1
|
Cao Z, Wang Z, Yang L, Li T, Tao X, Niu X. Reshaping the immune microenvironment and reversing immunosenescence by natural products: Prospects for immunotherapy in gastric cancer. Semin Cancer Biol 2025; 110:1-16. [PMID: 39923925 DOI: 10.1016/j.semcancer.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Gastric cancer (GC) represents a global health-care challenge. Recent progress in immunotherapy has elicited attracted considerable attention as a viable treatment option through modulating the host immune system and unleashing pre-existing immunity, which has profoundly revolutionized oncology, especially GC. Nonetheless, low clinical response and intrinsic and acquired resistance remain persistently challenging. The microenvironment of GC comprising multifarious stromal cell types has remarkable immunosuppressive elements that may impact the efficacy of immunotherapy. Immunosenescence is increasingly regarded as a factor that contributes to cancer development, remodels the tumor microenvironment and affects the efficacy of immunotherapy. Natural products are at the forefront of traditional medicine. Senotherapeutics is a class of drugs and natural products capable of delaying, preventing, or reversing the senescence process (i.e., senolytics) or suppressing senescence-associated secretory phenotype (i.e., senomorphics). Emerging evidence supports that natural products can improve the efficacy of existing immunotherapy and expand their indications in GC mainly based upon remodeling the immunosuppressive microenvironment and reversing immunosenescence. The review provides an integrated review of previously reported and ongoing clinical trials with immunotherapeutic regimens in GC and discusses current challenges. Next, we focus on natural compounds that exert anti-GC functions and possess immunomodulatory properties. More attention is paid to the potential of these natural compounds in modulating the immune microenvironment and immunosenescence. Lastly, we discuss the nanomedicine that can overcome the deficiencies of natural products. Altogether, our review suggests the enormous potential of natural compounds in GC immunotherapy, and provides an important direction for future research.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhilin Wang
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Li Yang
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, China.
| | - Xueshu Tao
- Department of Pain Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Xing Niu
- Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
2
|
Shaik R, Chittepu SM, Tarapatla M, Begum F, Vempati S, Royyala A. Chemoimmunotherapy synergism: mechanisms and clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04125-8. [PMID: 40220027 DOI: 10.1007/s00210-025-04125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025]
Abstract
Chemoimmunotherapy, combining chemotherapy and immunotherapy, has emerged as a promising strategy for treating various cancers. This approach leverages the complementary mechanisms of both modalities to enhance tumor eradication. Recent advances have shed new light on the synergistic interactions between chemotherapy and immunotherapy, revealing complex mechanisms that contribute to improved clinical outcomes. Chemotherapy induces immunogenic cell death, releasing tumor antigens and damage-associated molecular patterns (DAMPs) that stimulate immune responses. It also modulates the tumor microenvironment, enhancing immune cell infiltration and reducing immunosuppressive elements. Concurrently, immunotherapy, particularly immune checkpoint inhibitors, activates the immune system to more effectively target and destroy cancer cells. Clinical evidence demonstrates significant benefits of chemoimmunotherapy in various cancers, including non-small-cell lung cancer, triple-negative breast cancer, and melanoma. Recent trials, such as KEYNOTE- 189 and IMpassion130, have shown improved overall survival and progression-free survival compared to chemotherapy alone. Emerging biomarkers, including tumor mutational burden, Programmed Death Ligand- 1 (PD-L1) expression, and immune cell infiltration patterns, are refining patient selection and response prediction. Novel strategies, such as nanoparticle-based drug delivery systems and personalized medicine approaches, are being explored to optimize chemoimmunotherapy combinations. However, challenges remain, including managing treatment-related toxicities, determining optimal dosing and sequencing, and addressing potential resistance mechanisms. Ongoing research focuses on elucidating the complex interplay between chemotherapy-induced immunomodulation and immune checkpoint inhibition to further improve treatment efficacy and patient outcomes. This review provides a comprehensive update on the mechanisms, clinical applications, and future directions of chemoimmunotherapy, highlighting its potential to revolutionize cancer treatment strategies. Clinical trial number: not applicable.
Collapse
Affiliation(s)
- Rahaman Shaik
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Sai Manasa Chittepu
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad, 501510, Telangana, India
| | - Meghana Tarapatla
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad, 501510, Telangana, India
| | - Fathima Begum
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad, 501510, Telangana, India
| | - Srujan Vempati
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad, 501510, Telangana, India
| | - Abhistika Royyala
- Department of Pharmacology, St. Pauls College of Pharmacy, Turkayamjal, Hyderabad, 501510, Telangana, India
| |
Collapse
|
3
|
Wu S, Chen Y, Wang K, Huang M, Yang L, Yang J, Wei Q, Tao C, Li C, Zhou M. Multifunctional mesoporous polydopamine nanoplatforms for synergistic photothermal-chemotherapy and enhanced immunotherapy in breast cancer treatment. Colloids Surf B Biointerfaces 2025; 248:114483. [PMID: 39740488 DOI: 10.1016/j.colsurfb.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Breast cancer remains one of the most prevalent and deadly cancers among women worldwide, necessitating the development of more effective and comprehensive treatment strategies. In this study, we successfully synthesized mesoporous polydopamine (MPDA) with photothermal effects for the co-delivery of the chemotherapeutic drug doxorubicin (DOX) and the immune adjuvant imiquimod (R837), resulting in the development of a multifunctional nanoplatforms termed MDR. MDR displayed excellent photothermal conversion efficiency and pH-responsive drug release behavior. In vitro assessments revealed significant cytotoxicity of MDR against 4T1 cells under 808 nm laser irradiation, with enhanced cellular uptake in both 4T1 cells and bone marrow-derived dendritic cells (BMDCs). Additionally, the expression levels of the costimulatory molecules CD80 and CD86 were remarkably higher in the MDR-treated group than free R837 after co-incubation with immature BMDCs, indicating a stronger ability to promote BMDC maturation and effectively stimulate immune response activation. Intratumoral injection in breast cancer-bearing mice further demonstrated that the MDR + NIR group significantly inhibited tumor growth compared to other groups, with no apparent side effects. In conclusion, the multifunctional nanoplatforms integrating photothermal therapy, chemotherapy, and immunotherapy are expected to provide a novel therapeutic approach for the multimodal treatment of breast cancer.
