody drug conjugates (ADCs) are promising cancer therapeutics with minimal toxicity as compared to small cytotoxic molecules alone and have shown the evidence to overcome resistance against tumor and prevent relapse of cancer. The ADC has a potential to change the paradigm of cancer chemotherapeutic treatment. At present, 13 ADCs have been approved by USFDA for the treatment of various types of solid tumor and haematological malignancies. This review covers the three structural components of an ADC-antibody, linker, and cytotoxic payload-along with their respective structure, chemistry, mechanism of action, and influence on the activity of ADCs. It covers comprehensive insight on structural role of linker towards efficacy, stability & toxicity of ADCs, different types of linkers & various conjugation techniques. A brief overview of various analytical techniques used for the qualitative and quantitative analysis of ADC is summarized. The current challenges of ADCs, such as heterogeneity, bystander effect, protein aggregation, inefficient internalization or poor penetration into tumor cells, narrow therapeutic index, emergence of resistance, etc., are outlined along with recent advances and future opportunities for the development of more promising next-generation ADCs.
Collapse
Affiliation(s)
- Ritwik Maiti
- Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Bhumika Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India.
| | - Nrupesh Patel
- Department of Pharmaceutical Analysis, Institute of Pharmacy, Nirma University, Ahmedabad, 382481, Gujarat, India
| | - Mehul Patel
- Department of Pharmaceutical Chemistry and Analysis, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Alkesh Patel
- Department of Pharmacology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, 388421, Gujarat, India
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
12
|
Reducing the Immunogenicity of Pulchellin A-Chain, Ribosome-Inactivating Protein Type 2, by Computational Protein Engineering for Potential New Immunotoxins. J 2023. [DOI: 10.3390/j6010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pulchellin is a plant biotoxin categorized as a type 2 ribosome-inactivating protein (RIPs) which potentially kills cells at very low concentrations. Biotoxins serve as targeting immunotoxins (IT), consisting of antibodies conjugated to toxins. ITs have two independent protein components, a human antibody and a toxin with a bacterial or plant source; therefore, they pose unique setbacks in immunogenicity. To overcome this issue, the engineering of epitopes is one of the beneficial methods to elicit an immunological response. Here, we predicted the tertiary structure of the pulchellin A-chain (PAC) using five common powerful servers and adopted the best model after refining. Then, predicted structure using four distinct computational approaches identified conformational B-cell epitopes. This approach identified some amino acids as a potential for lowering immunogenicity by point mutation. All mutations were then applied to generate a model of pulchellin containing all mutations (so-called PAM). Mutants’ immunogenicity was assessed and compared to the wild type as well as other mutant characteristics, including stability and compactness, were computationally examined in addition to immunogenicity. The findings revealed a reduction in immunogenicity in all mutants and significantly in N146V and R149A. Furthermore, all mutants demonstrated remarkable stability and validity in Molecular Dynamic (MD) simulations. During docking and simulations, the most homologous toxin to pulchellin, Abrin-A was applied as a control. In addition, the toxin candidate containing all mutations (PAM) disclosed a high level of stability, making it a potential model for experimental deployment. In conclusion, by eliminating B-cell epitopes, our computational approach provides a potential less immunogenic IT based on PAC.
Collapse
|
13
|
Voltà-Durán E, Sánchez JM, Parladé E, Serna N, Vazquez E, Unzueta U, Villaverde A. The Diphtheria Toxin Translocation Domain Impairs Receptor Selectivity in Cancer Cell-Targeted Protein Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14122644. [PMID: 36559138 PMCID: PMC9781143 DOI: 10.3390/pharmaceutics14122644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Protein-based materials intended as nanostructured drugs or drug carriers are progressively gaining interest in nanomedicine, since their structure, assembly and cellular interactivity can be tailored by recruiting functional domains. The main bottleneck in the development of deliverable protein materials is the lysosomal degradation that follows endosome maturation. This is especially disappointing in the case of receptor-targeted protein constructs, which, while being highly promising and in demand in precision medicines, enter cells via endosomal/lysosomal routes. In the search for suitable protein agents that might promote endosome escape, we have explored the translocation domain (TD) of the diphtheria toxin as a functional domain in CXCR4-targeted oligomeric nanoparticles designed for cancer therapies. The pharmacological interest of such protein materials could be largely enhanced by improving their proteolytic stability. The incorporation of TD into the building blocks enhances the amount of the material detected inside of exposed CXCR4+ cells up to around 25-fold, in absence of cytotoxicity. This rise cannot be accounted for by endosomal escape, since the lysosomal degradation of the new construct decreases only moderately. On the other hand, a significant loss in the specificity of the CXCR4-dependent cellular penetration indicates the unexpected role of the toxin segment as a cell-penetrating peptide in a dose-dependent and receptor-independent fashion. These data reveal that the diphtheria toxin TD displayed on receptor-targeted oligomeric nanoparticles partially abolishes the exquisite receptor specificity of the parental material and it induces nonspecific internalization in mammalian cells.
Collapse
Affiliation(s)
- Eric Voltà-Durán
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Julieta M. Sánchez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET-Universidad Nacional de Córdoba, Av. Velez Sarsfield 1611, Córdoba X5016GCA, Argentina
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Esther Vazquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Institut d’Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, 08025 Barcelona, Spain
- Correspondence: (U.U.); (A.V.)
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Bellaterra, 08193 Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (U.U.); (A.V.)
| |
Collapse
|
14
|
Taylor RJ, Geeson MB, Journeaux T, Bernardes GJL. Chemical and Enzymatic Methods for Post-Translational Protein-Protein Conjugation. J Am Chem Soc 2022; 144:14404-14419. [PMID: 35912579 PMCID: PMC9389620 DOI: 10.1021/jacs.2c00129] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Fusion proteins play an essential role in the biosciences but suffer from several key limitations, including the requirement for N-to-C terminal ligation, incompatibility of constituent domains, incorrect folding, and loss of biological activity. This perspective focuses on chemical and enzymatic approaches for the post-translational generation of well-defined protein-protein conjugates, which overcome some of the limitations faced by traditional fusion techniques. Methods discussed range from chemical modification of nucleophilic canonical amino acid residues to incorporation of unnatural amino acid residues and a range of enzymatic methods, including sortase-mediated ligation. Through summarizing the progress in this rapidly growing field, the key successes and challenges associated with using chemical and enzymatic approaches are highlighted and areas requiring further development are discussed.
Collapse
Affiliation(s)
- Ross J. Taylor
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Michael B. Geeson
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Toby Journeaux
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
15
|
Sibuh BZ, Gahtori R, Al-Dayan N, Pant K, Far BF, Malik AA, Gupta AK, Sadhu S, Dohare S, Gupta PK. Emerging trends in immunotoxin targeting cancer stem cells. Toxicol In Vitro 2022; 83:105417. [PMID: 35718257 DOI: 10.1016/j.tiv.2022.105417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Cancer stem cells (CSCs) are self-renewing multipotent cells that play a vital role in the development of cancer drug resistance conditions. Various therapies like conventional, targeted, and radiotherapies have been broadly used in targeting and killing these CSCs. Among these, targeted therapy selectively targets CSCs and leads to overcoming disease recurrence conditions in cancer patients. Immunotoxins (ITs) are protein-based therapeutics with selective targeting capabilities. These chimeric molecules are composed of two functional moieties, i.e., a targeting moiety for cell surface binding and a toxin moiety that induces the programmed cell death upon internalization. Several ITs have been constructed recently, and their preclinical and clinical efficacies have been evaluated. In this review, we comprehensively discussed the recent preclinical and clinical advances as well as significant challenges in ITs targeting CSCs, which might reduce the burden of drug resistance conditions in cancer patients from bench to bedside.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J.C. Bose Technical Campus, Kumaun University, Bhimtal, Nainital 263136, Uttarakhand, India
| | - Noura Al-Dayan
- Department of Medical Lab Sciences, Prince Sattam bin Abdulaziz University, Alkharj 16278, Saudi Arabia
| | - Kumud Pant
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Ashish Kumar Gupta
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad 121006, Haryana, India
| | - Soumi Sadhu
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Sushil Dohare
- Department of Epidemiology, Faculty of Public Health & Tropical Medicine, Jazan University, Jazan, Saudi Arabia
| | - Piyush Kumar Gupta
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun 248002, Uttarakhand, India; Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India.
