1
|
Zhang Y, Feng X, Chen J, Liu J, Wu J, Tan H, Mi Z, Rong P. Controversial role of ILC3s in intestinal diseases: A novelty perspective on immunotherapy. Front Immunol 2023; 14:1134636. [PMID: 37063879 PMCID: PMC10090672 DOI: 10.3389/fimmu.2023.1134636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
ILC3s have been identified as crucial immune regulators that play a role in maintaining host homeostasis and modulating the antitumor response. Emerging evidence supports the idea that LTi cells play an important role in initiating lymphoid tissue development, while other ILC3s can promote host defense and orchestrate adaptive immunity, mainly through the secretion of specific cytokines and crosstalk with other immune cells or tissues. Additionally, dysregulation of ILC3-mediated overexpression of cytokines, changes in subset abundance, and conversion toward other ILC subsets are closely linked with the occurrence of tumors and inflammatory diseases. Regulation of ILC3 cytokines, ILC conversion and LTi-induced TLSs may be a novel strategy for treating tumors and intestinal or extraintestinal inflammatory diseases. Herein, we discuss the development of ILCs, the biology of ILC3s, ILC plasticity, the correlation of ILC3s and adaptive immunity, crosstalk with the intestinal microenvironment, controversial roles of ILC3s in intestinal diseases and potential applications for treatment.
Collapse
Affiliation(s)
- Yunshu Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuefei Feng
- Department of Government & Public Administration, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Juan Chen
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianmin Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Ze Mi, ; Pengfei Rong,
| |
Collapse
|
2
|
Honerlagen H, Reyer H, Segelke D, Müller CBM, Prahl MC, Ponsuksili S, Trakooljul N, Reinsch N, Kuhla B, Wimmers K. Ruminal background of predisposed milk urea (MU) concentration in Holsteins. Front Microbiol 2022; 13:939711. [PMID: 36177471 PMCID: PMC9513179 DOI: 10.3389/fmicb.2022.939711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Efforts to reduce nitrogen (N) emissions are currently based on the optimization of dietary- N supply at average herd N requirements. The implementation of the considerable individual differences and predispositions in N- use efficiency and N- excretion in breeding programs is hampered by the difficulty of data collection. Cow individual milk urea (MU) concentration has been proposed as an easy-to-measure surrogate trait, but recent studies questioned its predictive power. Therefore, a deeper understanding of the biological mechanisms underlying predisposed higher (HMUg) or lower (LMUg) MU concentration in dairy cows is needed. Considering the complex N- metabolism in ruminants, the distinction between HMUg and LMUg could be based on differences in (i) the rumen microbial community, (ii) the host-specific transcription processes in the rumen villi, and (iii) the host-microbe interaction in the rumen. Therefore, rumen fluid and rumen epithelial samples from 10 HMUg and 10 LMUg cows were analyzed by 16S sequencing and HiSeq sequencing. In addition, the effect of dietary-N reduction on ruminal shifts was investigated in a second step. In total, 10 differentially abundant genera (DAG) were identified between HMUg and LMUg cows, elucidating greater abundances of ureolytic Succinivibrionaceae_UCG-002 and Ruminococcaceae_unclassified in LMUg animals and enhanced occurrences of Butyvibrio in HMUg cows. Differential expression analysis revealed genes of the bovine Major Histocompatibility Complex (BOLA genes) as well as MX1, ISG15, and PRSS2 displaying candidates of MU predisposition that further attributed to enhanced immune system activities in LMUg cows. A number of significant correlations between microbial genera and host transcript abundances were uncovered, including strikingly positive correlations of BOLA-DRA transcripts with Roseburia and Lachnospiraceae family abundances that might constitute particularly prominent microbial-host interplays of MU predisposition. The reduction of feed-N was followed by 18 DAG in HMUg and 19 DAG in LMUg, depicting pronounced interest on Shuttleworthia, which displayed controversial adaption in HMUg and LMUg cows. Lowering feed-N further elicited massive downregulation of immune response and energy metabolism pathways in LMUg. Considering breeding selection strategies, this study attributed information content to MU about predisposed ruminal N-utilization in Holstein-Friesians.