Collapse
Affiliation(s)
- Siqiong Wu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Pharmacy, Xianning Hospital of Traditional Chinese Medicine, Xianning, Hubei 437100, China
| | - Yongjun Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Mingquan Huang
- Sichuan Treatment Center for Gynaecologic and Breast Diseases (Breast Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qiming Wei
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Chao Tao
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Yu Z, Cao L, Shen Y, Chen J, Li H, Li C, Yin JY, Li Y, Meng Y, Li X. Inducing Cuproptosis with Copper Ion-Loaded Aloe Emodin Self-Assembled Nanoparticles for Enhanced Tumor Photodynamic Immunotherapy. Adv Healthc Mater 2025; 14:e2404612. [PMID: 39998287 DOI: 10.1002/adhm.202404612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Immunotherapy has fundamentally transformed the clinical treatment landscape for non-small cell lung cancer (NSCLC). While its effectiveness is ultimately limited by patient heterogeneity and immunosuppressive tumor microenvironment. Photodynamic therapy (PDT), as an emerging antitumor immunotherapy, has shown its unique therapeutic advantages. However, previous studies often overlooked the potential toxicity of photosensitizers (PS), making the discovery of safe and effective PS a pressing clinical need. In this study, Aloe Emodin (AE), a medicinal plant natural compound, was loaded with copper ions (Cu), and self-assembled into nanoparticles (NPs) under the modification of PEG2k-DSPE-FA. NPs can target, accumulate, and reside within tumor sites, responsively releasing copper ions and AE, thus dual-functioning by inducing tumor cell death via cuproptosis and enhancing PDT effects. The LLC tumor-bearing mouse model demonstrated that NPs induce the maturation of dendritic cells (DCs) in vivo, promote lymphocyte infiltration, transform "cold tumors" into "hot tumors" and significantly enhance the efficacy of immune checkpoint blockade (ICB). This study provides experimental evidence of AE as a clinically promising PDT agent and offers a novel perspective for the synergistic treatment of clinical NSCLC.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Lei Cao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, P. R. China
| | - Yue Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Jieqi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Huizhen Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Chengmin Li
- Department of pathology and Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Ji-Ye Yin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, P. R. China
| | - Yueqin Li
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yingcai Meng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| |
Collapse
|
5
|
Collins VG, Hutton D, Hossain-Ibrahim K, Joseph J, Banerjee S. The abscopal effects of sonodynamic therapy in cancer. Br J Cancer 2025; 132:409-420. [PMID: 39537767 PMCID: PMC11876350 DOI: 10.1038/s41416-024-02898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The abscopal effect is a phenomenon wherein localised therapy on the primary tumour leads to regression of distal metastatic growths. Interestingly, various pre-clinical studies utilising sonodynamic therapy (SDT) have reported significant abscopal effects, however, the mechanism remains largely enigmatic. SDT is an emerging non-invasive cancer treatment that uses focussed ultrasound (FUS) and a sonosensitiser to induce tumour cell death. To expand our understanding of abscopal effects of SDT, we have summarised the preclinical studies that have found SDT-induced abscopal responses across various cancer models, using diverse combination strategies with nanomaterials, microbubbles, chemotherapy, and immune checkpoint inhibitors. Additionally, we shed light on the molecular and immunological mechanisms underpinning SDT-induced primary and metastatic tumour cell death, as well as the role and efficacy of different sonosensitisers. Notably, the observed abscopal effects underscore the need for continued investigation into the SDT-induced 'vaccine-effect' as a potential strategy for enhancing systemic anti-tumour immunity and combating metastatic disease. The results of the first SDT human clinical trials are much awaited and are hoped to enable the further evaluation of the safety and efficacy of SDT, paving the way for future studies specifically designed to explore the potential of translating SDT-induced abscopal effects into clinical reality.
Collapse
Affiliation(s)
- Victoria G Collins
- Department of Neurosurgery, Ninewells Hospital, Dundee, UK
- Department of Neurosurgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Dana Hutton
- The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | | | - James Joseph
- Department of Biomedical Engineering, School of Science and Engineering, University of Dundee, Dundee, UK.
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK.
| |
Collapse
|
6
|
Abreu MM, Chocron AF, Smadja DM. From cold to hot: mechanisms of hyperthermia in modulating tumor immunology for enhanced immunotherapy. Front Immunol 2025; 16:1487296. [PMID: 40092992 PMCID: PMC11906415 DOI: 10.3389/fimmu.2025.1487296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The emergence of immunotherapies has revolutionized cancer treatment by leveraging the immune system to target malignancies, offering new hope where traditional therapies often fall short. Within this context, hyperthermia (HT) has re-emerged as a promising adjunctive treatment, capable of enhancing the effectiveness of radiotherapy, chemotherapy, and immunotherapy. HT influences both the innate and adaptive immune systems, enhancing the activity of immune cells such as neutrophils, NK cells, and dendritic cells, while also modulating the tumor microenvironment (TME) to promote immunogenic cell death (ICD) and reduce immunosuppressive conditions. These effects contribute to the transformation of immunologically "cold" tumors into "hot" tumors, making them more susceptible to immune-mediated destruction. Furthermore, HT can amplify the efficacy of immune checkpoint inhibitors (ICIs) by improving immune cell infiltration, inducing damage-associated molecular pattern (DAMP) release, and enhancing antigen presentation. Preclinical and clinical studies support the combination of HT with ICIs, demonstrating improved outcomes in otherwise resistant tumors. However, the full therapeutic potential of the different technologies allowing to apply HT remains to be fully understood, and further research is needed to optimize treatment protocols, explore the differential impacts of local versus whole-body hyperthermia, and identify biomarkers for patient stratification. This review underscores the multifaceted role of HT in immunity and its potential to significantly enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- M Marc Abreu
- Medicine Department, BTT Medical Institute, Aventura, FL, United States
- BTT Engineering Department, BTT Medical Institute, Aventura, FL, United States
| | - Alberto F Chocron
- Medicine Department, BTT Medical Institute, Aventura, FL, United States
- Research Service, Miami Veteran Administration Medical Center, Miami, FL, United States
| | - David M Smadja
- Department of Hematology, AP-HP, Georges Pompidou European Hospital, Paris, France
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
7
|
Wu F, Feng X, Gao W, Zeng L, Xu B, Chen Z, Zheng C, Hu X, Xu S, Song H, Zhou X, Liu Z. Engineering a Self-Delivery Nanoplatform for Chemo-Photodynamic-Immune Synergistic Therapies against Aggressive Melanoma. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11634-11652. [PMID: 39960055 DOI: 10.1021/acsami.4c18469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The effectiveness of immunotherapy in killing melanoma is hindered by a T-cell deficiency and the lack of tumor immunogenicity. Consequently, there is an urgent need for a platform that can further activate the immune system and boost the immune response of the host to tumors. Compared with monotherapy, combination therapy shows promise in improving treatment efficacy and response rates. This study introduces the pioneering use of a rationally designed active targeting nanoplatform to bind axitinib, paclitaxel, and verteporfin to human serum albumin (APV@HSA NPs). APV@HSA NPs have demonstrated the capability to induce dual-induced apoptosis in tumor cells through chemo- and photodynamic effects, while also enhancing immunogenic cell death and promoting dendritic cell maturation. Additionally, the platform promoted the production of CD8+ T cells and memory T cells and inhibited vascular endothelial growth factor via axitinib, facilitating the infiltration of immune effector cells and optimizing chemo-photodynamic immunotherapy. Hence, amplified chemo-photodynamic-immunological nanomedicines with excellent biocompatibility have been redesigned to inhibit the tumor microenvironment and combat the growth of primary tumor and lung metastasis. This approach initiates a series of immune responses, presenting a promising therapeutic strategy for melanoma.