| |
Collapse
|
16
|
Guerrero-Ochoa P, Ibáñez-Pérez R, Berbegal-Pinilla G, Aguilar D, Marzo I, Corzana F, Minjárez-Sáenz M, Macías-León J, Conde B, Raso J, Hurtado-Guerrero R, Anel A. Preclinical Studies of Granulysin-Based Anti-MUC1-Tn Immunotoxins as a New Antitumoral Treatment. Biomedicines 2022; 10:biomedicines10061223. [PMID: 35740244 PMCID: PMC9219680 DOI: 10.3390/biomedicines10061223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Two granulysin (GRNLY) based immunotoxins were generated, one containing the scFv of the SM3 mAb (SM3GRNLY) and the other the scFv of the AR20.5 mAb (AR20.5GRNLY). These mAb recognize different amino acid sequences of aberrantly O-glycosylated MUC1, also known as the Tn antigen, expressed in a variety of tumor cell types. We first demonstrated the affinity of these immunotoxins for their antigen using surface plasmon resonance for the purified antigen and flow cytometry for the antigen expressed on the surface of living tumor cells. The induction of cell death of tumor cell lines of different origin positive for Tn antigen expression was stronger in the cases of the immunotoxins than that induced by GRNLY alone. The mechanism of cell death induced by the immunotoxins was studied, showing that the apoptotic component demonstrated previously for GRNLY was also present, but that cell death induced by the immunotoxins included also necroptotic and necrotic components. Finally, we demonstrated the in vivo tumor targeting by the immunotoxins after systemic injection using a xenograft model of the human pancreatic adenocarcinoma CAPAN-2 in athymic mice. While GRNLY alone did not have a therapeutic effect, SM3GRNLY and AR20.5GRNLY reduced tumor volume by 42 and 60%, respectively, compared with untreated tumor-bearing mice, although the results were not statistically significant in the case of AR20.5GRNLY. Histological studies of tumors obtained from treated mice demonstrated reduced cellularity, nuclear morphology compatible with apoptosis induction and active caspase-3 detection by immunohistochemistry. Overall, our results exemplify that these immunotoxins are potential drugs to treat Tn-expressing cancers.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.); (G.B.-P.); (I.M.); (B.C.)
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.); (G.B.-P.); (I.M.); (B.C.)
| | - Germán Berbegal-Pinilla
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.); (G.B.-P.); (I.M.); (B.C.)
| | - Diederich Aguilar
- Department of Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (D.A.); (J.R.)
| | - Isabel Marzo
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.); (G.B.-P.); (I.M.); (B.C.)
| | - Francisco Corzana
- Research Center for Chemical Synthesis, Department of Chemistry, University of La Rioja, 26006 Logroño, Spain;
| | - Martha Minjárez-Sáenz
- Biocomputation and Physics of Complex Systems Institute (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (M.M.-S.); (J.M.-L.); (R.H.-G.)
| | - Javier Macías-León
- Biocomputation and Physics of Complex Systems Institute (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (M.M.-S.); (J.M.-L.); (R.H.-G.)
| | - Blanca Conde
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.); (G.B.-P.); (I.M.); (B.C.)
| | - Javier Raso
- Department of Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (D.A.); (J.R.)
| | - Ramón Hurtado-Guerrero
- Biocomputation and Physics of Complex Systems Institute (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (M.M.-S.); (J.M.-L.); (R.H.-G.)
- ARAID Foundation, University of Zaragoza, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.); (G.B.-P.); (I.M.); (B.C.)
- Correspondence: ; Tel.: +34-976-761279; Fax: +34-976-762123
| |
Collapse
|
17
|
Knudson KM, Hwang S, McCann MS, Joshi BH, Husain SR, Puri RK. Recent Advances in IL-13Rα2-Directed Cancer Immunotherapy. Front Immunol 2022; 13:878365. [PMID: 35464460 PMCID: PMC9023787 DOI: 10.3389/fimmu.2022.878365] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023] Open
Abstract
Interleukin-13 receptor subunit alpha-2 (IL-13Rα2, CD213A), a high-affinity membrane receptor of the anti-inflammatory Th2 cytokine IL-13, is overexpressed in a variety of solid tumors and is correlated with poor prognosis in glioblastoma, colorectal cancer, adrenocortical carcinoma, pancreatic cancer, and breast cancer. While initially hypothesized as a decoy receptor for IL-13-mediated signaling, recent evidence demonstrates IL-13 can signal through IL-13Rα2 in human cells. In addition, expression of IL-13Rα2 and IL-13Rα2-mediated signaling has been shown to promote tumor proliferation, cell survival, tumor progression, invasion, and metastasis. Given its differential expression in tumor versus normal tissue, IL-13Rα2 is an attractive immunotherapy target, as both a targetable receptor and an immunogenic antigen. Multiple promising strategies, including immunotoxins, cancer vaccines, and chimeric antigen receptor (CAR) T cells, have been developed to target IL-13Rα2. In this mini-review, we discuss recent developments surrounding IL-13Rα2-targeted therapies in pre-clinical and clinical study, including potential strategies to improve IL-13Rα2-directed cancer treatment efficacy.
Collapse
|
18
|
Tolmachev VM, Chernov VI, Deyev SM. Targeted nuclear medicine. Seek and destroy. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Khirehgesh MR, Sharifi J, Akbari B, Mansouri K, Safari F, Soleymani B, Yari K. Design and construction a novel humanized biparatopic nanobody-based immunotoxin against epidermal growth factor receptor (EGFR). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Sanz L, Ibáñez-Pérez R, Guerrero-Ochoa P, Lacadena J, Anel A. Antibody-Based Immunotoxins for Colorectal Cancer Therapy. Biomedicines 2021; 9:1729. [PMID: 34829955 PMCID: PMC8615520 DOI: 10.3390/biomedicines9111729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Monoclonal antibodies (mAbs) are included among the treatment options for advanced colorectal cancer (CRC). However, while these mAbs effectively target cancer cells, they may have limited clinical activity. A strategy to improve their therapeutic potential is arming them with a toxic payload. Immunotoxins (ITX) combining the cell-killing ability of a toxin with the specificity of a mAb constitute a promising strategy for CRC therapy. However, several important challenges in optimizing ITX remain, including suboptimal pharmacokinetics and especially the immunogenicity of the toxin moiety. Nonetheless, ongoing research is working to solve these limitations and expand CRC patients' therapeutic armory. In this review, we provide a comprehensive overview of targets and toxins employed in the design of ITX for CRC and highlight a wide selection of ITX tested in CRC patients as well as preclinical candidates.
Collapse
Affiliation(s)
- Laura Sanz
- Molecular Immunology Unit, Biomedical Research Institute, Hospital Universitario Puerta de Hierro, 28222 Madrid, Spain
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| | - Javier Lacadena
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, Complutense University, 28040 Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (R.I.-P.); (P.G.-O.)
| |
Collapse
|
21
|
Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. J Immunother Cancer 2021; 9:e003679. [PMID: 34795007 PMCID: PMC8603282 DOI: 10.1136/jitc-2021-003679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma is the the most common primary brain tumor in adults. Onset of disease is followed by a uniformly lethal prognosis and dismal overall survival. While immunotherapies have revolutionized treatment in other difficult-to-treat cancers, these have failed to demonstrate significant clinical benefit in patients with glioblastoma. Obstacles to success include the heterogeneous tumor microenvironment (TME), the immune-privileged intracranial space, the blood-brain barrier (BBB) and local and systemic immunosuppressions. Monoclonal antibody-based therapies have failed at least in part due to their inability to access the intracranial compartment. Bispecific T-cell engagers are promising antibody fragment-based therapies which can bring T cells close to their target and capture them with a high binding affinity. They can redirect the entire repertoire of T cells against tumor, independent of T-cell receptor specificity. However, the multiple challenges posed by the TME, immune privilege and the BBB suggest that a single agent approach may be insufficient to yield durable, long-lasting antitumor efficacy. In this review, we discuss the mechanism of action of T-cell engagers, their preclinical and clinical developments to date. We also draw comparisons with other classes of multispecific antibodies and potential combinations using these antibody fragment therapies.
