1
|
Untung T, Pandey R, Johansson P. The cost-effectiveness of COVID-19 vaccination program among age-groups children, adults, and elderly in Europe: A systematic review. Vaccine X 2024; 21:100580. [PMID: 39633853 PMCID: PMC11615606 DOI: 10.1016/j.jvacx.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/20/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Objectives To prepare for future epidemics, the experiences from the vaccination programs in the COVID-19 pandemic need to be collated. This systematic review synthesizes health economic evidence of COVID-19 vaccination programs in European countries comparing the target groups children, adults, and elderly, to study whether the Swedish vaccination strategy was justified on cost-effectiveness grounds. Method A literature search using the PICOS (Population, Intervention, Control, Outcomes, Study design) convention was conducted in the databases Medline, Embase, PsycInfo, CINAHL, and Tuft CEA Registry, Cochrane and INAHTA in February 2023. The inclusion criteria were economic evaluations (S) comparing COVID-19 vaccination (I) in age-groups children, adult, and elderly European residents (P) with non-vaccinated European residents (C) in terms of cost per QALY, cost differences, and net monetary benefit (O). Hand-search was done on selected websites and in reference lists of included reports. Title/abstract screening, full-text screening, and quality assessment with the Swedish HTA agency checklist were performed by two researchers. The reporting follows the PRISMA 2020 recommendations. Results The database search resulted in 5,720 reports, title/abstract screening yielded 162 reports and after full-text screening, four reports remained. Two studies comparing vaccination of adults and elderly with high and moderate study quality were included. No study was found on the children population. The economic evidence indicated that COVID-19 vaccination of the elderly is cost-effective when compared with vaccination of the adult group, but the transferability to Swedish circumstances was inconclusive due to differences in outcome and cost data between Sweden and the included studies' settings. Conclusion The common European COVID-19 vaccination policy that prioritized the elderly population was the cost-effective option in the reviewed studies. The lack of transferability to Sweden precludes a clear conclusion on the Swedish vaccination policy.
Collapse
Affiliation(s)
- T. Untung
- School of Public Health and Community Medicine, University of Gothenburg, Göteborg, Sweden
| | - R. Pandey
- School of Public Health and Community Medicine, University of Gothenburg, Göteborg, Sweden
| | - P. Johansson
- School of Public Health and Community Medicine, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Park HS, Matsuoka Y, Santos C, Luongo C, Liu X, Yang L, Kaiser JA, Duncan EF, Johnson RF, Teng IT, Kwong PD, Buchholz UJ, Le Nouën C. Intranasal parainfluenza virus-vectored vaccine expressing SARS-CoV-2 spike protein of Delta or Omicron B.1.1.529 induces mucosal and systemic immunity and protects hamsters against homologous and heterologous challenge. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612598. [PMID: 39372768 PMCID: PMC11451599 DOI: 10.1101/2024.09.12.612598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The continuous emergence of new SARS-CoV-2 variants requires that COVID vaccines be updated to match circulating strains. We generated B/HPIV3-vectored vaccines expressing 6P-stabilized S protein of the ancestral, B.1.617.2/Delta, or B.1.1.529/Omicron variants as pediatric vaccines for intranasal immunization against HPIV3 and SARS-CoV-2 and characterized these in hamsters. Following intranasal immunization, these B/HPIV3 vectors replicated in the upper and lower respiratory tract and induced mucosal and serum anti-S IgA and IgG. B/HPIV3 expressing ancestral or B.1.617.2/Delta-derived S-6P induced serum antibodies that effectively neutralized SARS-CoV-2 of the ancestral and B.1.617.2/Delta lineages, while the cross-neutralizing potency of B.1.1.529/Omicron S-induced antibodies was lower. Despite the lower cross-neutralizing titers induced by B/HPIV3 expressing S-6P from B.1.1.529/Omicron, a single intranasal dose of all three versions of B/HPIV3 vectors was protective against matched or heterologous WA1/2020, B.1.617.2/Delta or BA.1 (B.1.1.529.1)/Omicron challenge; hamsters were protected from challenge virus replication in the lungs, while low levels of challenge virus were detectable in the upper respiratory tract of a small number of animals. Immunization also protected against lung inflammatory response after challenge, with mild inflammatory cytokine induction associated with the slightly lower level of cross-protection of WA1/2020 and B.1.617.2/Delta variants against the BA.1/Omicron variant. Serum antibodies elicited by all vaccine candidates were broadly reactive against 20 antigenic variants, but the antigenic breadth of antibodies elicited by B/HPIV3-expressed S-6P from the ancestral or B.1.617.2/Delta variant exceeded that of the S-6P B.1.1.529/Omicron expressing vector. These results will guide development of intranasal B/HPIV3 vectors with S antigens matching circulating SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hong-Su Park
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yumiko Matsuoka
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Celia Santos
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cindy Luongo
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xueqiao Liu
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijuan Yang
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaclyn A. Kaiser
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eleanor F. Duncan
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F. Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ursula J. Buchholz
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cyril Le Nouën
- RNA Viruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Marshall NE, Blanton MB, Doratt BM, Malherbe DC, Rincon M, Messaoudi I. Monoclonal Antibody Therapy of Breastfeeding Patient Infected with SARS-CoV-2: A Case Report. Breastfeed Med 2023; 18:626-630. [PMID: 37615569 PMCID: PMC10460680 DOI: 10.1089/bfm.2023.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Introduction: Although safety data demonstrated the efficacy and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination for all individuals over 6 months of age, including pregnant and breastfeeding individuals, optimal treatment courses for symptomatic pregnant and lactating individuals infected with SARS-CoV-2 remain to be defined. Case Description: A coronavirus disease 2019 (COVID-19)-vaccinated breastfeeding woman received anti-SARS-CoV-2 monoclonal antibody treatment casirivimab-imdevimab 5 days after diagnosis of a symptomatic breakthrough SARS-CoV-2 infection. Results and Conclusions: The patient did not present with obvious defects in innate or adaptive cellular subsets, but compared with controls had minimal maternal antibody response to recommended pregnancy vaccinations including SARS-CoV-2 and tetanus, diphtheria, pertussis (TDaP). The outcome of the monoclonal antibody infusion treatment was favorable as it transiently increased SARS-CoV-2 antibody titers in plasma and human milk compartments.
