1
|
Yildizhan H, Udriștioiu MT, Pekdogan T, Ameen A. Observational study of ground-level ozone and climatic factors in Craiova, Romania, based on one-year high-resolution data. Sci Rep 2024; 14:26733. [PMID: 39501045 PMCID: PMC11538392 DOI: 10.1038/s41598-024-77989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Air pollution is a multifaceted issue affecting people's health, environment, and biodiversity. Gaining comprehension of the interactions between natural and anthropocentric pollutant concentrations and local climate is challenging. This study aims to address the following two questions: (1) What is the influential mechanism of climatic and anthropogenic factors on the ground-level ozone (O3) concentrations in an urban environment during different seasons? (2) Can the ozone weekend effect be observed in a medium-sized city like Craiova, and under which conditions? In order to answer these questions, ozone interactions with meteorological parameters (temperature, pressure, relative humidity) and pollutant concentrations (particulate matter, carbon dioxide, volatile organic compounds, formaldehyde, nitrogen dioxide, nitric oxide and carbon monoxide) is evaluated based on a one-year dataset given by a low-cost sensor and one-year dataset provided by the National Environment Agency. Using two statistical analysis programs, Python and SPSS, a good understanding of the correlations between these variables and ozone concentration is obtained. The SPSS analysis underscores the significant impact of three meteorological factors and nine other pollutants on the ozone level. A positive correlation is noticed in the summer when sunlight is intense and photochemical reactions are elevated. The relationship between temperature and ozone concentration is strong and positive, as confirmed by Spearman's rho correlation coefficient (r = 0.880). A significant negative correlation is found between relative humidity and ozone (r = -0.590). Moreover, the analysis shows that particulate matter concentrations exhibit a significant negative correlation with ozone (r ≈ -0.542), indicating that higher particulate matter concentrations reduce ozone levels. Volatile organic compounds show a significant negative correlation with ozone (r = -0.156). A negative relationship between ozone and carbon dioxide (r = -0.343), indicates that elevated carbon dioxide levels might also suppress ozone concentrations. A significant positive correlation between nitrogen dioxide and ozone (r = 0.060), highlights the role of nitrogen dioxide in the production of ozone through photochemical reactions. However, nitric oxide shows a negative correlation with ozone (r = -0.055) due to its role in ozone formation. Carbon monoxide has no statistically significant effect on ozone concentration. To observe the differences between weekdays and weekends, T-Test was used. Even though significant differences were observed in temperature, humidity, carbon dioxide, volatile organic compounds, nitrogen dioxide, nitric oxide and carbon monoxide levels between weekdays and weekends, the T-Test did not highlight a significant weekend ozone effect in a mid-sized city as Craiova. Using Python, the daily values were calculated and compared with the limit values recommended by the World Health Organization (WHO) and European Environment Agency (EEA). The WHO O3 recommended levels were exceeded for 13 times in one year. This study offers a comprehensive understanding of ozone pollution in a mid-sized city as Craiova, serving as a valuable reference for local decision-makers. It provides critical insights into the seasonal dynamics of ozone levels, emphasizing the significant role of temperature in ozone formation and the complex interactions between various pollutants and meteorological factors.
Collapse
Affiliation(s)
- Hasan Yildizhan
- Engineering Faculty, Energy Systems Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, 46278, Turkey
- Clean Energy Processes (CEP) Laboratory, Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Mihaela Tinca Udriștioiu
- Faculty of Science, Physics Department, University of Craiova, 13 A.I. Cuza Street, Craiova, 200585, Romania
| | - Tugce Pekdogan
- Department of Architecture, Faculty of Architecture and Design, Adana Alparslan Türkeş Science and Technology University, Adana, 46278, Turkey
| | - Arman Ameen
- Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, Gävle, 801 76, Sweden.