Collapse
Affiliation(s)
- Kirit Singh
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke Universtiy, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Kelly M Hotchkiss
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Aditya A Mohan
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Jessica L Reedy
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - John H Sampson
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Biomedical Engineering, Duke Universtiy, Durham, NC, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
| | - Mustafa Khasraw
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Brain Tumor Immunotherapy Program, Duke University, Durham, NC, 27703
- Duke Cancer Institute, Durham, North Carolina, USA
| |
Collapse
|
22
|
Umotoy JC, de Taeye SW. Antibody Conjugates for Targeted Therapy Against HIV-1 as an Emerging Tool for HIV-1 Cure. Front Immunol 2021; 12:708806. [PMID: 34276704 PMCID: PMC8282362 DOI: 10.3389/fimmu.2021.708806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/18/2021] [Indexed: 01/22/2023] Open
Abstract
Although advances in antiretroviral therapy (ART) have significantly improved the life expectancy of people living with HIV-1 (PLWH) by suppressing HIV-1 replication, a cure for HIV/AIDS remains elusive. Recent findings of the emergence of drug resistance against various ART have resulted in an increased number of treatment failures, thus the development of novel strategies for HIV-1 cure is of immediate need. Antibody-based therapy is a well-established tool in the treatment of various diseases and the engineering of new antibody derivatives is expanding the realms of its application. An antibody-based carrier of anti-HIV-1 molecules, or antibody conjugates (ACs), could address the limitations of current HIV-1 ART by decreasing possible off-target effects, reduce toxicity, increasing the therapeutic index, and lowering production costs. Broadly neutralizing antibodies (bNAbs) with exceptional breadth and potency against HIV-1 are currently being explored to prevent or treat HIV-1 infection in the clinic. Moreover, bNAbs can be engineered to deliver cytotoxic or immune regulating molecules as ACs, further increasing its therapeutic potential for HIV-1 cure. ACs are currently an important component of anticancer treatment with several FDA-approved constructs, however, to date, no ACs are approved to treat viral infections. This review aims to outline the development of AC for HIV-1 cure, examine the variety of carriers and payloads used, and discuss the potential of ACs in the current HIV-1 cure landscape.
Collapse
Affiliation(s)
- Jeffrey C Umotoy
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Center (UMC), Amsterdam Infection and Immunity Institute, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Dashtiahangar M, Rahbarnia L, Farajnia S, Salmaninejad A, Shabgah AG, Ghasemali S. Anti-cancer Immunotoxins, Challenges, and Approaches. Curr Pharm Des 2021; 27:932-941. [PMID: 33023437 DOI: 10.2174/1381612826666201006155346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/07/2020] [Indexed: 11/22/2022]
Abstract
The development of recombinant immunotoxins (RITs) as a novel therapeutic strategy has made a revolution in the treatment of cancer. RITs result from the fusion of antibodies to toxin proteins for targeting and eliminating cancerous cells by inhibiting protein synthesis. Despite indisputable outcomes of RITs regarding inhibition of multiple cancer types, high immunogenicity has been known as the main obstacle in the clinical use of RITs. Various strategies have been proposed to overcome these limitations, including immunosuppressive therapy, humanization of the antibody fragment moiety, generation of immunotoxins originated from endogenous human cytotoxic enzymes, and modification of the toxin moiety to escape the immune system. This paper is devoted to review recent advances in the design of immunotoxins with lower immunogenicity.
Collapse
Affiliation(s)
- Maryam Dashtiahangar
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arezoo Gowhari Shabgah
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Ghasemali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Li Q, Li W, Xu K, Xing Y, Ding Y, Jing Z, Wang X, Hong Z. Preclinical evaluation of a novel anti-mesothelin immunotoxin based on a single domain antibody as the targeting ligand. Int J Pharm 2021; 602:120647. [PMID: 33915185 DOI: 10.1016/j.ijpharm.2021.120647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/21/2021] [Accepted: 04/22/2021] [Indexed: 01/10/2023]
Abstract
Pancreatic cancer, as one of the most aggressive and lethal malignancies in the world, is lack of effective treatment. Constructing immunotoxin molecules to target the mesothelin (MSLN) receptor is a potential therapeutic strategy for pancreatic cancer and other related malignant tumors, with some molecules being tested in clinical trials. However, currently, there are still some limitations in its applications, such as the difficulty of the preparation of drug molecules, the limited effectiveness of drugs, and the inadequacy of drug safety and immunogenicity. In this study, we constructed a novel type of anti-MSLN immunotoxin, A1-PE24X7, in which a single domain antibody (sdAb) molecule was used as the target ligand and an improved PE24X7 toxin with reduced off-target toxicity and immunogenicity was used as the effector. Unlike conventional immunotoxins, the designed A1-PE24X7 could be easily expressed in the E. coli system in the form of a soluble protein with a good yield (15--20 mg/L), avoiding the complex process of denaturation and refolding of inclusion bodies, and it can be conveniently stored in PBS solution for more than 7 days at 4 °C, showing high storage stability. Cell-based experiments showed that A1-PE24X7 entered MSLN-expressing tumor cells in a receptor-mediated manner and killed these cells with an EC50 in the low nanomolar range (0.13 nM against NCI-N87 cells and 0.79 nM against AsPC-1 cells) and it showed ideal selectivity for the MSLN receptor (>100 nM against receptor negative PC3 cells). In animal-based experiments, A1-PE24X7 had tumor enrichment ability in relation to MSLN-positive tumors and showed strong tumor killing and inhibition in mouse models of pancreatic cancer and gastric cancer. Five injections of 3.0 mg/kg A1-PE24X7 significantly reduced the tumor volume of gastric NCI-N87 cancer and also significantly inhibited the growth of pancreatic AsPC-1 cancer. In addition, the maximum tolerable dosage (MSD) of A1-PE24X7 to mice was higher than 15 mg/kg, showing that A1-PE24X7 has a relatively broad therapeutic window. These preclinical results indicate that this strategy has good potential for application to the treatment of pancreatic cancer and other tumors with high MSLN expression.
Collapse
Affiliation(s)
- Qiyu Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Wenjing Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Keyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yutong Xing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Yu Ding
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zhe Jing
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Xi Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zhangyong Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
25
|
Voltà-Durán E, Serna N, Sánchez-García L, Aviñó A, Sánchez JM, López-Laguna H, Cano-Garrido O, Casanova I, Mangues R, Eritja R, Vázquez E, Villaverde A, Unzueta U. Design and engineering of tumor-targeted, dual-acting cytotoxic nanoparticles. Acta Biomater 2021; 119:312-322. [PMID: 33189955 DOI: 10.1016/j.actbio.2020.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
The possibility to conjugate tumor-targeted cytotoxic nanoparticles and conventional antitumoral drugs in single pharmacological entities would open a wide spectrum of opportunities in nanomedical oncology. This principle has been explored here by using CXCR4-targeted self-assembling protein nanoparticles based on two potent microbial toxins, the exotoxin A from Pseudomonas aeruginosa and the diphtheria toxin from Corynebacterium diphtheriae, to which oligo-floxuridine and monomethyl auristatin E respectively have been chemically coupled. The resulting multifunctional hybrid nanoconjugates, with a hydrodynamic size of around 50 nm, are stable and internalize target cells with a biological impact. Although the chemical conjugation minimizes the cytotoxic activity of the protein partner in the complexes, the concept of drug combination proposed here is fully feasible and highly promising when considering multiple drug treatments aimed to higher effectiveness or when facing the therapy of cancers with acquired resistance to classical drugs.
Collapse
|
26
|
Khot VM, Salunkhe AB, Pricl S, Bauer J, Thorat ND, Townley H. Nanomedicine-driven molecular targeting, drug delivery, and therapeutic approaches to cancer chemoresistance. Drug Discov Today 2020; 26:724-739. [PMID: 33359624 DOI: 10.1016/j.drudis.2020.12.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Cancer cell resistance to chemotherapeutics (chemoresistance) poses a significant clinical challenge that oncology research seeks to understand and overcome. Multiple anticancer drugs and targeting agents can be incorporated in nanomedicines, in addition to different treatment modalities, forming a single nanoplatform that can be used to address tumor chemoresistance. Nanomedicine-driven molecular assemblies using nucleic acids, small interfering (si)RNAs, miRNAs, and aptamers in combination with stimuli-responsive therapy improve the pharmacokinetic (PK) profile of the drugs and enhance their accumulation in tumors and, thus, therapeutic outcomes. In this review, we highlight nanomedicine-driven molecular targeting and therapy combination used to improve the 3Rs (right place, right time, and right dose) for chemoresistant tumor therapies.