Collapse
Affiliation(s)
- Fei Wu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xianquan Feng
- Fujian Provincial Key Laboratory of Transplant Biology, Laboratory of Basic Medicine, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Wenhao Gao
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Bingbing Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhenzhen Chen
- Department of Clinical Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou, Fujian Province 350025, China
| | - Changqing Zheng
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xiaomu Hu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Shiying Xu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Hongtao Song
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Xin Zhou
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| | - Zhihong Liu
- Department of Pharmacy, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350025, China
| |
Collapse
|
8
|
Wang C, Zhong W, Sun X, Guo J, Chen Y, Zhao Y, Han J, Zhao Y. NIR-Activable Charge Transfer Agents for Synergistic Photoimmunotherapy. Angew Chem Int Ed Engl 2025; 64:e202416828. [PMID: 39319629 DOI: 10.1002/anie.202416828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has become an attractive tumor treatment modality, yet the facile design of photoimmunotheranostic agents with efficient near infrared (NIR) light-absorbing and immune-activating capabilities remains a tremendous challenge. Herein, we developed a NIR-activable organic charge transfer complex (CTC), with perylene (PER) as the electron donor and 4,5,9,10-tetrabromoisochromeno [6,5,4-def]isochromene-1,3,6,8-tetraone (Br4NDI) as the electron acceptor. Through further supramolecular assembly, the PER-Br4NDI nanoparticle (PBND NP) for spatiotemporally controlled photoimmunotherapy was constructed. The PBND NP exhibits superb NIR absorption, robust intermolecular charge transfer, and enhanced intersystem crossing. Upon NIR photoirradiation, the PBND NP effectively exerts photothermal and photodynamic effects with a remarkable photothermal conversion efficiency of 63.5 % and a high reactive oxygen species generation capability, which not only directly ablates primary tumors, but also dramatically suppresses distant tumor growth via promoted immunogenic cell death. Moreover, programmed cell death protein 1 antibody acts synergistically to block immune evasion and ultimately enhances cancer treatment efficacy. This work therefore sheds light on the design of organic CTCs for synergistic photoimmunotherapy.
Collapse
Affiliation(s)
- Chu Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Wenbin Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xiaohuan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yun Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yue Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
9
|
Kong S, Zhang J, Ding B, He C, Zhang X. Nanoplatform-based synergistic cancer Immuno-Chemodynamic therapy. Int J Pharm 2024; 667:124956. [PMID: 39550012 DOI: 10.1016/j.ijpharm.2024.124956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/22/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Immunotherapy has made excellent breakthroughs in the field of cancer treatments, but faces challenges with low immunogenicity of tumor cells and an immunosuppressive tumor microenvironment (ITME). The emerging chemodynamic therapy (CDT) based on the Fenton/Fenton-like reaction can induce immunogenic cell death (ICD) to enhance tumor immunogenicity, facilitating the transition from immune-cold to immune-hot tumors. Synergistic CDT and immunotherapy based on advanced nanotechnology have shown immense promise for improving therapeutic efficacy while minimizing side effects in cancer treatment. This review summarizes and discusses recent advances in the field, with the goal of designing a high-quality nanoplatform to enhance synergistic CDT in combination with immunotherapy and lay the foundation for its future clinical translation.
Collapse
Affiliation(s)
- Shuaizhi Kong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China; Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Jie Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China
| | - Baoyue Ding
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
| | - Chuanchuan He
- Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, PR China.
| | - Xiaojuan Zhang
- Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, 314001, PR China.
| |
Collapse
|
10
|
Zhao L, Tong Y, Yin J, Li H, Du L, Li J, Jiang Y. Photo-Activated Oxidative Stress Amplifier: A Strategy for Targeting Glutathione Metabolism and Enhancing ROS-Mediated Therapy in Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403861. [PMID: 39096062 DOI: 10.1002/smll.202403861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Amplifying oxidative stress within tumor cells can effectively inhibit the growth and metastasis of triple-negative breast cancer (TNBC). Therefore, the development of innovative nanomedicines that can effectively disrupt the redox balance represents a promising yet challenging therapeutic strategy for TNBC. In this study, an oxidative stress amplifier, denoted as PBCH, comprising PdAg mesoporous nanozyme and a CaP mineralized layer, loaded with GSH inhibitor L-buthionine sulfoximine (BSO), and further surface-modified with hyaluronic acid that can target CD44, is introduced. In the acidic tumor microenvironment, Ca2+ is initially released, thereby leading to mitochondrial dysfunction and eventually triggering apoptosis. Additionally, BSO suppresses the synthesis of intracellular reduced GSH and further amplifies the level of oxidative stress in cancer cells. Furthermore, PdAg nanozyme can be activated by near-infrared light to induce photothermal and photodynamic effects, causing a burst of ROS and simultaneously promoting cell apoptosis via provoking immunogenic cell death. The high-performance therapeutic effects of PBCH, based on the synergistic effect of aforementioned multiple oxidative damage and photothermal ablation, are validated in TNBC cells and animal models, declaring its potential as a safe and effective anti-tumor agent. The proposed approach offers new perspectives for precise and efficient treatment of TNBC.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Yao Tong
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Jiawei Yin
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Hui Li
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Lutao Du
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
- Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, Shandong, 250033, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, 250033, China
| | - Juan Li
- The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Yanyan Jiang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
11
|
Xia T, Zhang Y, Peng H, Jia X, Yang D, Wei L, Li T, Yao W. EVA1B facilitates esophageal squamous carcinoma progression and recruitment of immunosuppressive myeloid-derived suppressor cells in the tumor microenvironment. Pharmacol Res 2024; 210:107521. [PMID: 39603573 DOI: 10.1016/j.phrs.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Eva-1 Homolog B (EVA1B) has been preliminarily found to be associated with prognostic outcomes and immune microenvironment in several human cancer types, but the implications of EVA1B in ESCC remain unclear. Human ESCC and paracancerous tissues were gathered in this study, and EVA1B expression was measured via immunoblotting. EC109 and KYSE-180 ESCC cells were stably infected by sh-EVA1B lentivirus, and functional experiments were subsequently implemented. Syngeneic mouse models were built, and the expansion and recruitment of myeloid-derived suppressor cells (MDSCs) were then evaluated. The results showed that EVA1B presented the notable up-regulation in clinical ESCC tissues versus controls, and was connected to more advanced stages and the abundance of MDSCs. Silencing EVA1B notably attenuated proliferation of ESCC cells and tumor growth in syngeneic mouse models. Moreover, EVA1B suppression resulted in apoptosis and cell cycle arrest, and impaired ESCC cell aggressiveness. Among ESCC patients, EVA1B was strongly correlated to EMT pathway activity. Targeted suppression of EVA1B mitigated the expression of Wnt3a, β-catenin and LRP6 in ESCC cells and tumor xenografts. Additionally, inhibition of EVA1B attenuated the expansion and recruitment of MDSCs within the immune microenvironment based upon the reduction in the percentage of CD11b+Gr-1+ immunosuppressive MDSCs as well as the expression of MDSC expansion stimulators (S100A8, S100A9, Arg-1, and VEGF). Collectively, our findings unveiled the contribution of high expression of EVA1B to ESCC progression and MDSCs expansion and recruitment, indicating that targeted suppression of EVA1B may be a potential treatment choice for ESCC patients.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Yongkang Zhang
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Haodong Peng
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450003, China.
