1
|
Domhagen F, Langer S, Sasic Kalagasidis A. Theoretical Threshold for Estimating the Impact of Ventilation on Materials' Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5058-5067. [PMID: 38445590 PMCID: PMC10956430 DOI: 10.1021/acs.est.3c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In new buildings, nonoccupant VOC emissions are initially high but typically decrease within months. Increased ventilation is commonly used to improve indoor air quality, assuming it speeds up VOC off-gassing from materials. However, previous research presents inconsistent results. This review introduces a simplified analytical model to understand the ventilation-emission relationship. By combining factors such as diffusivity, emitting area, and time, the model suggests the existence of a theoretical ventilation threshold beyond which enhanced ventilation has no further influence on emission rates. A threshold of approximately 0.13 L s-1 m-2 emitting area has been found for various VOCs documented in the existing literature, with which the conflicting results are explained. It is also shown that the threshold remains notably consistent across different boundary conditions and model resolutions, indicating its suitability for real-world applications.
Collapse
Affiliation(s)
- Fredrik Domhagen
- Department
of Architecture and Civil Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| | - Sarka Langer
- Department
of Architecture and Civil Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
- IVL
Swedish Environmental Research Institute, P.O. Box 53021, SE-40014 Gothenburg, Sweden
| | - Angela Sasic Kalagasidis
- Department
of Architecture and Civil Engineering, Chalmers
University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Liu G, Zheng W, Wang H, Liu L, Meng Y, Huang Y, Ma Y. Research on the Effects of Environmental Factors on the Emission of Volatile Organic Compounds from Plastic Track. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1828. [PMID: 36767201 PMCID: PMC9914347 DOI: 10.3390/ijerph20031828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
The volatile organic compounds (VOCs) released from a plastic track can cause stimulation and damage to the human body; the temperature, relative humidity (RH) and air exchange rate (AER) have a significant impact on the release of VOCs from materials. In this study, we used a 0.1 m3 environmental chamber; a qualitative and quantitative analysis of VOCs released from a plastic track was conducted by gas chromatography-mass spectrometry with a temperature range of 23-60 °C, RH of 5-65% and AER of 0.5-1.5 h-1. The formation rate, the speciation, the nature of the main compounds and the mass concentration of VOCs under different environmental conditions were determined. It is shown that with the increase of temperature, the concentration of some main VOCs gradually increased and the Calkane and Coxygenated organic compounds were larger by 736.13 μg·m-3 and 984.22 μg·m-3 at 60 °C, respectively. Additionally, with the increase of RH, the concentration of different VOCs gradually increased. Nonetheless, the change in RH had no effect on the concentration percentage of different VOCs in the total VOC. With the increase in AER, the concentration of different main VOCs significantly declined, as did the VOC detection rate. When the AER was increased from 0.5 h-1 to 1.5 h-1, the Calkane decreased by 206.74-254.21 μg·m-3 and Coxygenated organic compounds decreased by 73.06-241.82 μg·m-3, and the number of non-detected VOC monomers increased from 1 to 7-12 species. The conclusion is that the increase in temperature and RH can promote the emission of VOCs from a plastic track, while increasing AER significantly reduces the concentrations of VOCs. Environmental temperature mainly causes the changes in the concentrations of different VOCs, and RH is a main factor leading to the variation in the detection rate of main VOCs. Overall, the release of VOCs from a plastic track is affected by environmental temperature, AER and RH in sequence. Through this paper, we clarify the effects of ambient temperature, RH and AER on the emission of VOCs from a plastic track, and furthermore, we determine the release characteristics of plastic track VOCs.