Collapse
Affiliation(s)
- Vishwajeet M Khot
- Department of Medical Physics, Center for Interdisciplinary Research, D.Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416006, MS, India.
| | | | - Sabrina Pricl
- MolBNL@UniTS-DEA University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-137 Lodz, Poland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Technology, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Nanasaheb D Thorat
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK.
| | - Helen Townley
- Nuffield Department of Women's & Reproductive Health, Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; Department of Engineering Science, University of Oxford, South Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
27
|
Ou-Yang Q, Ren JL, Yan B, Feng JN, Yang AG, Zhao J. Syngeneic homograft of framework regions enhances the affinity of the mouse anti-human epidermal receptor 2 single-chain antibody e23sFv. Exp Ther Med 2020; 21:136. [PMID: 33456503 PMCID: PMC7791966 DOI: 10.3892/etm.2020.9568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
e23sFv is a HER2-targeted single-chain variable fragment (scFV) that was characterized as the targeting portion of a HER2-targeted tumour proapoptotic molecule in our previous study. In vitro antibody affinity maturation is a method to enhance antibody affinity either by complementarity-determining region (CDR) mutagenesis or by framework region (FR) engraftment. In the present study, the affinity of e23sFv was enhanced using two strategies. In one approach, site-directed mutations were introduced into the FRs of e23sFv (designated EMEY), and in the other approach e23sFv FRs were substituted with FRs from the most homologous screened antibodies (designated EX1 and EX2). Notably, EX1 derived from the FR engraftment strategy demonstrated a 4-fold higher affinity for HER2 compared with e23sFv and was internalized into HER2-overexpressing cells; however, EMEY and EX2 exhibited reduced affinity for HER2 and decreased internalization potential compared with EX1. The 3D structure of EX1 and the HER2-EX1 complex was acquired using molecular homology modelling and docking and the HER2 epitopes of EX1 and the molecular interaction energy of the EX1-HER2 complex were predicted. In the present study, it was demonstrated that scFv affinity improvement based on sequence alignment was feasible and effective. Moreover, the FR grafting strategy was indicated to be more effective and simple compared with site-directed mutagenesis to improve e23sFv affinity. In conclusion, it was indicated that the affinity-improved candidate EX1 may present a great potential for the diagnosis and treatment of HER2-overexpressing tumours.
Collapse
Affiliation(s)
- Qing Ou-Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China.,State Key Laboratory of Kidney Diseases, Department of Nephrology, Chinese PLA General Hospital & Chinese PLA Medical School, Beijing 100853, P.R. China
| | - Jun-Lin Ren
- Department of Infectious Diseases, PLA Navy General Hospital, Beijing 100142, P.R. China
| | - Bo Yan
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian-Nan Feng
- Department of Immunology, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jing Zhao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
28
|
Fischer A, Wolf I, Fuchs H, Masilamani AP, Wolf P. Pseudomonas Exotoxin A Based Toxins Targeting Epidermal Growth Factor Receptor for the Treatment of Prostate Cancer. Toxins (Basel) 2020; 12:E753. [PMID: 33260619 PMCID: PMC7761469 DOI: 10.3390/toxins12120753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) was found to be a valuable target on prostate cancer (PCa) cells. However, EGFR inhibitors mostly failed in clinical studies with patients suffering from PCa. We therefore tested the targeted toxins EGF-PE40 and EGF-PE24mut consisting of the natural ligand EGF as binding domain and PE40, the natural toxin domain of Pseudomonas Exotoxin A, or PE24mut, the de-immunized variant thereof, as toxin domains. Both targeted toxins were expressed in the periplasm of E.coli and evoked an inhibition of protein biosynthesis in EGFR-expressing PCa cells. Concentration- and time-dependent killing of PCa cells was found with IC50 values after 48 and 72 h in the low nanomolar or picomolar range based on the induction of apoptosis. EGF-PE24mut was found to be about 11- to 120-fold less toxic than EGF-PE40. Both targeted toxins were more than 600 to 140,000-fold more cytotoxic than the EGFR inhibitor erlotinib. Due to their high and specific cytotoxicity, the EGF-based targeted toxins EGF-PE40 and EGF-PE24mut represent promising candidates for the future treatment of PCa.
Collapse
Affiliation(s)
- Alexandra Fischer
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Isis Wolf
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Hendrik Fuchs
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Anie Priscilla Masilamani
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| | - Philipp Wolf
- Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.F.); (I.W.); (A.P.M.)
- Department of Urology, Antibody-Based Diagnostics and Therapies, Medical Center—University of Freiburg, Breisacher Str. 66, 79106 Freiburg, Germany
| |
Collapse
|
29
|
Biteghe FAN, Mungra N, Chalomie NET, Ndong JDLC, Engohang-Ndong J, Vignaux G, Padayachee E, Naran K, Barth S. Advances in epidermal growth factor receptor specific immunotherapy: lessons to be learned from armed antibodies. Oncotarget 2020; 11:3531-3557. [PMID: 33014289 PMCID: PMC7517958 DOI: 10.18632/oncotarget.27730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has been recognized as an important therapeutic target in oncology. It is commonly overexpressed in a variety of solid tumors and is critically involved in cell survival, proliferation, metastasis, and angiogenesis. This multi-dimensional role of EGFR in the progression and aggressiveness of cancer, has evolved from conventional to more targeted therapeutic approaches. With the advent of hybridoma technology and phage display techniques, the first anti-EGFR monoclonal antibodies (mAbs) (Cetuximab and Panitumumab) were developed. Due to major limitations including host immune reactions and poor tumor penetration, these antibodies were modified and used as guiding mechanisms for the specific delivery of readily available chemotherapeutic agents or plants/bacterial toxins, giving rise to antibody-drug conjugates (ADCs) and immunotoxins (ITs), respectively. Continued refinement of ITs led to deimmunization strategies based on depletion of B and T-cell epitopes or substitution of non-human toxins leading to a growing repertoire of human enzymes capable of inducing cell death. Similarly, the modification of classical ADCs has resulted in the first, fully recombinant versions. In this review, we discuss significant advancements in EGFR-targeting immunoconjugates, including ITs and recombinant photoactivable ADCs, which serve as a blueprint for further developments in the evolving domain of cancer immunotherapy.
Collapse
Affiliation(s)
- Fleury Augustin Nsole Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, CA, USA
- These authors contributed equally to this work
| | - Neelakshi Mungra
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | | | - Jean De La Croix Ndong
- Department of Orthopedic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jean Engohang-Ndong
- Department of Biological Sciences, Kent State University at Tuscarawas, New Philadelphia, OH, USA
| | | | - Eden Padayachee
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Krupa Naran
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| | - Stefan Barth
- Medical Biotechnology & Immunotherapy Research Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- These authors contributed equally to this work
| |
Collapse
|
30
|
Purde V, Kudryashova E, Heisler DB, Shakya R, Kudryashov DS. Intein-mediated cytoplasmic reconstitution of a split toxin enables selective cell ablation in mixed populations and tumor xenografts. Proc Natl Acad Sci U S A 2020; 117:22090-22100. [PMID: 32839344 PMCID: PMC7486740 DOI: 10.1073/pnas.2006603117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The application of proteinaceous toxins for cell ablation is limited by their high on- and off-target toxicity, severe side effects, and a narrow therapeutic window. The selectivity of targeting can be improved by intein-based toxin reconstitution from two dysfunctional fragments provided their cytoplasmic delivery via independent, selective pathways. While the reconstitution of proteins from genetically encoded elements has been explored, exploiting cell-surface receptors for boosting selectivity has not been attained. We designed a robust splitting algorithm and achieved reliable cytoplasmic reconstitution of functional diphtheria toxin from engineered intein-flanked fragments upon receptor-mediated delivery of one of them to the cells expressing the counterpart. Retargeting the delivery machinery toward different receptors overexpressed in cancer cells enables selective ablation of specific subpopulations in mixed cell cultures. In a mouse model, the transmembrane delivery of a split-toxin construct potently inhibits the growth of xenograft tumors expressing the split counterpart. Receptor-mediated delivery of engineered split proteins provides a platform for precise therapeutic and experimental ablation of tumors or desired cell populations while also greatly expanding the applicability of the intein-based protein transsplicing.