Collapse
Affiliation(s)
- Hanne Honerlagen
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Dierck Segelke
- IT-Solutions for Animal Production, Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden, Germany
| | - Carolin Beatrix Maria Müller
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Marie Christin Prahl
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Norbert Reinsch
- Research Institute for Farm Animal Biology (FBN), Institute of Genetics and Biometry, Dummerstorf, Germany
| | - Björn Kuhla
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology “Oskar Kellner”, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Bourebaba Y, Marycz K, Mularczyk M, Bourebaba L. Postbiotics as potential new therapeutic agents for metabolic disorders management. Biomed Pharmacother 2022; 153:113138. [PMID: 35717780 DOI: 10.1016/j.biopha.2022.113138] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/07/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
The prevalence of obesity, diabetes, non-alcoholic fatty liver disease, and related metabolic disorders has been steadily increasing in the past few decades. Apart from the establishment of caloric restrictions in combination with improved physical activity, there are no effective pharmacological treatments for most metabolic disorders. Many scientific-studies have described various beneficial effects of probiotics in regulating metabolism but others questioned their effectiveness and safety. Postbiotics are defined as preparation of inanimate microorganisms, and/or their components, which determine their safety of use and confers a health benefit to the host. Additionally, unlike probiotics postbiotics do not require stringent production/storage conditions. Recently, many lines of evidence demonstrated that postbiotics may be beneficial in metabolic disorders management via several potential effects including anti-inflammatory, antibacterial, immunomodulatory, anti-carcinogenic, antioxidant, antihypertensive, anti-proliferative, and hypocholesterolaemia properties that enhance both the immune system and intestinal barrier functions by acting directly on specific tissues of the intestinal epithelium, but also on various organs or tissues. In view of the many reports that demonstrated the high biological activity and safety of postbiotics, we summarized in the present review the current findings reporting the beneficial effects of various probiotics derivatives for the management of metabolic disorders and related alterations.
Collapse
Affiliation(s)
- Yasmina Bourebaba
- Laboratoire de Biomathématique, Biophysique, Biochimie et Scientométrie (L3BS), Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000 Bejaia, Algeria.
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; Department of Medicine and Epidemiology, UC Davis School of Veterinary Medicine, Davis, CA 95516, USA
| | - Malwina Mularczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wrocław, Poland; International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114 Wisznia Mała, Poland.
| |
Collapse
|
4
|
Akimova E, Gassner FJ, Greil R, Zaborsky N, Geisberger R. Detecting Bacterial-Human Lateral Gene Transfer in Chronic Lymphocytic Leukemia. Int J Mol Sci 2022; 23:1094. [PMID: 35163016 PMCID: PMC8835664 DOI: 10.3390/ijms23031094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a very common and mostly incurable B-cell malignancy. Recent studies revealed high interpatient mutational heterogeneity and worsened therapy response and survival of patients with complex genomic aberrations. In line with this, a better understanding of the underlying mechanisms of specific genetic aberrations would reveal new prognostic factors and possible therapeutic targets. It is known that chromosomal rearrangements including DNA insertions often play a role during carcinogenesis. Recently it was reported that bacteria (microbiome)-human lateral gene transfer occurs in somatic cells and is enriched in cancer samples. To further investigate this mechanism in CLL, we analyzed paired-end RNA sequencing data of 45 CLL patients and 9 healthy donors, in which we particularly searched for bacterial DNA integrations into the human somatic genome. Applying the Burrows-Wheeler aligner (BWA) first on a human genome and then on bacterial genome references, we differentiated between sequencing reads mapping to the human genome, to the microbiome or to bacterial integrations into the human genome. Our results indicate that CLL samples featured bacterial DNA integrations more frequently (approx. two-fold) compared to normal samples, which corroborates the latest findings in other cancer entities. Moreover, we determined common integration sites and recurrent integrated bacterial transcripts. Finally, we investigated the contribution of bacterial integrations to oncogenesis and disease progression.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/growth & development
- Case-Control Studies
- Chromosome Aberrations
- Gene Transfer, Horizontal
- Genome, Bacterial
- Genome, Human
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/microbiology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Microbiota
Collapse
Affiliation(s)
- Ekaterina Akimova
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
- Department of Biosciences, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Franz Josef Gassner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| | - Roland Geisberger
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute—Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, Cancer Cluster Salzburg, 5020 Salzburg, Austria; (E.A.); (F.J.G.); (R.G.); (N.Z.)