| |
Collapse
|
2
|
Bennett DH, Moran RE, Krakowiak P, Tancredi DJ, Kenyon NJ, Williams J, Fisk WJ. Reductions in particulate matter concentrations resulting from air filtration: A randomized sham-controlled crossover study. INDOOR AIR 2022; 32:e12982. [PMID: 35225392 PMCID: PMC11174346 DOI: 10.1111/ina.12982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
One-hundred seventy-two households were recruited from regions with high outdoor air pollution (Fresno and Riverside, CA) to participate in a randomized, sham-controlled, cross-over study to determine the effectiveness of high-efficiency air filtration to reduce indoor particle exposures. In 129 households, stand-alone HEPA air cleaners were placed in a bedroom and in the main living area. In 43 households, high-efficiency MERV 16 filters were installed in central forced-air heating and cooling systems and the participating households were asked to run the system on a clean-air cycle for 15 min per hour. Participating households that completed the study received true air filtration for a year and sham air filtration for a year. Air pollution samples were collected at approximately 6-month intervals, with two measurements in each of the sham and true filtration periods. One week indoor and outdoor time-integrated samples were collected for measurement of PM2.5 , PM10 , and ultrafine particulate matter (UFP) measured as PM0.2 . Reflectance measurements were also made on the PM2.5 filters to estimate black carbon. True filtration significantly improved indoor air quality, with a 48% reduction in the geometric mean indoor PM0.2 and PM2.5 concentrations, and a 31% reduction in PM10 . Geometric mean concentrations of indoor/outdoor reflectance values, indicating fraction of particles of outdoor origin remaining indoors, decreased by 77%. Improvements in particle concentrations were greater with continuously operating stand-alone air cleaners than with intermittent central system filtration. Keeping windows closed and increased utilization of the filtration systems further improved indoor air quality.
Collapse
Affiliation(s)
- Deborah H. Bennett
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
| | - Rebecca E. Moran
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
| | - Paula Krakowiak
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, California, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, Davis, California, USA
| | - Nicholas J. Kenyon
- Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, California, USA
| | - Jeffery Williams
- Research Division, California Air Resources Board, Sacramento, California, USA
| | - William J. Fisk
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
3
|
Kang I, McCreery A, Azimi P, Gramigna A, Baca G, Abromitis K, Wang M, Zeng Y, Scheu R, Crowder T, Evens A, Stephens B. Indoor air quality impacts of residential mechanical ventilation system retrofits in existing homes in Chicago, IL. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150129. [PMID: 34798726 DOI: 10.1016/j.scitotenv.2021.150129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/21/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Mechanical ventilation systems are used in residences to introduce ventilation air and dilute indoor-generated pollutants. A variety of ventilation system types can be used in home retrofits, influencing indoor air quality (IAQ) in different ways. Here we describe the Breathe Easy Project, a >2-year longitudinal, pseudo-randomized, crossover study designed to assess IAQ and adult asthma outcomes before and after installing residential mechanical ventilation systems in 40 existing homes in Chicago, IL. Each home received one of three types of ventilation systems: continuous exhaust-only, intermittent powered central-fan-integrated-supply (CFIS), or continuous balanced system with an energy recovery ventilator (ERV). Homes with central heating and/or cooling systems also received MERV 10 filter replacements. Approximately weeklong field measurements were conducted at each home on a quarterly basis throughout the study to monitor environmental conditions, ventilation operation, and indoor and outdoor pollutants, including size-resolved particles (0.3-10 μm), ozone (O3), nitrogen dioxide (NO2), carbon dioxide (CO2), carbon monoxide (CO), and indoor formaldehyde (HCHO). Mean reductions in indoor/outdoor (I/O) ratios across all systems after the intervention were approximately 12% (p = 0.001), 10% (p = 0.008), 42% (p < 0.001), 39% (p = 0.002), and 33% (p = 0.007), for CO2, NO2, and estimated PM1, PM2.5, and PM10, respectively. There was a reduction in I/O ratios for all measured constituents with each type of system, on average, but with varying magnitude and levels of statistical significance. The magnitudes of mean differences in I/O pollutant concentrations ratios were generally largest for most pollutants in the homes that received continuous balanced with ERV and smallest in the homes that received intermittent CFIS systems, with apparent benefits to providing ventilation continuously rather than intermittently. All ventilation system types maintained similar indoor temperatures during pre- and post-intervention periods.