Collapse
Affiliation(s)
- Gan Liu
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Weitao Zheng
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
| | - Hong Wang
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
| | - Lin Liu
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
| | - Yanrong Meng
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
| | - Yu Huang
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
| | - Yong Ma
- Research Center of Sports Equipment Engineering Technology of Hubei Province, Wuhan Sports University, Wuhan 430079, China
- Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
3
|
Indoor Air Quality and Health Outcomes in Employees Working from Home during the COVID-19 Pandemic: A Pilot Study. ATMOSPHERE 2021. [DOI: 10.3390/atmos12121665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Indoor air quality (IAQ) has a substantial impact on public health. Since the beginning of the COVID-19 pandemic, more employees have worked remotely from home to minimize in-person contacts. This pilot study aims to measure the difference in workplace IAQ before and during the pandemic and its impact on employees’ health. The levels of fine particulate matter (PM2.5) and total volatile organic chemicals (tVOC) were measured in the employees’ offices before the COVID-19 pandemic and at homes while working from home during the pandemic using Foobot air monitors. The frequencies of six sick building syndrome (SBS) symptoms were evaluated at each period of monitoring. The result showed PM2.5 levels in households while working from home were significantly higher than in offices while working at the office for all participants (p < 0.05). The PM2.5 levels in all households exceeded the health-based annual mean standard (12 µg/m3), whereas 90% of offices were in compliance. The tVOC levels were all below the standard (500 µg/m3). We also found a higher frequency of SBS symptoms were observed while working from home as the IAQ was worse at home. This study suggested that working from home might have a detrimental health impact due to poor IAQ and providing interventions to remote employees should be considered.
Collapse
|
4
|
Cummings BE, Avery AM, DeCarlo PF, Waring MS. Improving Predictions of Indoor Aerosol Concentrations of Outdoor Origin by Considering the Phase Change of Semivolatile Material Driven by Temperature and Mass-Loading Gradients. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9000-9011. [PMID: 34106692 DOI: 10.1021/acs.est.1c00417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Outdoor aerosols experience environmental changes as they are transported indoors, including outdoor-to-indoor temperature and mass-loading gradients, which can reduce or enhance their indoor concentrations due to repartitioning driven by changes in thermodynamic equilibrium states. However, the complexity required to model repartitioning typically hinders its inclusion in studies predicting indoor exposure to ambient aerosols. To facilitate exposure predictions, this work used an explicit thermodynamic indoor aerosol model to simulate outdoor-to-indoor aerosol repartitioning typical for residential and office buildings across the 16 U.S. climate zones over an annual time horizon. Results demonstrate that neglecting repartitioning when predicting indoor concentrations can produce errors of up to 80-100% for hydrocarbon-like organic aerosol, 40-60% for total organic aerosol, 400% for ammonium nitrate, and 60% (typically 3 μg/m3) for the total PM2.5 aerosol. Underpredictions were more likely for buildings in hotter than colder regions, and for residences than offices, since both cooler indoor air and more meaningful residential organic aerosol concentrations encourage condensation of semivolatile organics. Furthermore, a method for computing correction factors to more easily account for thermodynamic repartitioning is provided. Applying these correction factors to mechanical-only aerosol predictions significantly reduced errors to <0.5 μg/m3 for the total indoor PM2.5 while bypassing explicit thermodynamic simulations.
Collapse
Affiliation(s)
- Bryan E Cummings
- Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Anita M Avery
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Peter F DeCarlo
- Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Michael S Waring
- Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Liquid crystal display screens as a source for indoor volatile organic compounds. Proc Natl Acad Sci U S A 2021; 118:2105067118. [PMID: 34074793 DOI: 10.1073/pnas.2105067118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Liquid crystal displays (LCDs) have profoundly shaped the lifestyle of humans. However, despite extensive use, their impacts on indoor air quality are unknown. Here, we perform flow cell experiments on three different LCDs, including a new computer monitor, a used laptop, and a new television, to investigate whether their screens can emit air constituents. We found that more than 30 volatile organic compounds (VOCs) were emitted from LCD screens, with a total screen area-normalized emission rate of up to (8.25 ± 0.90) × 109 molecules ⋅ s-1 ⋅ cm-2 In addition to VOCs, 10 liquid crystal monomers (LCMs), a commercial chemical widely used in LCDs, were also observed to be released from those LCD screens. The structural identification of VOCs is based on a "building block" hypothesis (i.e., the screen-emitted VOCs originate from the "building block chemicals" used in the manufacturing of liquid crystals), which are the key components of LCD screens. The identification of LCMs is based upon the detailed information of 362 currently produced LCMs. The emission rates of VOCs and LCMs increased by up to a factor of 9, with an increase of indoor air humidity from 23 to 58% due to water-organic interactions likely facilitating the diffusion rates of organics. These findings indicate that LCD screens are a potentially important source for indoor VOCs that has not been considered previously.