| |
Collapse
|
5
|
Erbescu A, Papuc SM, Budisteanu M, Arghir A, Neagu M. Re-emerging concepts of immune dysregulation in autism spectrum disorders. Front Psychiatry 2022; 13:1006612. [PMID: 36339838 PMCID: PMC9626859 DOI: 10.3389/fpsyt.2022.1006612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by communication and social interaction deficits, and by restricted interests and stereotyped, repetitive behavior patterns. ASD has a strong genetic component and a complex architecture characterized by the interplay of rare and common genetic variants. Recently, increasing evidence suggest a significant contribution of immune system dysregulation in ASD. The present paper reviews the latest updates regarding the altered immune landscape of this complex disorder highlighting areas with potential for biomarkers discovery as well as personalization of therapeutic approaches. Cross-talk between the central nervous system and immune system has long been envisaged and recent evidence brings insights into the pathways connecting the brain to the immune system. Disturbance of cytokine levels plays an important role in the establishment of a neuroinflammatory milieu in ASD. Several other immune molecules involved in antigen presentation and inflammatory cellular phenotypes are also at play in ASD. Maternal immune activation, the presence of brain-reactive antibodies and autoimmunity are other potential prenatal and postnatal contributors to ASD pathophysiology. The molecular players involved in oxidative-stress response and mitochondrial system function, are discussed as contributors to the pro-inflammatory pattern. The gastrointestinal inflammation pathways proposed to play a role in ASD are also discussed. Moreover, the body of evidence regarding some of the genetic factors linked to the immune system dysregulation is reviewed and discussed. Last, but not least, the epigenetic traits and their interactions with the immune system are reviewed as an expanding field in ASD research. Understanding the immune-mediated pathways that influence brain development and function, metabolism, and intestinal homeostasis, may lead to the identification of robust diagnostic or predictive biomarkers for ASD individuals. Thus, novel therapeutic approaches could be developed, ultimately aiming to improve their quality of life.
Collapse
Affiliation(s)
- Alina Erbescu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania
| | | | - Magdalena Budisteanu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Prof. Dr. Alex. Obregia Clinical Hospital of Psychiatry, Bucharest, Romania.,Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Aurora Arghir
- Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Monica Neagu
- Victor Babes National Institute of Pathology, Bucharest, Romania.,Faculty of Biology, Doctoral School, University of Bucharest, Bucharest, Romania.,Colentina Clinical Hospital, Bucharest, Romania
| |
Collapse
|
6
|
Grieves LA, Gloor GB, Bernards MA, MacDougall-Shackleton EA. Preen gland microbiota covary with major histocompatibility complex genotype in a songbird. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210936. [PMID: 34754501 PMCID: PMC8493191 DOI: 10.1098/rsos.210936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/13/2021] [Indexed: 05/30/2023]
Abstract
Pathogen-mediated selection at the major histocompatibility complex (MHC) is thought to promote MHC-based mate choice in vertebrates. Mounting evidence implicates odour in conveying MHC genotype, but the underlying mechanisms remain uncertain. MHC effects on odour may be mediated by odour-producing symbiotic microbes whose community structure is shaped by MHC genotype. In birds, preen oil is a primary source of body odour and similarity at MHC predicts similarity in preen oil composition. Hypothesizing that this relationship is mediated by symbiotic microbes, we characterized MHC genotype, preen gland microbial communities and preen oil chemistry of song sparrows (Melospiza melodia). Consistent with the microbial mediation hypothesis, pairwise similarity at MHC predicted similarity in preen gland microbiota. Counter to this hypothesis, overall microbial similarity did not predict chemical similarity of preen oil. However, permutation testing identified a maximally predictive set of microbial taxa that best reflect MHC genotype, and another set of taxa that best predict preen oil chemical composition. The relative strengths of relationships between MHC and microbes, microbes and preen oil, and MHC and preen oil suggest that MHC may affect host odour both directly and indirectly. Thus, birds may assess MHC genotypes based on both host-associated and microbially mediated odours.