Collapse
Affiliation(s)
- Insung Kang
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Parham Azimi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Kari Abromitis
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Mingyu Wang
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Yicheng Zeng
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | - Brent Stephens
- Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA.
| |
Collapse
|
4
|
Nazaroff WW, Weschler CJ. Indoor ozone: Concentrations and influencing factors. INDOOR AIR 2022; 32:e12942. [PMID: 34609012 DOI: 10.1111/ina.12942] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 05/03/2023]
Abstract
Because people spend most of their time indoors, much of their exposure to ozone occurs in buildings, which are partially protective against outdoor ozone. Measurements in approximately 2000 indoor environments (residences, schools, and offices) show a central tendency for average indoor ozone concentration of 4-6 ppb and an indoor to outdoor concentration ratio of about 25%. Considerable variability in this ratio exists among buildings, as influenced by seven building-associated factors: ozone removal in mechanical ventilation systems, ozone penetration through the building envelope, air-change rates, ozone loss rate on fixed indoor surfaces, ozone loss rate on human occupants, ozone loss by homogeneous reaction with nitrogen oxides, and ozone loss by reaction with gas-phase organics. Among these, the most important are air-change rates, ozone loss rate on fixed indoor surfaces, and, in densely occupied spaces, ozone loss rate on human occupants. Although most indoor ozone originates outdoors and enters with ventilation air, indoor emission sources can materially increase indoor ozone concentrations. Mitigation technologies to reduce indoor ozone concentrations are available or are being investigated. The most mature of these technologies, activated carbon filtration of mechanical ventilation supply air, shows a high modeled health-benefit to cost ratio when applied in densely occupied spaces.
Collapse
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
- International Centre for Indoor Environment and Energy, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
5
|
Ventilation Systems and Their Impact on Nanoparticle Concentrations in Office Buildings. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nanoparticles (NPs) can infiltrate indoor environments and have a large impact on human health when inhaled. Thus, indoor air quality is highly dependent on the outdoor air and on the filters used in the ventilation systems. In the NanoOffice study, the concentrations and the size distribution of NPs were measured with a five-minute time resolution in twelve office buildings in Umeå. Measurements were taken with an SMPS 3938 during a one-week period in the heating and nonheating seasons. Large differences in ventilation between buildings appeared, despite the fact that similar MVHR ventilation systems were used, and most of them were equipped with F7 filters. The NP concentrations and the simultaneous ventilation flows were measured in buildings with a variable and a more constant ventilation flow. In some cases, an increase in NP concentration could be seen after ventilation turn-on or after an increase in the ventilation flow. There was also one case where the NP concentrations increased in connection with the ventilation being switched off or reducing its flow. However, variable NP concentrations were also shown in buildings with a fairly constant ventilation flow, which was prominent for the two buildings located closest to busy streets. The correlation coefficients between the ventilation flow and particles in different size classes were in general smallest for particles in the smallest size classes, indicating higher filtration efficiency.