| | - Xiangbo Jia
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Dong Yang
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Li Wei
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| | - Tian Li
- Tianjin Medical University, Tianjin 300102, China.
| | - Wenjian Yao
- Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
12
|
Tang H, Wang X, He L, Yuan Z, Han L. An injectable composite hydrogel containing polydopamine-coated curcumin nanoparticles and indoximod for the enhanced combinational chemo-photothermal-immunotherapy of breast tumors. Colloids Surf B Biointerfaces 2024; 244:114130. [PMID: 39121570 DOI: 10.1016/j.colsurfb.2024.114130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
The complexity and compensatory evolution of tumors weaken the effectiveness of single antitumor therapies. Therefore, multimodal combination therapies hold great promise in defeating tumors. Herein, we constructed a multi-level regulatory co-delivery system based on chemotherapy, phototherapy, and immunotherapy. Briefly, curcumin (Cur) was prepared as nanoparticles and coated with polydopamine (PDA) to form PCur-NPs, which along with an immune checkpoint inhibitor (indoximod, IND) were then loaded into a thermosensitive Pluronic F127 (F127) hydrogel to form a multifunctional nanocomposite hydrogel (PCur/IND@Gel). The in situ-formed hydrogel exhibited excellent photothermal conversion efficiency and sustained drug release behavior both in vitro and in vivo. In addition, PCur-NPs showed enhanced cellular uptake and cytotoxicity under NIR laser irradiation and induced potent immunogenic cell death (ICD). After intratumoral injection of PCur/IND@Gel, significant apoptosis in 4T1 tumors was induced, dendritic cells in lymph nodes were highly activated, potent CD8+ and CD4+ antitumor immune responses were elicited and regulative T cells in tumors were significantly reduced, which notably inhibited the tumor growth and prolonged the survive time of 4T1 tumor-bearing mice. Therefore, this injectable nanocomposite hydrogel is a promising drug co-delivery platform for chemo-photothermal-immunotherapy of breast tumors.
Collapse
Affiliation(s)
- Haiyu Tang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Xingyue Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Zhixiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Lu Han
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
13
|
Tian J, Wan S, Yang Z, Wang M, Zhou W, Wo G, Fu S, Zheng S, Zhou G, Hu X, Guo Y, Guo J. PDL1/HER2-Targeted Lipid-Encapsulated Oxygen Nanobubbles Combined with Photodynamic Therapy for HER2 + Breast Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2400030. [PMID: 39113347 DOI: 10.1002/adhm.202400030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/29/2024] [Indexed: 12/18/2024]
Abstract
Programmed death (PD) 1/PD ligand 1 (PDL1) inhibitors are immune checkpoint inhibitors (ICIs) that may facilitate HER2-positive breast cancer treatment; however, their clinical efficacy remains elusive. Oxygen-enhanced photodynamic therapy (PDT) increases immunogenic cell death (ICD), providing a promising strategy to render the tumor microenvironment more sensitive to the ICIs. Lipid-encapsulated oxygen nanobubbles (Lipo-NBs-O2) obtained using nanobubbles (NBs) water for oxygen delivery in vivo can facilitate enhanced PDT. Here, dual-receptor targeted Lipo-NBs-O2 (DRT@Lipo-NBs-O2) is prepared by modifying Lipo-NBs-O2 with anti-PDL1 scFv and the fusion protein anti-HER2 scFv-tandem-repeat cytochrome c (anti-HER2-nCytc). Copper phthalocyanine is the photosensitizer (PS). DRT@Lipo-PS-NBs-O2 plus near-infrared irradiation leads to robust ICD induction, increasing DC activation and CD8+ T-cell numbers. Modification with anti-PDL1 scFv improves tumor distribution of DRT@Lipo-PS-NBs-O2 and plays the ICI role, invigorating CD8+ T cells and boosting the effects of immunotherapy. Oxygen supplied through DRT@Lipo-PS-NBs-O2 reduces P-glycoprotein expression. Enhanced PDT and Cytc can cause tumor cell death, thereby reducing the immune burden. Under dual receptor targeting and laser local irradiation, tumor cells become subject to the combination effects of PDT, ICD, ICIs, and apoptosis; this effectively suppresses tumor growth and metastasis. Lipo-NBs-O2 affords a combination of oxygen delivery and multidrug therapy to alleviate HER2-positive breast cancer.
Collapse
Affiliation(s)
- Jilai Tian
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shixiao Wan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhen Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Mengting Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenzhao Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Guanqun Wo
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| | - Shiya Zheng
- Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, P. R. China
| | - Gaoxin Zhou
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiaomin Hu
- OriGene Technologies Inc. at Wuxi, Jiangsu, 214000, P. R. China
| | - Yichen Guo
- OriGene Technologies Inc., Rockville, MD, 20850, USA
| | - Jun Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
14
|
Liu C, Zhong Y, Huang H, Lan S, Li J, Huang D, Zhang W. Killing two birds with one stone: Siglec-15 targeting integrated bioactive glasses hydrogel for treatment of breast cancer bone metastasis. Mater Today Bio 2024; 29:101362. [PMID: 39687802 PMCID: PMC11647236 DOI: 10.1016/j.mtbio.2024.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Bone metastasis is a fatal consequence of breast cancer that occurs when patients fail to respond to conventional therapies and mainly result from a vicious cycle involving dysregulated bone homeostasis and uncontrolled tumor growth. Recent research has underscored the significance of Siglec-15, a membrane protein implicated in immunosuppression and osteoclast generation. Targeting Siglec-15 may disrupt the "vicious cycle" that causes bone metastases in patients with breast cancer. Herein, we explored the efficacy of targeting Siglec-15 in conjunction with photothermal chemotherapy to impede the progression of bone metastatic during breast cancer and repair tumor-induced osteolysis. First, we formulated an injectable photothermal bioactive glass (BG)-based hydrogel for the local delivery of Siglec-15 shRNA and doxorubicin. The results demonstrated that the hydrogel could kill tumor cells directly through photothermal chemotherapy, provoke intense immune responses and improve the local immunosuppressive microenvironment, which could effectively prevent tumor metastasis and recurrence in a murine model. The combined effect of BGs and Siglec15 shRNA can normalize dysregulated bone homeostasis at the bone metastasis site and significantly reduced bone destruction. Overall, the use of Siglec-15-targeting integrated BG hydrogels may provide a promising therapeutic strategy for treating bone metastasis caused by breast cancer.