Collapse
|
6
|
Lunderberg DM, Misztal PK, Liu Y, Arata C, Tian Y, Kristensen K, Weber RJ, Nazaroff WW, Goldstein AH. High-Resolution Exposure Assessment for Volatile Organic Compounds in Two California Residences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6740-6751. [PMID: 33945266 DOI: 10.1021/acs.est.0c08304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Time spent in residences substantially contributes to human exposure to volatile organic compounds (VOCs). Such exposures have been difficult to study deeply, in part because VOC concentrations and indoor occupancy vary rapidly. Using a fast-response online mass spectrometer, we report time-resolved exposures from multi-season sampling of more than 200 VOCs in two California residences. Chemical-specific source apportionment revealed that time-averaged exposures for most VOCs were mainly attributable to continuous indoor emissions from buildings and their static contents. Also contributing to exposures were occupant-related activities, such as cooking, and outdoor-to-indoor transport. Health risk assessments are possible for a subset of observed VOCs. Acrolein, acetaldehyde, and acrylic acid concentrations were above chronic advisory health guidelines, whereas exposures for other assessable species were typically well below the guideline levels. Studied residences were built in the mid-20th century, indicating that VOC emissions even from older buildings and their contents can substantially contribute to occupant exposures.
Collapse
Affiliation(s)
- David M Lunderberg
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
| | - Pawel K Misztal
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
| | - Yingjun Liu
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
| | - Caleb Arata
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
| | - Yilin Tian
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Kasper Kristensen
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
| | - Robert J Weber
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
| | - William W Nazaroff
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Allen H Goldstein
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California 94720, United States
- Department of Civil and Environmental Engineering, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Cummings BE, Waring MS. Potted plants do not improve indoor air quality: a review and analysis of reported VOC removal efficiencies. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:253-261. [PMID: 31695112 DOI: 10.1038/s41370-019-0175-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Potted plants have demonstrated abilities to remove airborne volatile organic compounds (VOC) in small, sealed chambers over timescales of many hours or days. Claims have subsequently been made suggesting that potted plants may reduce indoor VOC concentrations. These potted plant chamber studies reported outcomes using various metrics, often not directly applicable to contextualizing plants' impacts on indoor VOC loads. To assess potential impacts, 12 published studies of chamber experiments were reviewed, and 196 experimental results were translated into clean air delivery rates (CADR, m3/h), which is an air cleaner metric that can be normalized by volume to parameterize first-order loss indoors. The distribution of single-plant CADR spanned orders of magnitude, with a median of 0.023 m3/h, necessitating the placement of 10-1000 plants/m2 of a building's floor space for the combined VOC-removing ability by potted plants to achieve the same removal rate that outdoor-to-indoor air exchange already provides in typical buildings (~1 h-1). Future experiments should shift the focus from potted plants' (in)abilities to passively clean indoor air, and instead investigate VOC uptake mechanisms, alternative biofiltration technologies, biophilic productivity and well-being benefits, or negative impacts of other plant-sourced emissions, which must be assessed by rigorous field work accounting for important indoor processes.