Collapse
|
6
|
Kang K, Kim T, Kim H. Effect of indoor and outdoor sources on indoor particle concentrations in South Korean residential buildings. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125852. [PMID: 33873033 DOI: 10.1016/j.jhazmat.2021.125852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/13/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The rising indoor air pollution from particles is a cause for concern especially in houses where children and the elderly reside. In South Korea, assessment of exposure to particle number (PN) in residential apartments, which account for 76% of all houses, is limited. In our study, the indoor and outdoor PN (sizes 0.3-10.0 µm) concentrations were measured in ten typical apartments for 24 h each. In addition, the occupants' schedules were examined by conducting a survey. Results showed that the average outdoor PN concentrations were 0.30-4.37 × 109/m3 with very large deviations. Indoor peak events were mainly caused by cooking, and total emitted particles were 0.01-81.3 × 1013 particles. Indoor PN concentrations were sustained for a long time because of inefficient ventilation that led to lowered attenuation. Indoor particles are generated during various indoor activities. The daily-integrated particle exposures were 21.4% and 78.6% for indoor and outdoor sources, respectively. Thus, outdoor sources were the predominant sources of particle exposure compared with indoor sources. In conclusion, penetration from outdoor sources needs to be reduced by adding air filtration to improve the airtightness of buildings when introducing outdoor air to lower the indoor PN concentration.
Collapse
Affiliation(s)
- Kyungmo Kang
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea; Department of Living and Built Environment Research, Korea Institute of Construction Technology, Go yang 10223, Republic of Korea
| | - Taeyeon Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hyungkeun Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Effect of Occupant Activity on Indoor Particle Concentrations in Korean Residential Buildings. SUSTAINABILITY 2020. [DOI: 10.3390/su12219201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Due to the recent industrial development and COVID-19 pandemic, people are spending more time indoors. Therefore, indoor air quality is becoming more important for the health of occupants. Indoor fine particles are increased by outdoor air pollution and indoor occupant activities. In particular, smoking, cooking, cleaning, and ventilation are occupant activities that have the largest impact on indoor particle concentrations. In this study, indoor and outdoor particle concentrations were measured in ten apartment houses in South Korea for 24 h. Indoor particle concentrations were measured in the kitchen and living room to evaluate the impact of cooking, one of the most important sources of indoor particles. An occupant survey was also conducted to analyze the influence of occupant activities. It was found that the impact of outdoor particles on indoor particle concentrations in winter was not significant. The largest particle source was cooking. In particular, a large amount of particles was generated by broiling and frying. In addition, cooking-generated particles are rapidly dispersed to the living room, and this was more obvious for small particles. It is expected that this result will be statistically generalized if the particle concentration of more houses is analyzed in the future.
Collapse
|
8
|
Alavy M, Siegel JA. In-situ effectiveness of residential HVAC filters. INDOOR AIR 2020; 30:156-166. [PMID: 31665545 DOI: 10.1111/ina.12617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, we explore different filter and contextual characteristics that influence effectiveness of high-efficiency filters in 21 residences in Toronto, Canada. The in situ effectiveness was assessed with decay tests at the beginning and the end of filter life with four different filters (MERV 8-14 from ASHRAE Standard 52.2) installed in operational HVAC systems, compared with either the system off or with no filter installed. There was considerable difference between median PM2.5 effectiveness of the non-electret filters when compared to electret filters (16% vs. 36%) of the same nominal efficiency (MERV 8). However, median PM2.5 effectiveness of electret filters only slightly improved (between 5% and 9% absolute increase) as MERV increased from 8 to 14. There was more variation in filter effectiveness between the same filter in different homes than there was between different filters in the same home. Variations in filter performance arose because home-specific particle loss rates (eg, ventilation rate) vary greatly in different buildings. The higher the loss rates due to non-filter factors, the lower the effectiveness of a filter. Given the relatively large variation in effectiveness for a given filter over time and in different homes, increasing system runtime may be a productive way to improve filter performance in many homes.
