1
|
Zandhuis ND, Guislain A, Popalzij A, Engels S, Popović B, Turner M, Wolkers MC. Regulation of IFN-γ production by ZFP36L2 in T cells is time-dependent. Eur J Immunol 2024; 54:e2451018. [PMID: 38980256 DOI: 10.1002/eji.202451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.
Collapse
Affiliation(s)
- Nordin D Zandhuis
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Abeera Popalzij
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander Engels
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Branka Popović
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
2
|
Bresser K, Nicolet BP, Jeko A, Wu W, Loayza-Puch F, Agami R, Heck AJR, Wolkers MC, Schumacher TN. Gene and protein sequence features augment HLA class I ligand predictions. Cell Rep 2024; 43:114325. [PMID: 38870014 DOI: 10.1016/j.celrep.2024.114325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.
Collapse
Affiliation(s)
- Kaspar Bresser
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Benoit P Nicolet
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation lab, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Anita Jeko
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Wei Wu
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Fabricio Loayza-Puch
- Translational Control and Metabolism, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation lab, Amsterdam, The Netherlands; Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - Ton N Schumacher
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands; Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
3
|
Mercier BC, Labaronne E, Cluet D, Guiguettaz L, Fontrodona N, Bicknell A, Corbin A, Wencker M, Aube F, Modolo L, Jouravleva K, Auboeuf D, Moore MJ, Ricci EP. Translation-dependent and -independent mRNA decay occur through mutually exclusive pathways defined by ribosome density during T cell activation. Genome Res 2024; 34:394-409. [PMID: 38508694 PMCID: PMC11067875 DOI: 10.1101/gr.277863.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
mRNA translation and decay are tightly interconnected processes both in the context of mRNA quality-control pathways and for the degradation of functional mRNAs. Cotranslational mRNA degradation through codon usage, ribosome collisions, and the recruitment of specific proteins to ribosomes is an important determinant of mRNA turnover. However, the extent to which translation-dependent mRNA decay (TDD) and translation-independent mRNA decay (TID) pathways participate in the degradation of mRNAs has not been studied yet. Here we describe a comprehensive analysis of basal and signal-induced TDD and TID in mouse primary CD4+ T cells. Our results indicate that most cellular transcripts are decayed to some extent in a translation-dependent manner. Our analysis further identifies the length of untranslated regions, the density of ribosomes, and GC3 content as important determinants of TDD magnitude. Consistently, all transcripts that undergo changes in ribosome density within their coding sequence upon T cell activation display a corresponding change in their TDD level. Moreover, we reveal a dynamic modulation in the relationship between GC3 content and TDD upon T cell activation, with a reversal in the impact of GC3- and AU3-rich codons. Altogether, our data show a strong and dynamic interconnection between mRNA translation and decay in mammalian primary cells.
Collapse
Affiliation(s)
- Blandine C Mercier
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Emmanuel Labaronne
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
- ADLIN Science, 9100 Evry-Courcouronnes, France
| | - David Cluet
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Laura Guiguettaz
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Nicolas Fontrodona
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Alicia Bicknell
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Antoine Corbin
- Centre International de Recherche en Infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Fabien Aube
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Laurent Modolo
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Karina Jouravleva
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France
| | - Melissa J Moore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA;
| | - Emiliano P Ricci
- Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293, 69007 Lyon, France;
| |
Collapse
|
4
|
Zhu WS, Litterman AJ, Sekhon HS, Kageyama R, Arce MM, Taylor KE, Zhao W, Criswell LA, Zaitlen N, Erle DJ, Ansel KM. GCLiPP: global crosslinking and protein purification method for constructing high-resolution occupancy maps for RNA binding proteins. Genome Biol 2023; 24:281. [PMID: 38062486 PMCID: PMC10701951 DOI: 10.1186/s13059-023-03125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
GCLiPP is a global RNA interactome capture method that detects RNA-binding protein (RBP) occupancy transcriptome-wide. GCLiPP maps RBP-occupied sites at a higher resolution than phase separation-based techniques. GCLiPP sequence tags correspond with known RBP binding sites and are enriched for sites detected by RBP-specific crosslinking immunoprecipitation (CLIP) for abundant cytosolic RBPs. Comparison of human Jurkat T cells and mouse primary T cells uncovers shared peaks of GCLiPP signal across homologous regions of human and mouse 3' UTRs, including a conserved mRNA-destabilizing cis-regulatory element. GCLiPP signal overlapping with immune-related SNPs uncovers stabilizing cis-regulatory regions in CD5, STAT6, and IKZF1.
Collapse
Affiliation(s)
- Wandi S Zhu
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Adam J Litterman
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Harshaan S Sekhon
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
- University of California Berkeley, Berkeley, CA, USA
| | - Robin Kageyama
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Maya M Arce
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly E Taylor
- Department of Medicine, University of California San Francisco, San Francisco, USA
- Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, USA
| | - Wenxue Zhao
- Department of Medicine, University of California San Francisco, San Francisco, USA
- Lung Biology Center, University of California San Francisco, San Francisco, USA
- School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lindsey A Criswell
- Department of Medicine, University of California San Francisco, San Francisco, USA
- Russell/Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, USA
| | - Noah Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, USA
- Lung Biology Center, University of California San Francisco, San Francisco, USA
| | - David J Erle
- Department of Medicine, University of California San Francisco, San Francisco, USA
- Lung Biology Center, University of California San Francisco, San Francisco, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology and Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Zhu WS, Wheeler BD, Ansel KM. RNA circuits and RNA-binding proteins in T cells. Trends Immunol 2023; 44:792-806. [PMID: 37599172 PMCID: PMC10890840 DOI: 10.1016/j.it.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
RNA is integral to the regulatory circuits that control cell identity and behavior. Cis-regulatory elements in mRNAs interact with RNA-binding proteins (RBPs) that can alter RNA sequence, stability, and translation into protein. Similarly, long noncoding RNAs (lncRNAs) scaffold ribonucleoprotein complexes that mediate transcriptional and post-transcriptional regulation of gene expression. Indeed, cell programming is fundamental to multicellular life and, in this era of cellular therapies, it is of particular interest in T cells. Here, we review key concepts and recent advances in our understanding of the RNA circuits and RBPs that govern mammalian T cell differentiation and immune function.