Collapse
Affiliation(s)
- Bryan E Cummings
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut, St. Philadelphia, PA, 19104, USA
| | - Michael S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, 3141 Chestnut, St. Philadelphia, PA, 19104, USA.
| |
Collapse
|
8
|
Huangfu Y, Lima NM, O'Keeffe PT, Kirk WM, Lamb BK, Walden VP, Jobson BT. Whole-House Emission Rates and Loss Coefficients of Formaldehyde and Other Volatile Organic Compounds as a Function of the Air Change Rate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2143-2151. [PMID: 31898894 DOI: 10.1021/acs.est.9b05594] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Whole-house emission rates and indoor loss coefficients of formaldehyde and other volatile organic compounds (VOCs) were determined from continuous measurements inside a net-zero energy home at two different air change rates (ACHs). By turning the mechanical ventilation on and off, it was demonstrated that formaldehyde concentrations reach a steady state much more quickly than other VOCs, consistent with a significant indoor loss rate attributed to surface uptake. The first order loss coefficient for formaldehyde was 0.47 ± 0.06 h-1 at 0.08 h-1 ACH and 0.88 ± 0.22 h-1 at 0.62 h-1 ACH. Loss rates for other VOCs measured were not discernible, with the exception of hexanoic acid. A factor of 5.5 increase in the ACH increased the whole-house emission rates of VOCs but by varying degrees (factors of 1.1 to 3.8), with formaldehyde displaying no significant change. The formaldehyde area-specific emission rate (86 ± 8 μg m-2 h-1) was insensitive to changes in the ACH because its large indoor loss rate muted the impact of ventilation on indoor air concentrations. These results demonstrate that formaldehyde loss rates must be taken into account to correctly estimate whole-house emission rates and that ventilation will not be as effective at reducing indoor formaldehyde concentrations as it is for other VOCs.
Collapse
Affiliation(s)
- Yibo Huangfu
- Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering , Washington State University , Pullman 99164 , Washington , United States
| | - Nathan M Lima
- Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering , Washington State University , Pullman 99164 , Washington , United States
- School of Architecture and Construction Management , Washington State University , Pullman 99164 , Washington , United States
| | - Patrick T O'Keeffe
- Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering , Washington State University , Pullman 99164 , Washington , United States
| | - William M Kirk
- School of Architecture and Construction Management , Washington State University , Pullman 99164 , Washington , United States
| | - Brian K Lamb
- Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering , Washington State University , Pullman 99164 , Washington , United States
| | - Von P Walden
- Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering , Washington State University , Pullman 99164 , Washington , United States
| | - Bertram T Jobson
- Laboratory for Atmospheric Research, Department of Civil and Environmental Engineering , Washington State University , Pullman 99164 , Washington , United States
| |
Collapse
|
9
|
Yang T, He Z, Zhang S, Tong L, Cao J, Xiong J. Emissions of DEHP from vehicle cabin materials: parameter determination, impact factors and exposure analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1323-1333. [PMID: 31289797 DOI: 10.1039/c9em00200f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semi-volatile organic compounds (SVOCs) are widely used in materials employed in vehicle interiors, causing poor in-cabin air quality. The emission characteristics of SVOCs from vehicle cabin materials can be characterized by two key parameters: the gas-phase SVOC concentration adjacent to the material surface (y0) and the convective mass transfer coefficient across the material surface (hm). Accurate determination of y0 and hm is fundamental in investigating SVOC emission principles and health risks. Considering that the steady state SVOC concentration (y) in a ventilated chamber changes with the ventilation rate (Q), we developed a varied ventilation rate (VVR) method to simultaneously measure y0 and hm for typical vehicle cabin materials. Experimental results for di(2-ethylhexyl)phthalate (DEHP) emissions from test materials indicated that the VVR method has the merits of simple operation, short testing time, and high accuracy. We also examined the influence of temperature (T) on y0 and hm, and found that both y0 and hm increase with increasing temperature. A theoretical correlation between y0 and T was then derived, indicating that the logarithm of y0T is linearly related to 1/T. Analysis based on the data from this study and from the literature validates the effectiveness of the derived correlation. Moreover, preliminary exposure analysis was performed to assess the health risk of DEHP in a vehicular environment.