Collapse
Affiliation(s)
- Chengkuan Liu
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Yangui Zhong
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Haibo Huang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Siyuan Lan
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Jing Li
- Second People's Hospital of Shenzhen, Shenzhen, Guangdong, PR China
| | - Deqiu Huang
- School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Intelligent Chinese Medicine Research Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Wen Zhang
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
15
|
Zhao D, Wen X, Wu J, Chen F. Photoimmunotherapy for cancer treatment based on organic small molecules: Recent strategies and future directions. Transl Oncol 2024; 49:102086. [PMID: 39181114 PMCID: PMC11387906 DOI: 10.1016/j.tranon.2024.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
Photodynamic therapy (PDT) is considered as a promising anticancer approach, owning to its high efficiency and spatiotemporal selectivity. Ample evidence indicated that PDT can trigger immunogenic cell death by releasing antigens that activate immune cells to promote anti-tumor immunity. Nevertheless, the inherent nature of tumors and their complex heterogeneity often limits the efficiency of PDT, which can be overcome with a novel strategy of photo-immunotherapy (PIT) strategy. By exploring the principles of PDT induction and ICD enhancement, combined with other therapies such as chemotherapy or immune checkpoint blockade, the tailored solutions can be designed to address specific challenges of drug resistance, hypoxic conditions, and tumor immunosuppressive microenvironments (TIMEs), which enables targeted enhancement of systemic immunity to address most distant and recurrent cancers. The present article summarizes the specific strategies of PIT and discusses recent existing limitations. More importantly, we anticipate that the perspectives presented herein will help address the clinical translation challenges associated with PIT.
Collapse
Affiliation(s)
- Deming Zhao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Jiani Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
16
|
Qiu C, Tang C, Tang Y, Su K, Chai X, Zhan Z, Niu X, Li J. RGS5 + lymphatic endothelial cells facilitate metastasis and acquired drug resistance of breast cancer through oxidative stress-sensing mechanism. Drug Resist Updat 2024; 77:101149. [PMID: 39306871 DOI: 10.1016/j.drup.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 11/12/2024]
Abstract
AIMS Oxidative stress reflected by elevated reactive oxygen species (ROS) in the tumor ecosystem, is a hallmark of human cancers. The mechanisms by which oxidative stress regulate the metastatic ecosystem and resistance remain elusive. This study aimed to dissect the oxidative stress-sensing machinery during the evolvement of early dissemination and acquired drug resistance in breast cancer. METHODS Here, we constructed single-cell landscape of primary breast tumors and metastatic lymph nodes, and focused on RGS5+ endothelial cell subpopulation in breast cancer metastasis and resistance. RESULTS We reported on RGS5 as a master in endothelial cells sensing oxidative stress. RGS5+ endothelial cells facilitated tumor-endothelial adhesion and transendothelial migration of breast cancer cells. Antioxidant suppressed oxidative stress-induced RGS5 expression in endothelial cells, and prevented adhesion and transendothelial migration of cancer cells. RGS5-overexpressed HLECs displayed attenuated glycolysis and oxidative phosphorylation. Drug-resistant HLECs with RGS5 overexpression conferred acquired drug resistance of breast cancer cells. Importantly, genetic knockdown of RGS5 prevented tumor growth and lymph node metastasis. CONCLUSIONS Our work demonstrates that RGS5 in lymphatic endothelial cells senses oxidative stress to promote breast cancer lymph node metastasis and resistance, providing a novel insight into a potentially targetable oxidative stress-sensing machinery in breast cancer treatment.
Collapse
Affiliation(s)
- Caixin Qiu
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chaoyi Tang
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yujun Tang
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ka Su
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiao Chai
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zexu Zhan
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xing Niu
- China Medical University Shenyang 110122, China; Experimental Center of BIOQGene, YuanDong International Academy of Life Sciences, 999077, Hong Kong, China.
| | - Jiehua Li
- Department of Gastrointestine and Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
17
|
Li S, Chen K, Sun Z, Chen M, Pi W, Zhou S, Yang H. Radiation drives tertiary lymphoid structures to reshape TME for synergized antitumour immunity. Expert Rev Mol Med 2024; 26:e30. [PMID: 39438247 PMCID: PMC11505612 DOI: 10.1017/erm.2024.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/24/2024] [Accepted: 07/15/2024] [Indexed: 10/25/2024]
Abstract
Radiotherapy (RT) plays a key role in the tumour microenvironment (TME), impacting the immune response via cellular and humoral immunity. RT can induce local immunity to modify the TME. It can stimulate dendritic cell maturation and T-cell infiltration. Moreover, B cells, macrophages and other immune cells may also be affected. Tertiary lymphoid structure (TLS) is a unique structure within the TME and a class of aggregates containing T cells, B cells and other immune cells. The maturation of TLS is determined by the presence of mature dendritic cells, the density of TLS is determined by the number of immune cells. TLS maturation and density both affect the antitumour immune response in the TME. This review summarized the recent research on the impact and the role of RT on TLS, including the changes of TLS components and formation conditions and the mechanism of how RT affects TLS and transforms the TME. RT may promote TLS maturation and density to modify the TME regarding enhanced antitumour immunity.
Collapse
Affiliation(s)
- Shuling Li
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Kuifei Chen
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Zhenwei Sun
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Meng Chen
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Haihua Yang
- Taizhou Hospital, Shaoxing University, Taizhou, Zhejiang, China
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
18
|
Li Y, Chen J, Xia Q, Shang J, He Y, Li Z, Chen Y, Gao F, Yu X, Yuan Z, Yin P. Photothermal Fe 3O 4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy. J Nanobiotechnology 2024; 22:630. [PMID: 39415226 PMCID: PMC11484360 DOI: 10.1186/s12951-024-02909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
Photothermal therapy (PTT) is a promising non-invasive treatment that has shown great potential in eliminating tumors. It not only induces apoptosis of cancer cells but also triggers immunogenic cell death (ICD) which could activate the immune system against cancer. However, the immunosuppressive tumor microenvironment (TIME) poses a challenge to triggering strong immune responses with a single treatment, thus limiting the therapeutic effect of cancer immunotherapy. In this study, dual-targeted nano delivery system (GOx@FeNPs) combined with αPD-L1 immune checkpoint blocker could inhibit colorectal cancer (CRC) progression by mediating PTT, ferroptosis and anti-tumor immune response. Briefly, specific tumor delivery was achieved by the cyclic arginine glycyl aspartate (cRGD) peptide and anisamide (AA) in GOx@FeNPs which not only had a good photothermal effect to realize PTT and induce ICD, but also could deplete glutathione (GSH) and catalyze the production of reactive oxygen species (ROS) from endogenous H2O2. All these accelerated the Fenton reaction and augmented the process of PTT-induced ICD. Thus, a large amount of tumor specific antigen was released to stimulate the maturation of dendritic cells (DCs) in lymph nodes and enhance the infiltration of CD8+ T cells in tumor. At the same time, the combination with αPD-L1 has favorable synergistic effectiveness against CRC with tumor inhibition rate over 90%. Furthermore, GOx@FeNPs had good magnetic resonance imaging (MRI) capability under T2-weighting owing to the presence of Fe3+, which is favorable for integrated diagnosis and treatment systems of CRC. By constructing a dual-targeted GOx@FeNPs nanoplatform, PTT synergistically combined with ferroptosis was realized to improve the immunotherapeutic effect, providing a new approach for CRC immunotherapy.