Collapse
Affiliation(s)
- Wandi S Zhu
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Benjamin D Wheeler
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - K Mark Ansel
- Department of Microbiology & Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Pandey RV, Strobl J, Redl A, Unterluggauer L, Gail L, Kleissl L, Müller S, Atzmüller D, Fife-Gernedl V, Krausgruber T, Knaus H, Mitterbauer M, Wohlfarth P, Rabitsch W, Bock C, Stary G. Epigenetic regulation of T cell lineages in skin and blood following hematopoietic stem cell transplantation. Clin Immunol 2023; 248:109245. [PMID: 36702179 DOI: 10.1016/j.clim.2023.109245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Allogeneic hematopoietic stem-cell transplantation (HSCT) seeks to reconstitute the host's immune system from donor stem cells. The success of HSCT is threatened by complications including leukemia relapse or graft-versus-host-disease (GvHD). To investigate the underlying regulatory processes in central and peripheral T cell recovery, we performed sequential multi-omics analysis of T cells of the skin and blood during HSCT. We detected rapid effector T cell reconstitution, while emergence of regulatory T cells was delayed. Epigenetic and gene-regulatory programs were associated with recovering T cells and diverged greatly between skin and blood T cells. The BRG1/BRM-associated factor chromatin remodeling complex and histone deacetylases (HDACs) were epigenetic regulators involved in restoration of T cell homeostasis after transplantation. In isolated T cells of patients after HSCT, we observed class I HDAC-inhibitors to modulate their dysbalance. The present study highlights the importance of epigenetic regulation in the recovery of T cells following HSCT.
Collapse
Affiliation(s)
- Ram Vinay Pandey
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Anna Redl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Luisa Unterluggauer
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Laura Gail
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Lisa Kleissl
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Sophie Müller
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Denise Atzmüller
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
| | - Victoria Fife-Gernedl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Hanna Knaus
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Margit Mitterbauer
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Philipp Wohlfarth
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Werner Rabitsch
- Department of Internal Medicine I, Bone Marrow Transplantation Unit, Medical University of Vienna, Vienna 1090, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria; Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria.
| |
Collapse
|
7
|
Martinelli M, Aguilar G, Lee DS, Kromer A, Nguyen N, Wilkins BJ, Akimova T, Beier UH, Ghanem LR. The poly(C)-binding protein Pcbp2 is essential for CD4 + T cell activation and proliferation. iScience 2022; 26:105860. [PMID: 36632062 PMCID: PMC9826892 DOI: 10.1016/j.isci.2022.105860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
The RNA-binding protein Pcbp2 is widely expressed in the innate and adaptive immune systems and is essential for mouse development. To determine whether Pcbp2 is required for CD4+ T cell development and function, we derived mice with conditional Pcbp2 deletion in CD4+ T cells and assessed their overall phenotype and proliferative responses to activating stimuli. We found that Pcbp2 is essential for T conventional cell (Tconv) proliferation, working through regulation of co-stimulatory signaling. Pcbp2 deficiency in the CD4+ lineage did not impact Treg abundance in vivo or function in vitro. In addition, our data demonstrate a clear association between Pcbp2 control of Runx1 exon 6 splicing in CD4+ T cells and a specific role for Pcbp2 in the maintenance of peripheral CD4+ lymphocyte population size. Last, we show that Pcbp2 function is required for optimal in vivo Tconv cell activation in a T cell adoptive transfer colitis model system.
Collapse
Affiliation(s)
- Massimo Martinelli
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, Naples 80131, Italy
| | - Gabrielle Aguilar
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - David S.M. Lee
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Institute for Biomedical Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Kromer
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nhu Nguyen
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Benjamin J. Wilkins
- Division of Anatomic Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tatiana Akimova
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ulf H. Beier
- Division of Nephrology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Louis R. Ghanem
- Division of Gastroenterology, Hepatology and Nutrition Division, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author
| |
Collapse
|
8
|
Nicolet BP, Wolkers MC. The relationship of mRNA with protein expression in CD8+ T cells associates with gene class and gene characteristics. PLoS One 2022; 17:e0276294. [PMID: 36260607 PMCID: PMC9581405 DOI: 10.1371/journal.pone.0276294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022] Open
Abstract
T cells are key players in our defence against infections and malignancies. When T cells differentiate or become activated, they undergo substantial alterations in gene expression. Even though RNA expression levels are now well documented throughout different stages of T cells, it is not well understood how mRNA expression translates into the protein landscape. By combining paired RNA sequencing and mass spectrometry data of primary human CD8+ T cells, we report that mRNA expression is a poor proxy for the overall protein output, irrespective of the differentiation or activation status. Yet, gene class stratification revealed a function-specific correlation of mRNA with protein expression. This gene class-specific expression pattern associated with differences in gene characteristics such as sequence conservation and untranslated region (UTR) lengths. In addition, the presence of AU-rich elements in the 3'UTR associated with alterations in mRNA and protein abundance T cell activation dependent, gene class-specific manner. In conclusion, our study highlights the role of gene characteristics as a determinant for gene expression in T cells.
Collapse
Affiliation(s)
- Benoît P. Nicolet
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Monika C. Wolkers
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Impact of epigenetics on human health and possible tool for remediation. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|