Collapse
Affiliation(s)
- Tao Yang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
10
|
Shiraiwa M, Carslaw N, Tobias DJ, Waring MS, Rim D, Morrison G, Lakey PSJ, Kruza M, von Domaros M, Cummings BE, Won Y. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1240-1254. [PMID: 31070639 DOI: 10.1039/c9em00123a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the development of a modelling consortium for chemistry in indoor environments that connects models over a range of spatial and temporal scales, from molecular to room scales and from sub-nanosecond to days, respectively. Our modeling approaches include molecular dynamics (MD) simulations, kinetic process modeling, gas-phase chemistry modeling, organic aerosol modeling, and computational fluid dynamics (CFD) simulations. These models are applied to investigate ozone reactions with skin and clothing, oxidation of volatile organic compounds and formation of secondary organic aerosols, and mass transport and partitioning of indoor species to surfaces. MD simulations provide molecular pictures of limonene adsorption on SiO2 and ozone interactions with the skin lipid squalene, providing kinetic parameters such as surface accommodation coefficient, desorption lifetime, and bulk diffusivity. These parameters then constrain kinetic process models, which resolve mass transport and chemical reactions in gas and condensed phases for analysis of experimental data. A detailed indoor chemical box model is applied to simulate α-pinene ozonolysis with improved representation of gas-particle partitioning. Application of 2D-volatility basis set reveals that OH-induced aging sometimes drives increases in indoor organic aerosol concentrations, due to organic mass functionalization and enhanced partitioning. CFD simulations show that concentrations of ozone and primary product change near the human surface rapidly, indicating non-uniform spatial distributions from the occupant surface to ambient air, while secondary ozone product is relatively well-mixed throughout the room. This development establishes a framework to integrate different modeling tools and experimental measurements, opening up an avenue for development of comprehensive and integrated models with representations of various chemistry in indoor environments.
Collapse
Affiliation(s)
- Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Rackes A, Ben-David T, Waring MS. Outcome-based ventilation: A framework for assessing performance, health, and energy impacts to inform office building ventilation decisions. INDOOR AIR 2018; 28:585-603. [PMID: 29683212 DOI: 10.1111/ina.12466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
This article presents an outcome-based ventilation (OBV) framework, which combines competing ventilation impacts into a monetized loss function ($/occ/h) used to inform ventilation rate decisions. The OBV framework, developed for U.S. offices, considers six outcomes of increasing ventilation: profitable outcomes realized from improvements in occupant work performance and sick leave absenteeism; health outcomes from occupant exposure to outdoor fine particles and ozone; and energy outcomes from electricity and natural gas usage. We used the literature to set low, medium, and high reference values for OBV loss function parameters, and evaluated the framework and outcome-based ventilation rates using a simulated U.S. office stock dataset and a case study in New York City. With parameters for all outcomes set at medium values derived from literature-based central estimates, higher ventilation rates' profitable benefits dominated negative health and energy impacts, and the OBV framework suggested ventilation should be ≥45 L/s/occ, much higher than the baseline ~8.5 L/s/occ rate prescribed by ASHRAE 62.1. Only when combining very low parameter estimates for profitable impacts with very high ones for health and energy impacts were all outcomes on the same order. Even then, however, outcome-based ventilation rates were often twice the baseline rate or more.
Collapse
Affiliation(s)
- A Rackes
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - T Ben-David
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - M S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Pavilonis B, Roelofs C, Blair C. Assessing indoor air quality in New York City nail salons. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2018; 15:422-429. [PMID: 29494285 PMCID: PMC8974398 DOI: 10.1080/15459624.2018.1447117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO2) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO2 concentrations were strongly positively correlated (ρ = 0.81; p < 0.01) suggesting that CO2 measurements could potentially be used to provide an initial determination of acceptable indoor air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO2 concentration of 850 ppm was exceeded compared to when this target was met.