Collapse
Affiliation(s)
- Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yingying Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
19
|
Chen Y, Wang Z, Zhang C, Su Y, Zhou T, Hu K. Revealing the mechanism of natural product-induced immunogenic cell death: opening a new chapter in tumor immunotherapy. Front Immunol 2024; 15:1470071. [PMID: 39445013 PMCID: PMC11496055 DOI: 10.3389/fimmu.2024.1470071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
This review underscores the role of natural products in inducing immunogenic cell death (ICD) as a key strategy in tumor immunotherapy. It reveals that natural products can activate ICD through multiple pathways-apoptosis, autophagy, pyroptosis, and necroptosis-leading to the release of danger-associated molecular patterns (DAMPs), dendritic cell activation, and improved antigen presentation, which together stimulate a potent anti-tumor immune response. The study also demonstrates the enhanced therapeutic potential of combining natural products with immune checkpoint inhibitors. With a focus on translating preclinical findings into clinical practice, this review consolidates recent discoveries and suggests future research paths, offering both theoretical insights and practical guidance for advancing cancer immunotherapy.
Collapse
Affiliation(s)
- Yukun Chen
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenzhi Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chi Zhang
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yisa Su
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tian Zhou
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiwen Hu
- Department of Oncology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Huang J, Ji L, Si J, Yang X, Luo Y, Zheng X, Ye L, Li Y, Wang S, Ge T, Tong X, Cai Y, Mou X. Platelet membrane-coated oncolytic vaccinia virus with indocyanine green for the second near-infrared imaging guided multi-modal therapy of colorectal cancer. J Colloid Interface Sci 2024; 671:216-231. [PMID: 38801796 DOI: 10.1016/j.jcis.2024.05.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy with insidious onset and diagnostic challenges, highlighting the need for therapeutic approaches to enhance theranostic outcomes. In this study, we elucidated the unique temperature-resistant properties of the oncolytic vaccinia virus (OVV), which can synergistically target tumors under photothermal conditions. To capitalize on this characteristic, we harnessed the potential of the OVV by surface-loading it with indocyanine green (ICG) and encapsulating it within a platelet membrane (PLTM), resulting in the creation of PLTM-ICG-OVV (PIOVV). This complex seamlessly integrates virotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). The morphology, size, dispersion stability, optical properties, and cellular uptake of PIOVV were evaluated using transmission electron microscopy (TEM). In vitro and in vivo experiments revealed specificity of PIOVV for cancer cells; it effectively induced apoptosis and suppressed CT26 cell proliferation. In mouse models, PIOVV exhibits enhanced fluorescence at tumor sites, accompanied by prolonged blood circulation. Under 808 nm laser irradiation, PIOVV significantly inhibited tumor growth. This strategy holds the potential for advancing phototherapy, oncolytic virology, drug delivery, and tumor-specific targeting, particularly in the context of CRC theranostics.
Collapse
Affiliation(s)
- Jiaqing Huang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Lichen Ji
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jingxing Si
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xue Yang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yanxi Luo
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310059, China
| | - Xiaoyan Zheng
- Department of Laboratory Medicine Department, People's Hospital of Quzhou, Wenzhou Medical University, Quzhou 324002, China
| | - Luyi Ye
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yishu Li
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Shibing Wang
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Tong Ge
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xiangmin Tong
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China.
| | - Yu Cai
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
21
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
22
|
Xu Y, He C, Xi Y, Zhang Y, Bai Y. Gut microbiota and immunosenescence in cancer. Semin Cancer Biol 2024; 104-105:32-45. [PMID: 39127266 DOI: 10.1016/j.semcancer.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Cancer is generally defined as a disease of aging. With aging, the composition, diversity and functional characteristics of the gut microbiota occur changes, with a decline of beneficial commensal microbes triggered by intrinsic and extrinsic factors (e.g., diet, drugs and chronic health conditions). Nowadays, dysbiosis of the gut microbiota is recognized as a hallmark of cancer. At the same time, aging is accompanied by changes in innate and adaptive immunity, known as immunosenescence, as well as chronic low-grade inflammation, known as inflammaging. The elevated cancer incidence and mortality in the elderly are linked with aging-associated alterations in the gut microbiota that elicit systemic metabolic alterations, leading to immune dysregulation with potentially tumorigenic effects. The gut microbiota and immunosenescence might both affect the response to treatment in cancer patients. In-depth understanding of age-associated alterations in the gut microbiota and immunity will shed light on the risk of cancer development and progression in the elderly. Here, we describe the aging-associated changes of the gut microbiota in cancer, and review the evolving understanding of the gut microbiota-targeted intervention strategies. Furthermore, we summarize the knowledge on the cellular and molecular mechanisms of immunosenescence and its impact on cancer. Finally, we discuss the latest knowledge about the relationships between gut microbiota and immunosenescence, with implications for cancer therapy. Intervention strategies targeting the gut microbiota may attenuate inflammaging and rejuvenate immune function to provide antitumor benefits in elderly patients.