Collapse
Affiliation(s)
- L. A. Grieves
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - G. B. Gloor
- Department of Biochemistry, University of Western Ontario, London, ON, Canada N6A 5C1
| | - M. A. Bernards
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | | |
Collapse
|
7
|
Kononova S, Litvinova E, Vakhitov T, Skalinskaya M, Sitkin S. Acceptive Immunity: The Role of Fucosylated Glycans in Human Host-Microbiome Interactions. Int J Mol Sci 2021; 22:ijms22083854. [PMID: 33917768 PMCID: PMC8068183 DOI: 10.3390/ijms22083854] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The growth in the number of chronic non-communicable diseases in the second half of the past century and in the first two decades of the new century is largely due to the disruption of the relationship between the human body and its symbiotic microbiota, and not pathogens. The interaction of the human immune system with symbionts is not accompanied by inflammation, but is a physiological norm. This is achieved via microbiota control by the immune system through a complex balance of pro-inflammatory and suppressive responses, and only a disturbance of this balance can trigger pathophysiological mechanisms. This review discusses the establishment of homeostatic relationships during immune system development and intestinal bacterial colonization through the interaction of milk glycans, mucins, and secretory immunoglobulins. In particular, the role of fucose and fucosylated glycans in the mechanism of interactions between host epithelial and immune cells is discussed.
Collapse
Affiliation(s)
- Svetlana Kononova
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence:
| | - Ekaterina Litvinova
- Scientific-Research Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia;
- Siberian Federal Scientific Center of Agro-BioTechnologies, Russian Academy of Sciences, Krasnoobsk, 633501 Novosibirsk, Russia
| | - Timur Vakhitov
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
| | - Maria Skalinskaya
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Stanislav Sitkin
- Department of Microbiology, State Research Institute of Highly Pure Biopreparations, 197110 St. Petersburg, Russia; (T.V.); (M.S.); (S.S.)
- Department of Internal Diseases, Gastroenterology and Dietetics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, 197341 St. Petersburg, Russia
| |
Collapse
|
8
|
Kaleviste E, Rühlemann M, Kärner J, Haljasmägi L, Tserel L, Org E, Trebušak Podkrajšek K, Battelino T, Bang C, Franke A, Peterson P, Kisand K. IL-22 Paucity in APECED Is Associated With Mucosal and Microbial Alterations in Oral Cavity. Front Immunol 2020; 11:838. [PMID: 32477345 PMCID: PMC7232598 DOI: 10.3389/fimmu.2020.00838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) is caused by recessive mutations in the AIRE gene. The hallmark of the disease is the production of highly neutralizing autoantibodies against type I interferons and IL-22. Considering the importance of IL-22 in maintaining mucosal barrier integrity and shaping its microbial community, we sought to study potential changes in the oral cavity in this model of human IL-22 paucity. We found that besides known Th22 cell deficiency, APECED patients have significantly fewer circulating MAIT cells with potential IL-22 secreting capacity. Saliva samples from APECED patients revealed local inflammation, the presence of autoantibodies against IFN-α and IL-22, and alterations in the oral microbiota. Moreover, gene expression data of buccal biopsy samples suggested impaired antimicrobial response and cell proliferation, both of which are processes regulated by IL-22. Our data complement the knowledge gained from mouse models and support the concept of IL-22 being a critical homeostatic cytokine in human mucosal sites.
Collapse
Affiliation(s)
- Epp Kaleviste
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Jaanika Kärner
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liis Haljasmägi
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Liina Tserel
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Elin Org
- Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | | | - Tadej Battelino
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Corinna Bang
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Pärt Peterson
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Kai Kisand
- Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Kim HJ, Lee SH, Hong SJ. Antibiotics-Induced Dysbiosis of Intestinal Microbiota Aggravates Atopic Dermatitis in Mice by Altered Short-Chain Fatty Acids. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:137-148. [PMID: 31743970 PMCID: PMC6875482 DOI: 10.4168/aair.2020.12.1.137] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Alterations in the intestinal microbiota in early life affects the development of atopic dermatitis (AD) in humans. This study aimed to further investigate the effects of gut dysbiosis in early life in an ovalbumin (OVA)-induced mouse model of AD. METHODS The AD mouse model was developed by serial OVA sensitization and mice were treated with an antibiotic cocktail in their drinking water for 2 weeks before primary sensitization. Probiotics (Lactobacillus rhamnosus, 1 × 10⁹ CFU) or 100 μL of fresh fecal supernatant were orally administered daily from 1 week before the first sensitization until the end of the study. RESULTS The AD mice which received antibiotics had significantly aggravated phenotypes, including clinical score, transepidermal water loss, and histopathology, compared to those treated with healthy feces or probiotics. Total systemic immunoglobulin E production and skin interleukin (IL) 4 levels were significantly increased in the antibiotic-treated mice compared to the other groups. Antibiotic treatment also increased the levels of IL17 and group 3 innate lymphoid cells (ILC3) in the gut and significantly suppressed the production of short-chain fatty acids (SCFAs) and decreased the number FOXP3⁺ cells. CONCLUSIONS Our results suggest that the status of the gut microbiota in early life in the mouse may play a crucial role in AD development through intestinal SCFA production through regulate the numbers of CD4⁺IL17⁺/CD4⁺FOXP3⁺ regulatory T cells and ILC3s.