Collapse
Affiliation(s)
- Vedud Purde
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
| | - David B Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Reena Shakya
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210;
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
31
|
Sánchez-García L, Sala R, Serna N, Álamo P, Parladé E, Alba-Castellón L, Voltà-Durán E, Sánchez-Chardi A, Unzueta U, Vázquez E, Mangues R, Villaverde A. A refined cocktailing of pro-apoptotic nanoparticles boosts anti-tumor activity. Acta Biomater 2020; 113:584-596. [PMID: 32603867 DOI: 10.1016/j.actbio.2020.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022]
Abstract
A functional 29 amino acid-segment of the helix α5 from the human BAX protein has been engineered for production in recombinant bacteria as self-assembling, GFP-containing fluorescent nanoparticles, which are targeted to the tumoral marker CXCR4. These nanoparticles, of around 34 nm in diameter, show a moderate tumor biodistribution and limited antitumoral effect when systemically administered to mouse models of human CXCR4+ colorectal cancer (at 300 μg dose). However, if such BAX nanoparticles are co-administered in cocktail with equivalent nanoparticulate versions of BAK and PUMA proteins at the same total protein dose (300 μg), protein biodistribution and stability in tumor is largely improved, as determined by fluorescence profiles. This fact leads to a potent and faster destruction of tumor tissues when compared to individual pro-apoptotic factors. The analysis and interpretation of the boosted effect, from both the structural and functional sides, offers clues for the design of more efficient nanomedicines and theragnostic agents in oncology based on precise cocktails of human proteins. STATEMENT OF SIGNIFICANCE: Several human pro-apoptotic peptides (namely BAK, BAX and PUMA) have been engineered as self-assembling protein nanoparticles targeted to the tumoral marker CXCR4. The systemic administration of the same final amounts of those materials as single drugs, or as combinations of two or three of them, shows disparate intensities of antitumoral effects in a mouse model of human colorectal cancer, which are boosted in the triple combination on a non-additive basis. The superiority of the combined administration of pro-apoptotic agents, acting at different levels of the apoptotic cascade, opens a plethora of possibilities for the development of effective and selective cancer therapies based on the precise cocktailing of pro-apoptotic nanoparticulate agents.
Collapse
|
32
|
Guerrero-Ochoa P, Aguilar-Machado D, Ibáñez-Pérez R, Macías-León J, Hurtado-Guerrero R, Raso J, Anel A. Production of a Granulysin-Based, Tn-Targeted Cytolytic Immunotoxin Using Pulsed Electric Field Technology. Int J Mol Sci 2020; 21:E6165. [PMID: 32859066 PMCID: PMC7503585 DOI: 10.3390/ijms21176165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Granulysin is a protein present in the granules of human cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, with cytolytic activity against microbes and tumors. Previous work demonstrated the therapeutic effect of the intratumoral injection of recombinant granulysin and of the systemic injection of an immunotoxin between granulysin and the anti-carcinoembryonic antigen single-chain Fv antibody fragment MFE23, which were produced in the yeast Pichia pastoris. In the present work, we developed a second immunotoxin combining granulysin and the anti-Tn antigen single-chain Fv antibody fragment SM3, that could have a broader application in tumor treatment than our previous immunotoxin. In addition, we optimized a method based on electroporation by pulsed electric field (PEF) to extract the remaining intracellular protein from yeast, augmenting the production and purificiation yield. The immunotoxin specifically recognized the Tn antigen on the cell surface. We also compared the thermal stability and the cytotoxic potential of the extracellular and intracellular immunotoxins on Tn-expressing human cell lines, showing that they were similar. Moreover, the bioactivity of both immunotoxins against several Tn+ cell lines was higher than that of granulysin alone.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.)
| | - Diederich Aguilar-Machado
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (D.A.-M.); (J.R.)
| | - Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.)
| | - Javier Macías-León
- Biocomputation and Physics of Complex Systems Institute (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (J.M.-L.); (R.H.-G.)
| | - Ramón Hurtado-Guerrero
- Biocomputation and Physics of Complex Systems Institute (BIFI), University of Zaragoza, 50018 Zaragoza, Spain; (J.M.-L.); (R.H.-G.)
- ARAID Foundation, 50018 Zaragoza, Spain
- Department of Cellular and Molecular Medicine, Copenhagen Center for Glycomics, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
- Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| | - Javier Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, Universidad de Zaragoza-CITA, 50013 Zaragoza, Spain; (D.A.-M.); (J.R.)
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, 50009 Zaragoza, Spain; (P.G.-O.); (R.I.-P.)
| |
Collapse
|
33
|
Wickramarachchi D, Steeno G, You Z, Shaik S, Lepsy C, Xue L. Fit-for-Purpose Validation and Establishment of Assay Acceptance and Reporting Criteria of Dendritic Cell Activation Assay Contributing to the Assessment of Immunogenicity Risk. AAPS JOURNAL 2020; 22:114. [PMID: 32839919 DOI: 10.1208/s12248-020-00491-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023]
Abstract
Validation of key analytical and functional performance characteristics of in vitro immunogenicity risk assessment assays increases our confidence in utilizing them for screening biotherapeutics. Herein, we present a fit-for-purpose (FFP) validation of a dendritic cell (DC) activation assay designed to assess the immunogenicity liability of protein biotherapeutics. Characterization of key assay parameters was achieved using monocyte-derived DCs (MoDCs) treated with cell culture medium only (i.e., background control (BC)), keyhole limpet hemocyanin (KLH) as system positive control (SPC), and 2 therapeutic monoclonal antibodies (mAbs) with known clinical immunogenicity profiles (bococizumab and TAM163) as therapeutic controls (TCs). In the absence of established validation guidelines for primary cell-based assays, the present DC activation assay was validated using a novel FFP approach which allows more flexibility in selection of validation parameters and designing of experiments based on the intended use of the assay. The present FFP validation allowed us to understand the impact of experimental variables on assay precision, develop a clear concise readout for DC activation results, establish a reliable response threshold to define a result as a positive DC activation response, and define in-study donor acceptance criteria and cohort size. FFP validation of this DC activation assay indicated that the assay is sufficient to support its context of use, a preclinical immunogenicity risk management tool.
Collapse
Affiliation(s)
- Dilki Wickramarachchi
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Gregory Steeno
- Nonclinical Biostatistics, Early Clinical Development, Worldwide Research, Development & Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Zhiping You
- Nonclinical Biostatistics, Early Clinical Development, Worldwide Research, Development & Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Saleem Shaik
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Christopher Lepsy
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Li Xue
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA.
| |
Collapse
|
34
|
Mesothelin-Targeted Recombinant Immunotoxins for Solid Tumors. Biomolecules 2020; 10:biom10070973. [PMID: 32605175 PMCID: PMC7408136 DOI: 10.3390/biom10070973] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein normally expressed only on serosal surfaces, and not found in the parenchyma of vital organs. Many solid tumors also express MSLN, including mesothelioma and pancreatic adenocarcinoma. Due to this favorable expression profile, MSLN represents a viable target for directed anti-neoplastic therapies, such as recombinant immunotoxins (iToxs). Pre-clinical testing of MSLN-targeted iTox’s has yielded a strong body of evidence for activity against a number of solid tumors. This has led to multiple clinical trials, testing the safety and efficacy of the clinical leads SS1P and LMB-100. While promising clinical results have been observed, neutralizing anti-drug antibody (ADA) formation presents a major challenge to overcome in the therapeutic development process. Additionally, on-target, off-tumor toxicity from serositis and non-specific capillary leak syndrome (CLS) also limits the dose, and therefore, impact anti-tumor activity. This review summarizes existing pre-clinical and clinical data on MSLN-targeted iTox’s. In addition, we address the potential future directions of research to enhance the activity of these anti-tumor agents.