Collapse
Affiliation(s)
- Yaozheng Xu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| | - Ying Xi
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110136, China; Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning 110136, China.
| |
Collapse
|
23
|
Zhao J, Wang Z, Tian Y, Ning J, Ye H. T cell exhaustion and senescence for ovarian cancer immunotherapy. Semin Cancer Biol 2024; 104-105:1-15. [PMID: 39032717 DOI: 10.1016/j.semcancer.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Ovarian cancer is a common gynecological malignancy, and its treatment remains challenging. Although ovarian cancer may respond to immunotherapy because of endogenous immunity at the molecular or T cell level, immunotherapy has so far not had the desired effect. The functional status of preexisting T cells is an indispensable determinant of powerful antitumor immunity and immunotherapy. T cell exhaustion and senescence are two crucial states of T cell dysfunction, which share some overlapping phenotypic and functional features, but each status possesses unique molecular and developmental signatures. It has been widely accepted that exhaustion and senescence of T cells are important strategies for cancer cells to evade immunosurveillance and maintain the immunosuppressive microenvironment. Herein, this review summarizes the phenotypic and functional features of exhaust and senescent T cells, and describes the key drivers of the two T cell dysfunctional states in the tumor microenvironment and their functional roles in ovarian cancer. Furthermore, we present a summary of the molecular machinery and signaling pathways governing T cell exhaustion and senescence. Possible strategies that can prevent and/or reverse T cell dysfunction are also explored. An in-depth understanding of exhausted and senescent T cells will provide novel strategies to enhance immunotherapy of ovarian cancer through redirecting tumor-specific T cells away from a dysfunctional developmental trajectory.
Collapse
Affiliation(s)
- Jiao Zhao
- Department of Gynecology Surgery 3, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yingying Tian
- Department of Oncology Radiotherapy 2, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Ning
- Department of General Internal Medicine (VIP Ward), Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Huinan Ye
- Department of Digestive Diseases 1, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
24
|
Luo Z, Li Y, Xu B, Yu T, Luo M, You P, Niu X, Li J. Overexpression of ESYT3 improves radioimmune responses through activating cGAS-STING pathway in lung adenocarcinoma. Exp Hematol Oncol 2024; 13:77. [PMID: 39103908 DOI: 10.1186/s40164-024-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Radiotherapy can modulate systemic antitumor immunity, while immune status in the tumor microenvironment also influences the efficacy of radiotherapy, but relevant molecular mechanisms are poorly understood in lung adenocarcinoma (LUAD). METHODS In this study, we innovatively proposed a radiotherapy response classification for LUAD, and discovered ESYT3 served as a tumor suppressor and radioimmune response sensitizer. ESYT3 expression was measured both in radioresistant and radiosensitive LUAD tissues and cells. The influence of ESYT3 on radiotherapy sensitivity and resistance was then investigated. Interaction between ESYT3 and STING was evaluated through multiple immunofluorescent staining and coimmunoprecipitation, and downstream molecules were further analyzed. In vivo models were constructed to assess the combination treatment efficacy of ESYT3 overexpression with radiotherapy. RESULTS We found that radioresistant subtype presented immunosuppressive state and activation of DNA damage repair pathways than radiosensitive subtype. ESYT3 expression was remarkably attenuated both in radioresistant LUAD tissues and cells. Clinically, low ESYT3 expression was linked with radioresistance. Overexpression of ESYT3 enabled to alleviate radioresistance, and sensitize LUAD cells to DNA damage induced by irradiation. Mechanically, ESYT3 directly interacted with STING, and activated cGAS-STING signaling, subsequently increasing the generation of type I IFNs as well as downstream chemokines CCL5 and CXCL10, thus improving radioimmune responses. The combination treatment of ESYT3 overexpression with radiotherapy had a synergistic anticancer effect in vitro and in vivo. CONCLUSIONS In summary, low ESYT3 expression confers resistance to radiotherapy in LUAD, and its overexpression can improve radioimmune responses through activating cGAS-STING-dependent pathway, thus providing an alternative combination therapeutic strategy for LUAD patients.
Collapse
Affiliation(s)
- Zan Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China
- Jiangxi Key Laboratory of Oncology, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China
| | - Ying Li
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, Hubei, China
| | - Bin Xu
- Laboratory of Tumor Metastasis, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Health Committee Key (JHCK), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China.
| | - Tenghua Yu
- Department of Breast Surgery, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China
| | - Mingming Luo
- Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China
| | - PeiMeng You
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Cancer Hospital of Nanchang University, Jiangxi Cancer Hospital of Nanchang University), Nanchang, Jiangxi, 330029, China
| | - Xing Niu
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong, Hong Kong, 999077, China.
- China Medical University, Shenyang, Liaoning, 110122, China.
| | - Junyu Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China.
- Jiangxi Key Laboratory of Oncology, The Second Affiliated Hospital of Nanchang Medical College), Jiangxi Cancer Hospital, Nanchang, Jiangxi, 330029, China.
| |
Collapse
|
25
|
Liu J, Liu H, Huang S, Peng H, Li J, Tu K, Tan S, Xie R, Lei L, Yue Q, Gao H, Cai L. Multiple Treatment of Triple-Negative Breast Cancer Through Gambogic Acid-Loaded Mesoporous Polydopamine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309583. [PMID: 38446095 DOI: 10.1002/smll.202309583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous subtype of breast cancer, characterized by aggressiveness and high recurrence rate. As monotherapy provides limited benefit to TNBC patients, combination therapy emerges as a promising treatment approach. Gambogic acid (GA) is an exceedingly promising anticancer agent. Nonetheless, its application potential is hampered by low drug loading efficiency and associated toxic side effects. To overcome these limitations, using mesoporous polydopamine (MPDA) endowed with photothermal conversion capabilities is considered as a delivery vehicle for GA. Meanwhile, GA can inhibit the activity of heat shock protein 90 (HSP90) to enhance the photothermal effect. Herein, GA-loaded MPDA nanoparticles (GA@MPDA NPs) are developed with a high drug loading rate of 75.96% and remarkable photothermal conversion performance. GA@MPDA NPs combined with photothermal treatment (PTT) significantly inhibit the tumor growth, and effectively trigger the immunogenic cell death (ICD), which thereby increase the number of activated effector T cells (CD8+ T cells and CD4+ T cells) in the tumor, and hoist the level of immune-inflammatory cytokines (IFN-γ, IL-6, and TNF-α). The above results suggest that the combination of GA@MPDA NPs with PTT expected to activate the antitumor immune response, thus potentially enhancing the clinical therapeutic effect on TNBC.
Collapse
Affiliation(s)
- Jiaqi Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Shan Huang
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Hong Peng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiamei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Kerong Tu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Wenjiang District People's Hospital of Chengdu, Chengdu, 611130, China
| | - Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lei Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Qin Yue
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
26
|
Wang S, Liu L, Tian L, Xu P, Li S, Hu L, Xia Y, Ding Y, Wang J, Li S. Elucidation of Spatial Cooperativity in Chemo-Immunotherapy by a Sequential Dual-pH-Responsive Drug Delivery System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403296. [PMID: 38602707 DOI: 10.1002/adma.202403296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Combining immune checkpoint blockade with chemotherapy through nanotechnology is promising in terms of safety and efficacy. However, the distinct subcellular distribution of each ingredient's action site makes it challenging to acquire an optimal synergism. Herein, a dual-pH responsive hybrid polymeric micelle system, HNP(αPDL16.9, Dox5.3), is constructed as a proof-of-concept for the spatial cooperativity in chemo-immunotherapy. HNP retains the inherent pH-transition of each polymer, with stepwise disassembly under discrete pH thresholds. Within weakly acidic extracellular tumor environment, αPDL1 is first released to block the checkpoint on cell membranes. The remaining intact Doxorubicin-loaded micelle NP(Dox)5.3 displays significant tropism toward tumor cells and releases Dox upon lysosomal pH for efficient tumor immunogenic cell death without immune toxicity. This sequential-released pattern boosts DC activation and primes CD8+ T cells, leading to enhanced therapeutic performance than single agent or an inverse-ordered combination in multiple murine tumor models. Using HNP, the indispensable role of conventional type 1 DC (cDC1) is identified in chemo-immunotherapy. A co-signature of cDC1 and CD8 correlates with cancer patient survival after neoadjuvant Pembrolizumab plus chemotherapy in clinic. This study highlights spatial cooperativity of chemo- and immuno-agents in immunoregulation and provides insights into the rational design of drug combination for future nanotherapeutics development.