Collapse
Affiliation(s)
- Ha Jung Kim
- Department of Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Seung Hwa Lee
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Environmental Health Center, Asan Medical Center, Seoul, Korea.
| |
Collapse
|
10
|
Huang CC, Wu PW, Chen CL, Wang CH, Lee TJ, Tsai CN, Chiu CH. IL-17A expression in the adenoid tissue from children with sleep disordered breathing and its association with pneumococcal carriage. Sci Rep 2018; 8:16770. [PMID: 30425273 PMCID: PMC6233154 DOI: 10.1038/s41598-018-35169-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Tonsil and adenoid-tissue hypertrophy (AH) is the most common cause of pediatric sleep-disordered breathing (SDB), with AH possibly initiated by repeated exposure to infectious agents or allergens. Here, we evaluated IL-17A activity in adenoid tissue from children with SDB and its association with AH and pneumococcal carriage. Thirty-five children (aged 3-12 years) with SDB and receiving adenoidectomy and tonsillectomy were enrolled. During surgery, nasopharyngeal carriage was determined by bacterial culture and multiplex PCR via nasopharyngeal swab, and adenoid samples were collected. IL-17A and associated cytokine expression was evaluated by real-time PCR and western blotting. The mRNA analysis showed that IL-17A level, IL-17A:IL-10 ratio, and RAR-related orphan receptor-γt:forkhead box P3 ratio were significantly higher in adenoid tissues with AH, as were IL-17A level and IL-17A:IL-10 ratio in adenoid tissues with pneumococcal carriage. Additionally, pneumococcal carriage was more common in nasopharyngeal adenoids from patients without AH than those with AH. IL-17A was upregulated in adenoid tissues from patients with AH and with pneumococcal carriage. These results suggested that pneumococcal carriage initiates an IL-17A-mediated immune response in nasopharyngeal adenoids, which might be associated with AH in patients with SDB.
Collapse
Affiliation(s)
- Chien-Chia Huang
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Wen Wu
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital and Chang Gung University, Keelung, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Hua Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital and Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ta-Jen Lee
- Division of Rhinology, Department of Otolaryngology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan. .,Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Zhou J, He F, Yang F, Yang Z, Xie Y, Zhou S, Liang J, Xu R, Wang Y, Guo H, Zhou W, Wang M. Increased stool immunoglobulin A level in children with autism spectrum disorders. RESEARCH IN DEVELOPMENTAL DISABILITIES 2018; 82:90-94. [PMID: 29102384 DOI: 10.1016/j.ridd.2017.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND There are currently no effective treatments for the core symptoms of autism spectrum disorders (ASDs). However, alleviating gastrointestinal (GI) problems, which are prevalent in ASD patients, can significantly improve the core symptoms of autism. Previous studies have associated GI disorders in ASD patients with abnormal gut microbiota, although few disease-related microorganisms have been identified. Considering that the gut microbiome affects the intestinal immune system and the patient's behavior, and that immunoglobulin A (IgA) is the main antibody secreted by intestinal immune cells, we investigated stool IgA content as a means of understanding the gut immune status of ASD patients. The IgA level in gut can be used as factor to know the Gene x Environment interactions and diagnose of ASDs. METHODS We enrolled 43 ASD patients and 31 gender- and age-matched healthy children. Stool IgA content was measured by enzyme-linked immunosorbent assay. RESULTS We found that IgA levels were significantly higher in stool samples from ASD patients than from healthy children (p<0.05, Student's t test). CONCLUSIONS This finding may suggest the presence of gut immune abnormalities in ASD patients. Further studies with larger patient and control cohorts will be necessary to determine whether stool IgA levels can be used as a biomarker for ASDs.