Collapse
|
35
|
Kawai A, Yamamoto Y, Yoshioka Y. Vaccine effect of recombinant single-chain hemagglutinin protein as an antigen. Heliyon 2020; 6:e04301. [PMID: 32637694 PMCID: PMC7327749 DOI: 10.1016/j.heliyon.2020.e04301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
Vaccination is one of the most effective interventions for preventing the spread of influenza viruses at the population level. Currently most influenza vaccines are produced by using embryonated chicken eggs, but alternative methods that achieve more rapid large-scale production are highly desirable for vaccines against both pandemic and seasonal influenza viruses. The use of recombinant hemagglutinin (HA), a key virus surface protein, as an antigen is an attractive candidate alternative approach, because of the potential for high protein yields and the ease of cloning new antigenic variants. Although fusion of HA with trimerization domains is needed to stabilize the trimeric structure and enhance the immunogenicity of the recombinant HA protein, whether the trimerization domains are immunogenic must be considered. Here, we generated recombinant multimeric HA without trimerization domains by using a short peptide linker, termed a single-chain HA (scHA), and evaluated scHAs as potential antigens for generating vaccines against influenza virus. Using mammalian cells, we succeeded in making three types of recombinant scHAs—two dimeric scHAs and a trimeric scHA. After immunization with aluminium salts in mice, one of the dimeric scHAs induced the greatest HA-specific IgG response among the scHAs and protected against virus challenge as strongly as the typically used trimeric HA containing a trimerization domain. We did not observe IgGs specific for the short peptide linker in mice immunized with the dimeric scHA, although IgGs specific for the trimerization domain occurred in mice immunized with the trimeric HA containing that domain. Furthermore, changing to another adjuvant did not diminish the utility of the dimeric scHA. These results suggest the potential usefulness of dimeric scHA as a vaccine antigen. We believe that single-chain antigens may represent new alternatives for production of recombinant antigen–based vaccines.
Collapse
Affiliation(s)
- Atsushi Kawai
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Yamamoto
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshioka
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- BIKEN Center for Innovative Vaccine Research and Development, The Research Foundation for Microbial Diseases of Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Corresponding author.
| |
Collapse
|
36
|
Mazor R, Pastan I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes, Consequences, and Mitigation. Front Immunol 2020; 11:1261. [PMID: 32695104 PMCID: PMC7333791 DOI: 10.3389/fimmu.2020.01261] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotoxins are cytolytic fusion proteins developed for cancer therapy, composed of an antibody fragment that binds to a cancer cell and a protein toxin fragment that kills the cell. Pseudomonas exotoxin A (PE) is a potent toxin that is used for the killing moiety in many immunotoxins. Moxetumomab Pasudotox (Lumoxiti) contains an anti-CD22 Fv and a 38 kDa portion of PE. Lumoxiti was discovered in the Laboratory of Molecular Biology at the U.S. National Cancer Institute and co-developed with Medimmune/AstraZeneca to treat hairy cell leukemia. In 2018 Lumoxiti was approved by the US Food and Drug Administration for the treatment of drug-resistant Hairy Cell Leukemia. Due to the bacterial origin of the killing moiety, immunotoxins containing PE are highly immunogenic in patients with normal immune systems, but less immunogenic in patients with hematologic malignancies, whose immune systems are often compromised. LMB-100 is a de-immunized variant of the toxin with a humanized antibody that targets mesothelin and a PE toxin that was rationally designed for diminished reactivity with antibodies and B cell receptors. It is now being evaluated in clinical trials for the treatment of mesothelioma and pancreatic cancer and is showing somewhat diminished immunogenicity compared to its un modified parental counterpart. Here we review the immunogenicity of the original and de-immunized PE immunotoxins in mice and patients, the development of anti-drug antibodies (ADAs), their impact on drug availability and their effect on clinical efficacy. Efforts to mitigate the immunogenicity of immunotoxins and its impact on immunogenicity will be described including rational design to identify, remove, or suppress B cell or T cell epitopes, and combination of immunotoxins with immune modulating drugs.
Collapse
Affiliation(s)
- Ronit Mazor
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
37
|
Bruins WSC, Zweegman S, Mutis T, van de Donk NWCJ. Targeted Therapy With Immunoconjugates for Multiple Myeloma. Front Immunol 2020; 11:1155. [PMID: 32636838 PMCID: PMC7316960 DOI: 10.3389/fimmu.2020.01155] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
The introduction of proteasome inhibitors (PI) and immunomodulatory drugs (IMiD) has markedly increased the survival of multiple myeloma (MM) patients. Also, the unconjugated monoclonal antibodies (mAb) daratumumab (anti-CD38) and elotuzumab (anti-SLAMF7) have revolutionized MM treatment given their clinical efficacy and safety, illustrating the potential of targeted immunotherapy as a powerful treatment strategy for MM. Nonetheless, most patients eventually develop PI-, IMiD-, and mAb-refractory disease because of the selection of resistant MM clones, which associates with a poor prognosis. Accordingly, these patients remain in urgent need of new therapies with novel mechanisms of action. In this respect, mAbs or mAb fragments can also be utilized as carriers of potent effector moieties to specifically target surface antigens on cells of interest. Such immunoconjugates have the potential to exert anti-MM activity in heavily pretreated patients due to their distinct and pleiotropic mechanisms of action. In addition, the fusion of highly cytotoxic compounds to mAbs decreases the off-target toxicity, thereby improving the therapeutic window. According to the effector moiety, immunoconjugates are classified into antibody-drug conjugates, immunotoxins, immunocytokines, or radioimmunoconjugates. This review will focus on the mechanisms of action, safety and efficacy of several promising immunoconjugates that are under investigation in preclinical and/or clinical MM studies. We will also include a discussion on combination therapy with immunoconjugates, resistance mechanisms, and future developments.
Collapse
Affiliation(s)
- Wassilis S C Bruins
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sonja Zweegman
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Tuna Mutis
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
38
|
Bioinformatics Predictions, Expression, Purification and Structural Analysis of the PE38KDEL-scfv Immunotoxin Against EPHA2 Receptor. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09901-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Kishimoto TK. Development of ImmTOR Tolerogenic Nanoparticles for the Mitigation of Anti-drug Antibodies. Front Immunol 2020; 11:969. [PMID: 32508839 PMCID: PMC7251066 DOI: 10.3389/fimmu.2020.00969] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022] Open
Abstract
The development of anti-drug antibodies (ADAs) is a common cause for treatment failure and hypersensitivity reactions for many biologics. The focus of this review is the development of ImmTOR, a platform technology designed to prevent the formation of ADAs that can be applied broadly across a wide variety of biologics by inducing immunological tolerance with ImmTOR nanoparticles encapsulating rapamycin. The induction of tolerance is antigen-specific and dependent on the incorporation of rapamycin in nanoparticles and the presence of the antigen at the time of administration of ImmTOR. Evidence for the induction of specific immune tolerance vs. general immune suppression is supported by the findings that: (1) ImmTOR induces regulatory T cells specific to the co-administered antigen; (2) tolerance can be transferred by adoptive transfer of splenocytes from treated animals to naïve recipients; (3) the tolerance is durable to subsequent challenge with antigen alone; and (4) animals tolerized to a specific antigen are capable of responding to an unrelated antigen. ImmTOR nanoparticles can be added to new or existing biologics without the need to modify or reformulate the biologic drug. The ability of ImmTOR to mitigate the formation of ADAs has been demonstrated for coagulation factor VIII in a mouse model of hemophilia A, an anti-TNFα monoclonal antibody in a mouse model of inflammatory arthritis, pegylated uricase in hyperuricemic mice and in non-human primates, acid alpha-glucosidase in a mouse model of Pompe disease, recombinant immunotoxin in a mouse model of mesothelioma, and adeno-associated vectors in a model of repeat dosing of gene therapy vectors in mice and in non-human primates. Human proof-of concept for the mitigation of ADAs has been demonstrated with SEL-212, a combination product consisting of ImmTOR + pegadricase, a highly immunogenic enzyme therapy for the treatment of gout. ImmTOR represents a promising approach to preventing the formation of ADAs to a broad range of biologic drugs.