Collapse
Affiliation(s)
- Shihao Wang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Lifeng Liu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Limin Tian
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Pengcheng Xu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Shixuan Li
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Lixin Hu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanming Xia
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Ding
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| | - Jian Wang
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Suxin Li
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
27
|
Lu XX, Xue C, Dong JH, Zhang YZ, Gao F. Nanoplatform-based strategies for enhancing the lethality of current antitumor PDT. J Mater Chem B 2024; 12:3209-3225. [PMID: 38497405 DOI: 10.1039/d4tb00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Photodynamic therapy (PDT) exhibits great application prospects in future clinical oncology due to its spatiotemporal controllability and good biosafety. However, the antitumor efficacy of PDT is seriously hindered by many factors, including tumor hypoxia, limited light penetration ability, and strong defense mechanisms of tumors. Considering that it is difficult to completely solve the first two problems, enhancing the lethality of antitumor PDT has become a good idea to extend its clinical application. Herein, we summarize the nanoplatform-involved strategies to effectively amplify the tumoricidal capability of current PDT and then discuss the present bottlenecks and prospects of the nanoplatform-based PDT sensitization strategies in tumor therapy. We hope this review will provide some references for others to design high-performance PDT nanoplatforms for tumor therapy.
Collapse
Affiliation(s)
- Xin-Xin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Jian-Hui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
28
|
Gao F, You X, Yang L, Zou X, Sui B. Boosting immune responses in lung tumor immune microenvironment: A comprehensive review of strategies and adjuvants. Int Rev Immunol 2024; 43:280-308. [PMID: 38525925 DOI: 10.1080/08830185.2024.2333275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
The immune system has a substantial impact on the growth and expansion of lung malignancies. Immune cells are encompassed by a stroma comprising an extracellular matrix (ECM) and different cells like stromal cells, which are known as the tumor immune microenvironment (TIME). TME is marked by the presence of immunosuppressive factors, which inhibit the function of immune cells and expand tumor growth. In recent years, numerous strategies and adjuvants have been developed to extend immune responses in the TIME, to improve the efficacy of immunotherapy. In this comprehensive review, we outline the present knowledge of immune evasion mechanisms in lung TIME, explain the biology of immune cells and diverse effectors on these components, and discuss various approaches for overcoming suppressive barriers. We highlight the potential of novel adjuvants, including toll-like receptor (TLR) agonists, cytokines, phytochemicals, nanocarriers, and oncolytic viruses, for enhancing immune responses in the TME. Ultimately, we provide a summary of ongoing clinical trials investigating these strategies and adjuvants in lung cancer patients. This review also provides a broad overview of the current state-of-the-art in boosting immune responses in the TIME and highlights the potential of these approaches for improving outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Fei Gao
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiaoqing You
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Liu Yang
- Department of Oncology, Da Qing Long Nan Hospital, Daqing, Heilongjiang Province, China
| | - Xiangni Zou
- Department of Nursing, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Bowen Sui
- Department of Oncology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
29
|
Tao J, Xue C, Cao M, Ye J, Sun Y, Chen H, Guan Y, Zhang W, Zhang W, Yao Y. Protein disulfide isomerase family member 4 promotes triple-negative breast cancer tumorigenesis and radiotherapy resistance through JNK pathway. Breast Cancer Res 2024; 26:1. [PMID: 38167446 PMCID: PMC10759449 DOI: 10.1186/s13058-023-01758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Despite radiotherapy ability to significantly improve treatment outcomes and survival in triple-negative breast cancer (TNBC) patients, acquired resistance to radiotherapy poses a serious clinical challenge. Protein disulfide isomerase exists in endoplasmic reticulum and plays an important role in promoting protein folding and post-translational modification. However, little is known about the role of protein disulfide isomerase family member 4 (PDIA4) in TNBC, especially in the context of radiotherapy resistance. METHODS We detected the presence of PDIA4 in TNBC tissues and paracancerous tissues, then examined the proliferation and apoptosis of TNBC cells with/without radiotherapy. As part of the validation process, xenograft tumor mouse model was used. Mass spectrometry and western blot analysis were used to identify PDIA4-mediated molecular signaling pathway. RESULTS Based on paired clinical specimens of TNBC patients, we found that PDIA4 expression was significantly higher in tumor tissues compared to adjacent normal tissues. In vitro, PDIA4 knockdown not only increased apoptosis of tumor cells with/without radiotherapy, but also decreased the ability of proliferation. In contrast, overexpression of PDIA4 induced the opposite effects on apoptosis and proliferation. According to Co-IP/MS results, PDIA4 prevented Tax1 binding protein 1 (TAX1BP1) degradation by binding to TAX1BP1, which inhibited c-Jun N-terminal kinase (JNK) activation. Moreover, PDIA4 knockdown suppressed tumor growth xenograft model in vivo, which was accompanied by an increase in apoptosis and promoted tumor growth inhibition after radiotherapy. CONCLUSIONS The results of this study indicate that PDIA4 is an oncoprotein that promotes TNBC progression, and targeted therapy may represent a new and effective anti-tumor strategy, especially for patients with radiotherapy resistance.
Collapse
Affiliation(s)
- Jinqiu Tao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Cailin Xue
- Division of Hepatobilliary Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Meng Cao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yulu Sun
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Hao Chen
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yinan Guan
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Wenjie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Yongzhong Yao
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
30
|
Guo Y, Zhou J, Wang Y, Wu X, Mou Y, Song X. Cell type-specific molecular mechanisms and implications of necroptosis in inflammatory respiratory diseases. Immunol Rev 2024; 321:52-70. [PMID: 37897080 DOI: 10.1111/imr.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.
Collapse
Affiliation(s)
- Ying Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Jin Zhou
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
- Department of Endocrinology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yaqi Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xueliang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
- Tumor Research Institute, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
- Key Laboratory of Spatiotemporal Single-Cell Technologies and Translational Medicine, Yantai, Shandong, China
| |
Collapse
|