Collapse
Affiliation(s)
- Brian Pavilonis
- a The CUNY Graduate School of Public Health and Health Policy, Department of Environmental , Occupational, and Geospatial Health Sciences , New York , New York
| | - Cora Roelofs
- b CR Research/Consulting , Boston , Massachusetts
| | - Carly Blair
- a The CUNY Graduate School of Public Health and Health Policy, Department of Environmental , Occupational, and Geospatial Health Sciences , New York , New York
| |
Collapse
|
13
|
Johnson AM, Waring MS, DeCarlo PF. Real-time transformation of outdoor aerosol components upon transport indoors measured with aerosol mass spectrometry. INDOOR AIR 2017; 27:230-240. [PMID: 27008502 DOI: 10.1111/ina.12299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/18/2016] [Indexed: 05/18/2023]
Abstract
Outdoor aerosols are transported indoors, where their component concentrations depend on aerosol size, physiochemical properties, indoor sources and losses, and cross-environment gradients of temperature and relative humidity. We explored these dependencies by measuring real-time outdoor and indoor non-refractory, submicron (PM1 ) aerosol component mass concentrations in a mixed-use laboratory space with an Aerodyne mini-aerosol mass spectrometer (AMS) and black carbon (BC) with an aethalometer. The median indoor/outdoor (I/O) ratios were 0.60 for sulfate, 0.25 for nitrate, 0.52 for ammonium, 0.73 for organics, and 0.61 for BC. Positive matrix factorization (PMF) on organic aerosol data identified hydrocarbon-like (HOA), cooking (COA), and oxygenated (OOA) factors. By assuming sulfate was nonvolatile, lost only by mechanical processes, and without indoor sources, the transformations of other components i due to partitioning changes or indoor sources were parameterized by normalizing their I/O ratios by sulfate's I/O ratio, that is, (I/O)i/SO4 . Component-specific behavior was quantified by regressions of (I/O)i/SO4 to outdoor-to-indoor temperature differences. Nitrate and HOA strongly and OOA weakly showed losses with increasing temperatures indoors vs. outdoors, and HOA likely had an indoor source. To our knowledge, this is the first reported deployment of an AMS to analyze real-time indoor aerosol composition and outdoor-to-indoor transformation.
Collapse
Affiliation(s)
- A M Johnson
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - M S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - P F DeCarlo
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Yang Y, Waring MS. Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air. INDOOR AIR 2016; 26:939-952. [PMID: 26609907 DOI: 10.1111/ina.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Secondary organic aerosol (SOA) owing to reactive organic gas (ROG) ozonolysis can be an important indoor particle source. However, SOA formation owing to ozonolysis of α-terpineol, which is emitted by consumer product usage and reacts strongly with ozone, has not been systematically quantified. Therefore, we conducted 21 experiments to investigate the SOA formation initiated by α-terpineol ozonolysis for high (0.84 h-1 ), moderate (0.61 h-1 ), and low (0.36 h-1 ) air exchange rates (AER), which is the frequency with which indoor is replaced by outdoor air. α-Terpineol concentrations of 6.39 to 226 ppb were combined with high ozone (~25 ppm) to ensure rapid and complete ozonolysis. No reactants were replenished, so SOA peaked quickly and then decreased due to AER and surface losses, and peak SOA ranged from 2.03 to 281 μg/m3 at unit density. SOA mass formation was parameterized with the aerosol mass fraction (AMF), a.k.a. the SOA yield, and AMFs ranged from 0.056 to 0.24. The AMFs strongly and positively correlated with reacted α-terpineol, whereas they weakly and negatively correlated with higher AERs. One-product, two-product, and volatility basis set (VBS) models were fit to the AMF data. Predictive modeling demonstrated that α-terpineol ozonolysis could meaningfully form SOA in indoor air.
Collapse
Affiliation(s)
- Y Yang
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - M S Waring
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| |
Collapse
|