Collapse
|
40
|
HER2-Specific Pseudomonas Exotoxin A PE25 Based Fusions: Influence of Targeting Domain on Target Binding, Toxicity, and In Vivo Biodistribution. Pharmaceutics 2020; 12:pharmaceutics12040391. [PMID: 32344762 PMCID: PMC7238247 DOI: 10.3390/pharmaceutics12040391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT6, can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing. In this study we expanded the investigation for an optimal targeting domain and constructed two fusion toxins where a HER2-binding affibody molecule, ZHER2:2891, or the dual-HER2-binding hybrid ZHER2:2891-ADAPT6 were used for cancer cell targeting. We found that both targeting domains conferred strong binding to HER2; both to the purified extracellular domain and to the HER2 overexpressing cell line SKOV3. This resulted in fusion toxins with high cytotoxic potency toward cell lines with high expression levels of HER2, with EC50 values between 10 and 100 pM. For extension of the plasma half-life, an albumin binding domain was also included. Intravenous injection of the fusion toxins into mice showed a profound influence of the targeting domain on biodistribution. Compared to previous results, with ADAPT6 as targeting domain, ZHER2:2891 gave rise to further extension of the plasma half-life and also shifted the clearance route of the fusion toxin from the liver to the kidneys. Collectively, the results show that the targeting domain has a major impact on uptake of PE25-based fusion toxins in different organs. The results also show that PE25-based fusion toxins with high affinity to HER2 do not necessarily increase the cytotoxicity beyond a certain point in affinity. In conclusion, ZHER2:2891 has the most favorable characteristics as targeting domain for PE25.
Collapse
|
41
|
Guo M, Zhang H, Zheng J, Liu Y. Glypican-3: A New Target for Diagnosis and Treatment of Hepatocellular Carcinoma. J Cancer 2020; 11:2008-2021. [PMID: 32127929 PMCID: PMC7052944 DOI: 10.7150/jca.39972] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is the second leading cause of cancer-related deaths worldwide, and hepatocellular carcinoma is the most common type. The pathogenesis of hepatocellular carcinoma is concealed, its progress is rapid, its prognosis is poor, and the mortality rate is high. Therefore, novel molecular targets for hepatocellular carcinoma early diagnosis and development of targeted therapy are critically needed. Glypican-3, a cell-surface glycoproteins in which heparan sulfate glycosaminoglycan chains are covalently linked to a protein core, is overexpressed in HCC tissues but not in the healthy adult liver. Thus, Glypican-3 is becoming a promising candidate for liver cancer diagnosis and immunotherapy. Up to now, Glypican-3 has been a reliable immunohistochemical marker for hepatocellular carcinoma diagnosis, and soluble Glypican-3 in serum has becoming a promising marker for liquid biopsy. Moreover, various immunotherapies targeting Glypican-3 have been developed, including Glypican-3 vaccines, anti- Glypican-3 immunotoxin and chimeric-antigen-receptor modified cells. In this review, we summarize and analyze the structure and physicochemical properties of Glypican-3 molecules, then review their biological functions and applications in clinical diagnosis, and explore the diagnosis and treatment strategies based on Glypican-3.
Collapse
Affiliation(s)
- Meng Guo
- National Key Laboratory of Medical Immunology &Institute of Immunology, Second Military Medical University, Shanghai, China
- Institute of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianming Zheng
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yangfang Liu
- Department of Pathology ,Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
42
|
Zhu S, Chen J, Xiong Y, Kamara S, Gu M, Tang W, Chen S, Dong H, Xue X, Zheng ZM, Zhang L. Novel EBV LMP-2-affibody and affitoxin in molecular imaging and targeted therapy of nasopharyngeal carcinoma. PLoS Pathog 2020; 16:e1008223. [PMID: 31905218 PMCID: PMC6964910 DOI: 10.1371/journal.ppat.1008223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/16/2020] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is closely linked to several human malignancies including endemic Burkitt’s lymphoma, Hodgkin’s lymphoma and nasopharyngeal carcinomas (NPC). Latent membrane protein 2 (LMP-2) of EBV plays a pivotal role in pathogenesis of EBV-related tumors and thus, is a potential target for diagnosis and targeted therapy of EBV LMP-2+ malignant cancers. Affibody molecules are developing as imaging probes and tumor-targeted delivery of small molecules. In this study, four EBV LMP-2-binding affibodies (ZEBV LMP-212, ZEBV LMP-2132, ZEBV LMP-2137, and ZEBV LMP-2142) were identified by screening a phage-displayed LMP-2 peptide library for molecular imaging and targeted therapy in EBV xenograft mice model. ZEBV LMP-2 affibody has high binding affinity for EBV LMP-2 and accumulates in mouse tumor derived from EBV LMP-2+ xenografts for 24 h after intravenous (IV) injection. Subsequent fusion of Pseudomonas exotoxin PE38KDEL to the ZEBV LMP-2 142 affibody led to production of Z142X affitoxin. This fused Z142X affitoxin exhibits high cytotoxicity specific for EBV+ cells in vitro and significant antitumor effect in mice bearing EBV+ tumor xenografts by IV injection. The data provide the proof of principle that EBV LMP-2-speicifc affibody molecules are useful for molecular imaging diagnosis and have potentials for targeted therapy of LMP-2-expressing EBV malignancies. Molecular imaging diagnosis and targeted therapy have been successfully used for several types of tumors, but not yet applied to diagnose or treat EBV-associated NPC. Affibody molecules are small proteins engineered to bind to a large number of target proteins with high affinity, and therefore, can be developed as potential biopharmaceutical drugs for molecular diagnosis and therapeutic applications. In the present study, we screened and characterized EBV LMP-2-specific affibodies and evaluated their usage in molecular imaging of LMP-2 expressing cells and EBV LMP-2 tumor-bearing mice. Subsequently, we engineered and obtained an EBV LMP-2 affitoxin based on EBV LMP-2-binding affibodies and demonstrated its targeted cytotoxicity for EBV+ cell lines in vitro and in vivo. Our data indicate that the EBV LMP-2-specific affibody and its derived affitoxin are useful for diagnosis of LMP-2 expressing cells and targeted therapy of EBV-derived, LMP-2+ malignancies.
Collapse
Affiliation(s)
- Shanli Zhu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Jun Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Yirong Xiong
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Saidu Kamara
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Meiping Gu
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Wanlin Tang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Shao Chen
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Haiyan Dong
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Xiangyang Xue
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- * E-mail: (ZMZ); (LZ)
| | - Lifang Zhang
- Institute of Molecular Virology and Immunology, Department of Microbiology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, PR China
- * E-mail: (ZMZ); (LZ)
| |
Collapse
|
43
|
Cao L, Li Q, Tong Z, Xing Y, Xu K, Yijia Wang J, Li W, Zhao J, Zhao L, Hong Z. HER2-specific immunotoxins constructed based on single-domain antibodies and the improved toxin PE24X7. Int J Pharm 2020; 574:118939. [DOI: 10.1016/j.ijpharm.2019.118939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/11/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
|
44
|
Li Q, Ning X, Wang Y, Zhu Q, Guo Y, Li H, Zhou Y, Kou Z. The Integrity of α-β-α Sandwich Conformation Is Essential for a Novel Adjuvant TFPR1 to Maintain Its Adjuvanticity. Biomolecules 2019; 9:biom9120869. [PMID: 31842458 PMCID: PMC6995627 DOI: 10.3390/biom9120869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
TFPR1 is a novel peptide vaccine adjuvant we recently discovered. To define the structural basis and optimize its application as an adjuvant, we designed three different truncated fragments that have removed dominant B epitopes on TFPR1, and evaluated their capacity to activate bone marrow-derived dendritic cells and their adjuvanticity. Results demonstrated that the integrity of an α-β-α sandwich conformation is essential for TFPR1 to maintain its immunologic activity and adjuvanticity. We obtained a functional truncated fragment TFPR-ta ranging from 40-168 aa of triflin that has similar adjuvanticity as TFPR1 but with 2-log fold lower immunogenicity. These results demonstrated a novel approach to evaluate and improve the activity of protein-based vaccine adjuvant.
Collapse
Affiliation(s)
- Qiao Li
- Beijing Institute of Microbiology and Epidemiology, Anhui Medical University, Hefei 230032, China; (Q.L.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Xiuzhe Ning
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Yuepeng Wang
- Beijing Institute of Microbiology and Epidemiology, Anhui Medical University, Hefei 230032, China; (Q.L.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Qing Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
| | - Zhihua Kou
- Beijing Institute of Microbiology and Epidemiology, Anhui Medical University, Hefei 230032, China; (Q.L.); (Y.W.)
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; (X.N.); (Q.Z.); (Y.G.); (H.L.); (Y.Z.)