Collapse
Affiliation(s)
- Jiaxiu Zhou
- Division of Psychology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Fusheng He
- Autism Research Center, Shenzhen Following Precision Medical Research Institute, Shenzhen, Guangdong, China
| | - Feng Yang
- Division of Speech Therapy, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Zheng Yang
- Shenzhen Center for Chronic Disease Prevention and Treatment, China
| | - Yingjun Xie
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Third Affiliated Hospital of Guangzhou Medical University, China
| | - Shaoming Zhou
- Division of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jingwen Liang
- Clinical Laboratory, Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Ruihuan Xu
- Clinical Laboratory, Longgang Central Hospital of Shenzhen, Guangdong, China
| | - Yan Wang
- Shenzhen Imuno Biotech Co. Ltd, China
| | - Hailiang Guo
- Autism Research Center, Shenzhen Following Precision Medical Research Institute, Shenzhen, Guangdong, China; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China.
| | - Wenhao Zhou
- Autism Research Center, Shenzhen Following Precision Medical Research Institute, Shenzhen, Guangdong, China; Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China; Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Key Laboratory of Neonatal Diseases, National Health and Family Planning Commission, Children's Hospital of Fudan University, Shanghai, China.
| | - Mingbang Wang
- Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Xiamen Branch, Children's Hospital of Fudan University, Xiamen, Fujian, China.
| |
Collapse
|
12
|
Manji F, Dahlen G, Fejerskov O. Caries and Periodontitis: Contesting the Conventional Wisdom on Their Aetiology. Caries Res 2018; 52:548-564. [PMID: 29694978 DOI: 10.1159/000488948] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/27/2018] [Indexed: 01/15/2023] Open
Abstract
We review the literature on the oral microbiome and the role of the microbiota in the development of dental caries and periodontitis. While most research has been focused on identifying one or more specific determinants of these diseases, the results have provided limited predictive value and have not been able to explain the variation in the distribution of these diseases observed in epidemiological or clinical studies. Drawing on existing knowledge about the nature of the oral microbiota, we suggest that a stochastic model based on the Weiner process provides simple and parsimonious explanations for the pathogenesis of both caries and periodontitis, making few assumptions, and providing explanations for phenomena that have hitherto proved difficult, or have required complex arguments, to explain. These diseases occur as the result of the dental hard tissues and periodontal tissues integrating the random "noise" caused by normal metabolic activities of commensal microorganisms in the dental biofilm. The processes that result in the progression and regression of caries and periodontitis may be considered as "natural," rather than pathological, even if, when left unchecked over long periods of time, they can result in the development of pathologies. The likelihood of progression or regression can be influenced by other determinants, but these processes will nevertheless occur in the absence of such influences. The distributional characteristics of the model approximate the findings of epidemiological studies indicating that, for both caries and periodontitis, there will be few sites affected in the early period after the eruption of the permanent dentition, but in those older there is an almost linear relationship with increasing age; furthermore, the longer a site survives without being affected, the less likely that it will be affected. We discuss the clinical and public health importance of these findings.
Collapse
Affiliation(s)
- Firoze Manji
- Daraja Press, CSP Mozart, Montreal, Québec, Canada
| | - Gunnar Dahlen
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ole Fejerskov
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus,
| |
Collapse
|
13
|
Affiliation(s)
- Sebastian Amigorena
- INSERM U932, Centre de Recherche, Institut Curie, PSL Research University, Paris, France
| |
Collapse
|
14
|
Rangan KJ, Hang HC. Biochemical Mechanisms of Pathogen Restriction by Intestinal Bacteria. Trends Biochem Sci 2017; 42:887-898. [PMID: 28927699 PMCID: PMC6038137 DOI: 10.1016/j.tibs.2017.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
The intestine is a highly complex ecosystem where many bacterial species interact with each other and host cells to influence animal physiology and susceptibility to pathogens. Genomic methods have provided a broad framework for understanding how alterations in microbial communities are associated with host physiology and infection, but the biochemical mechanisms of specific intestinal bacterial species are only emerging. In this review, we focus on recent studies that have characterized the biochemical mechanisms by which intestinal bacteria interact with other bacteria and host pathways to restrict pathogen infection. Understanding the biochemical mechanisms of intestinal microbiota function should provide new opportunities for therapeutic development towards a variety of infectious diseases.