Collapse
Affiliation(s)
- Nicole E. Marshall
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | - Madison B. Blanton
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Brianna M. Doratt
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Delphine C. Malherbe
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Monica Rincon
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ilhem Messaoudi
- Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Pacheco-García U, Serafín-López J. Indirect Dispersion of SARS-CoV-2 Live-Attenuated Vaccine and Its Contribution to Herd Immunity. Vaccines (Basel) 2023; 11:655. [PMID: 36992239 PMCID: PMC10055900 DOI: 10.3390/vaccines11030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
It has been 34 months since the beginning of the SARS-CoV-2 coronavirus pandemic, which causes the COVID-19 disease. In several countries, immunization has reached a proportion near what is required to reach herd immunity. Nevertheless, infections and re-infections have been observed even in vaccinated persons. That is because protection conferred by vaccines is not entirely effective against new virus variants. It is unknown how often booster vaccines will be necessary to maintain a good level of protective immunity. Furthermore, many individuals refuse vaccination, and in developing countries, a large proportion of the population has not yet been vaccinated. Some live-attenuated vaccines against SARS-CoV-2 are being developed. Here, we analyze the indirect dispersion of a live-attenuated virus from vaccinated individuals to their contacts and the contribution that this phenomenon could have to reaching Herd Immunity.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico
| |
Collapse
|
5
|
da Fonseca Lima EJ, Leite RD. COVID-19 vaccination in children: a public health priority. J Pediatr (Rio J) 2023; 99 Suppl 1:S28-S36. [PMID: 36564007 PMCID: PMC9767816 DOI: 10.1016/j.jped.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Covid-19 had a direct impact on children's health. The aim of this review was to analyze epidemiological and clinical data, the consequences of the pandemic, and vaccination aspects in this group. SOURCES OF DATA The searches were carried out from January 2020 to November 2022, in the MEDLINE databases (PubMed) and publications of the Brazilian Ministry of Health and the Brazilian Society of Pediatrics. SUMMARY OF FINDINGS Covid-19 has a mild presentation in most children; however, the infection can progress to the severe form and, in some cases, to MIS-C. The prevalence of the so-called long Covid in children was 25.24%. Moreover, several indirect impacts occurred on the health of children and adolescents. Vaccination played a crucial role in enabling the reduction of severe disease and mortality rates. Children and adolescents, as a special population, were excluded from the initial clinical trials and, therefore, vaccination was introduced later in this group. Despite its importance, there have been difficulties in the efficient implementation of vaccination in the pediatric population. The CoronaVac vaccines are authorized in Brazil for children over three years of age and the pediatric presentations of the Pfizer vaccine have shown significant effectiveness and safety. CONCLUSIONS Covid-19 in the pediatric age group was responsible for the illness and deaths of a significant number of children. For successful immunization, major barriers have to be overcome. Real-world data on the safety and efficacy of several pediatric vaccines is emphasized, and the authors need a uniform message about the importance of immunization for all children.
Collapse
Affiliation(s)
- Eduardo Jorge da Fonseca Lima
- Instituto de Medicina Integral Prof. Fernando Figueira (IMIP), Recife, PE, Brazil; Faculdade Pernambucana de Saúde (FPS), Recife, PE, Brazil.
| | - Robério Dias Leite
- Universidade Federal do Ceará, Departamento de Saúde da Mulher, da Criança e do Adolescente, Fortaleza, CE, Brazil; Hospital São José de Doenças Infecciosas da Secretaria de Saúde do Estado do Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|
7
|
Lima EJDF. COVID-19 and Pediatrics: a look into the past and the future. REVISTA BRASILEIRA DE SAÚDE MATERNO INFANTIL 2022. [DOI: 10.1590/1806-9304202200040001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Affiliation(s)
- Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|