- Correspondence: ; Tel.: +86-10-63858045
| |
Collapse
|
45
|
Critical Issues in the Development of Immunotoxins for Anticancer Therapy. J Pharm Sci 2019; 109:104-115. [PMID: 31669121 DOI: 10.1016/j.xphs.2019.10.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
Immunotoxins (ITs) are attractive anticancer modalities aimed at cancer-specific delivery of highly potent cytotoxic protein toxins. An IT consists of a targeting domain (an antibody, cytokine, or another cell-binding protein) chemically conjugated or recombinantly fused to a highly cytotoxic payload (a bacterial and plant toxin or human cytotoxic protein). The mode of action of ITs is killing designated cancer cells through the effector function of toxins in the cytosol after cellular internalization via the targeted cell-specific receptor-mediated endocytosis. Although numerous ITs of diverse structures have been tested in the past decades, only 3 ITs-denileukin diftitox, tagraxofusp, and moxetumomab pasudotox-have been clinically approved for treating hematological cancers. No ITs against solid tumors have been approved for clinical use. In this review, we discuss critical research and development issues associated with ITs that limit their clinical success as well as strategies to overcome these obstacles. The issues include off-target and on-target toxicities, immunogenicity, human cytotoxic proteins, antigen target selection, cytosolic delivery efficacy, solid-tumor targeting, and developability. To realize the therapeutic promise of ITs, novel strategies for safe and effective cytosolic delivery into designated tumors, including solid tumors, are urgently needed.
Collapse
|
46
|
Gorovits B, Peng K, Kromminga A. Current Considerations on Characterization of Immune Response to Multi-Domain Biotherapeutics. BioDrugs 2019; 34:39-54. [DOI: 10.1007/s40259-019-00389-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opin Drug Deliv 2019; 16:1113-1131. [DOI: 10.1080/17425247.2019.1662785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sadia Sikder
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Vrinda Gote
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Meshal Alshamrani
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Jeff Sicotte
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Dhananjay Pal
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| |
Collapse
|
48
|
Ibáñez-Pérez R, Guerrero-Ochoa P, Al-Wasaby S, Navarro R, Tapia-Galisteo A, De Miguel D, Gonzalo O, Conde B, Martínez-Lostao L, Hurtado-Guerrero R, Sanz L, Anel A. Anti-tumoral potential of a human granulysin-based, CEA-targeted cytolytic immunotoxin. Oncoimmunology 2019; 8:1641392. [PMID: 31646080 DOI: 10.1080/2162402x.2019.1641392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
Granulysin is a protein present in the granules of human cytotoxic T lymphocytes (CTL) and natural killer (NK) cells, with cytolytic activity against microbes and tumors. Previous work demonstrated the therapeutic effect of intratumoral injection of recombinant granulysin using in vivo models of breast cancer and multiple myeloma. In the present work we have developed a granulysin gene fusion to the anti-carcinoembryonic antigen (CEA/CEACAM5) single chain Fv antibody fragment MFE23. Both granulysin and the granulysin-based immunotoxin were expressed in Pichia pastoris. The immunotoxin specifically recognized CEA, purified or expressed on the cell surface. Moreover, the bioactivity of the immunotoxin against several CEA+ cell lines was higher than that of granulysin alone. Granulysin and the immunotoxin were tested as a treatment in in vivo xenograft models in athymic mice. When injected intratumorally, both granulysin and the immunotoxin were able to inhibit tumor growth. Furthermore, systemic administration of the immunotoxin demonstrated a decrease in tumor growth in a CEA+ tumor-bearing mouse model, whereas granulysin did not exhibit a therapeutic effect. This is the first granulysin-based immunotoxin and the present work constitutes the proof of concept of its therapeutic potential.
Collapse
Affiliation(s)
- Raquel Ibáñez-Pérez
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Patricia Guerrero-Ochoa
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Sameer Al-Wasaby
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Rocío Navarro
- Molecular Immunology Unit, "Puerta de Hierro" University Hospital, Majadahonda, Madrid, Spain
| | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, "Puerta de Hierro" University Hospital, Majadahonda, Madrid, Spain
| | - Diego De Miguel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Oscar Gonzalo
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Blanca Conde
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| | - Luis Martínez-Lostao
- Immunology Department, "Lozano Blesa" University Clinical Hospital, Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Biocomputation and Physics of Complex Systems Institute (BIFI), University of Zaragoza, Zaragoza, Spain.,ARAID Foundation, Zaragoza, Spain
| | - Laura Sanz
- Molecular Immunology Unit, "Puerta de Hierro" University Hospital, Majadahonda, Madrid, Spain
| | - Alberto Anel
- Apoptosis, Immunity and Cancer Group, University of Zaragoza/Aragón Health Research Institute (IIS-Aragón), Zaragoza, Spain
| |
Collapse
|
49
|
Siqueira RAGB, Calabria PAL, Caporrino MC, Tavora BCLF, Barbaro KC, Faquim-Mauro EL, Della-Casa MS, Magalhães GS. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell. Toxicon 2019; 168:40-48. [PMID: 31251993 DOI: 10.1016/j.toxicon.2019.06.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Venoms of spiders and snakes contain toxins extremely active and, thus, provide a natural source for the development of new biotechnological tools. Among the diversity of toxins present in the venom of spiders from genus Loxosceles, the phospholipases D (PLDs) show high hydrolytic activity upon lysophosphatidylcholine (LPC) and sphingomyelin (SM), generating bioactive phospholipids such as cyclic phosphatidic acid (cPA). Since this mediator has been shown to play a major role in complex signaling pathways, including inhibition of tumor cells, the PLDs may hold the key to learn how toxins could be used for therapeutic purposes. However, the strong platelet aggregation of PLDs and their lack of selectivity impose a major limitation. On the other hand, disintegrins present in the venoms of Viperidae snakes are a potent inhibitor of platelet aggregation and possess high affinity and specificity to molecules called integrins that are highly expressed in some tumor cells, such as murine melanoma B16F10. Therefore, disintegrins might be suitable molecules to carry the PLDs to the malignant cells, so both toxins may work synergistically to eliminate these cells. Thus, in this work, a recombinant PLD from Loxosceles gaucho spider was recombinantly fused to a disintegrin from Echis carinatus snake to form a hybrid toxin called Rechistatin. This recombinant toxin was successfully expressed in bacteria, showed binding activity in B16F10 murine melanoma cells and exerted a synergistic cytotoxicity effect on these cells. Therefore, the approach presented in this work may represent a new strategy to explore new potential applications for spider PLDs.
Collapse
Affiliation(s)
- Raquel A G B Siqueira
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Paula A L Calabria
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Maria C Caporrino
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Bianca C L F Tavora
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Katia C Barbaro
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Maisa S Della-Casa
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Geraldo S Magalhães
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Frøysnes IS, Andersson Y, Larsen SG, Davidson B, Øien JMT, Julsrud L, Fodstad Ø, Dueland S, Flatmark K. ImmunoPeCa trial: Long-term outcome following intraperitoneal MOC31PE immunotoxin treatment in colorectal peritoneal metastasis. Eur J Surg Oncol 2019; 47:134-138. [PMID: 31036394 DOI: 10.1016/j.ejso.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The ImmunoPeCa trial investigated the use of intraperitoneal MOC31PE immunotoxin as a novel therapeutic principle for the treatment of peritoneal metastasis from colorectal cancer (PM-CRC). We here report long-term outcome from the trial. METHODS This was a dose-finding trial aiming to evaluate safety and toxicity (primary endpoint) upon a single dose of intraperitoneal MOC31PE in patients with PM-CRC undergoing CRS-HIPEC with mitomycin C. Overall survival (OS) and disease-free survival (DFS) were secondary endpoints. Twenty-one patients received the study drug at four dose levels on the first postoperative day, including six patients constituting an expansion cohort. RESULTS With a 34-month follow-up, the median OS was not reached and the estimated 3-year OS was 78%. Median DFS for all patients was 21 months and the 3-year DFS was 33%, with a median follow-up of 31 months. When excluding patients with potential favorable characteristics from the analysis (n = 4), the median DFS was 13 months and the 3-year OS 72%. CONCLUSIONS The promising long-term outcome combined with low systemic absorbance, high drug concentration and cytotoxic activity in peritoneal fluid support further investigations of clinical efficacy.
Collapse
Affiliation(s)
- Ida S Frøysnes
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yvonne Andersson
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Stein G Larsen
- Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ben Davidson
- Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Lars Julsrud
- Department of Radiology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Øystein Fodstad
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Dueland
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kjersti Flatmark
- Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|