Collapse
Affiliation(s)
- Kavita J Rangan
- Laboratory of Chemical Biology and Microbial Pathogenesis, New York, NY 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, New York, NY 10065, USA.
| |
Collapse
|
15
|
Corwin EJ, Hogue CJ, Pearce B, Hill CC, Read TD, Mulle J, Dunlop AL. Protocol for the Emory University African American Vaginal, Oral, and Gut Microbiome in Pregnancy Cohort Study. BMC Pregnancy Childbirth 2017; 17:161. [PMID: 28571577 PMCID: PMC5455081 DOI: 10.1186/s12884-017-1357-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/26/2017] [Indexed: 12/19/2022] Open
Abstract
Background Adverse birth and neonatal outcomes disproportionately affect African American women and infants compared to those of other races/ethnicities. While significant research has sought to identify underlying factors contributing to these disparities, current understanding remains limited, constraining prevention, early diagnosis, and treatment. With the development of next generation sequencing techniques, the contribution of the vaginal microbiome to adverse maternal and neonatal outcomes has come under consideration. However, most microbiome in pregnancy studies include few African American women, do not consider the potential contribution of non-vaginal microbiome sites, and do not consider the effects of sociodemographic or behavioral factors on the microbiome. Methods We conceived our on-going, 5-year longitudinal study, Biobehavioral Determinants of the Microbiome and Preterm Birth in Black Women, as an intra-race study to enable the investigation of risk and protective factors within the disparate group. We aim to recruit over 500 pregnant African American women, enrolling them into the study at 8–14 weeks of pregnancy. Participants will be asked to complete questionnaires and provide oral, vaginal, and gut microbiome samples at enrollment and again at 24–30 weeks. Chart review will be used to identify pregnancy outcomes, infections, treatments, and complications. DNA will be extracted from the microbiome samples and sequencing of the V3 and V4 regions of the 16S rRNA gene will be conducted. Processing and mapping will be completed with QIIME and operational taxonomic units (OTUs) will be mapped to Greengenes version 13_8. Community state types (CSTs) and diversity measures at each site and time will be identified and considered in light of demographic, psychosocial, clinical, and biobehavioral variables. Discussion This rich data set will allow future consideration of risk and protective factors, between and within groups of women, providing the opportunity to uncover the roots of the persistent health disparity experienced by African American families.
Collapse
Affiliation(s)
- Elizabeth J Corwin
- Emory University School of Nursing, 1520 Clifton Rd, Atlanta, GA, 30322, USA.
| | - Carol J Hogue
- Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Bradley Pearce
- Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cherie C Hill
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | | | | | - Anne L Dunlop
- Emory University School of Nursing and School of Medicine, Atlanta, GA, USA
| |
Collapse
|
16
|
Abstract
ABSTRACT
The aim of this review is to provide a coherent framework for understanding dendritic cells (DCs). It has seven sections. The introduction provides an overview of the immune system and essential concepts, particularly for the nonspecialist reader. Next, the “History” section outlines the early evolution of ideas about DCs and highlights some sources of confusion that still exist today. The “Lineages” section then focuses on five different populations of DCs: two subsets of “classical” DCs, plasmacytoid DCs, monocyte-derived DCs, and Langerhans cells. It highlights some cellular and molecular specializations of each, and also notes other DC subsets that have been proposed. The following “Tissues” section discusses the distribution and behavior of different DC subsets within nonlymphoid and secondary lymphoid tissues that are connected by DC migration pathways between them. In the “Tolerance” section, the role of DCs in central and peripheral tolerance is considered, including their ability to drive the differentiation of different populations of regulatory T cells. In contrast, the “Immunity” section considers the roles of DCs in sensing of infection and tissue damage, the initiation of primary responses, the T-cell effector phase, and the induction of immunological memory. The concluding section provides some speculative ideas about the evolution of DCs. It also revisits earlier concepts of generation of diversity and clonal selection in terms of DCs driving the evolution of T-cell responses. Throughout, this review highlights certain areas of uncertainty and suggests some avenues for future investigation.
Collapse
|