Collapse
Affiliation(s)
- Masih Alavy
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Jeffrey A Siegel
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Zhou S, Young CJ, VandenBoer TC, Kowal SF, Kahan TF. Time-Resolved Measurements of Nitric Oxide, Nitrogen Dioxide, and Nitrous Acid in an Occupied New York Home. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8355-8364. [PMID: 29973042 DOI: 10.1021/acs.est.8b01792] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Indoor oxidizing capacity in occupied residences is poorly understood. We made simultaneous continuous time-resolved measurements of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO) for two months in an occupied detached home with gas appliances in Syracuse, NY. Indoor NO and HONO mixing ratios were higher than those outdoors, whereas O3 was much lower (sub-ppbv) indoors. Cooking led to peak NO, NO2, and HONO levels 20-100 times greater than background levels; HONO mixing ratios of up to 50 ppbv were measured. Our results suggest that many reported NO2 levels may have a large positive bias due to HONO interference. Nitrous acid, NO2, and NO were removed from indoor air more rapidly than CO2, indicative of reactive removal processes or surface uptake. We measured spectral irradiance from sunlight entering the residence through glass doors; hydroxyl radical (OH) production rates of (0.8-10) × 107 molecules cm-3 s-1 were calculated in sunlit areas due to HONO photolysis, in some cases exceeding rates expected from ozone-alkene reactions. Steady-state nitrate radical (NO3) mixing ratios indoors were predicted to be lower than 1.65 × 104 molecules cm-3. This work will help constrain the temporal nature of oxidant concentrations in occupied residences and will improve indoor chemistry models.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| | - Cora J Young
- Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Trevor C VandenBoer
- Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Shawn F Kowal
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| | - Tara F Kahan
- Department of Chemistry , Syracuse University , Syracuse , New York 13244 , United States
| |
Collapse
|
10
|
Singer BC, Delp WW. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles. INDOOR AIR 2018; 28:624-639. [PMID: 29683219 DOI: 10.1111/ina.12463] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/12/2018] [Indexed: 05/20/2023]
Abstract
The ability to inexpensively monitor PM2.5 to identify sources and enable controls would advance residential indoor air quality (IAQ) management. Consumer IAQ monitors incorporating low-cost optical particle sensors and connections with smart home platforms could provide this service if they reliably detect PM2.5 in homes. In this study, particles from typical residential sources were generated in a 120 m3 laboratory and time-concentration profiles were measured with 7 consumer monitors (2-3 units each), 2 research monitors (Thermo pDR-1500, MetOne BT-645), a Grimm Mini Wide-Range Aerosol Spectrometer (GRM), and a Tapered Element Oscillating Microbalance with Filter Dynamic Measurement System (FDMS), a Federal Equivalent Method for PM2.5 . Sources included recreational combustion (candles, cigarettes, incense), cooking activities, an unfiltered ultrasonic humidifier, and dust. FDMS measurements, filter samples, and known densities were used to adjust the GRM to obtain time-resolved mass concentrations. Data from the research monitors and 4 of the consumer monitors-AirBeam, AirVisual, Foobot, Purple Air-were time correlated and within a factor of 2 of the estimated mass concentrations for most sources. All 7 of the consumer and both research monitors substantially under-reported or missed events for which the emitted mass was comprised of particles smaller than 0.3 μm diameter.
Collapse
Affiliation(s)
- B C Singer
- Indoor Environment Group and Residential Building Systems Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - W W Delp
- Indoor Environment Group and Residential Building Systems Group, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
11
|
Evaluating the Sensitivity of the Mass-Based Particle Removal Calculations for HVAC Filters in ISO 16890 to Assumptions for Aerosol Distributions. ATMOSPHERE 2018. [DOI: 10.3390/atmos9030085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Chan WR, Logue JM, Wu X, Klepeis NE, Fisk WJ, Noris F, Singer BC. Quantifying fine particle emission events from time-resolved measurements: Method description and application to 18 California low-income apartments. INDOOR AIR 2018; 28:89-101. [PMID: 28892568 DOI: 10.1111/ina.12425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
PM2.5 exposure is associated with significant health risk. Exposures in homes derive from both outdoor and indoor sources, with emissions occurring primarily in discrete events. Data on emission event magnitudes and schedules are needed to support simulation-based studies of exposures and mitigations. This study applied an identification and characterization algorithm to quantify time-resolved PM2.5 emission events from data collected during 224 days of monitoring in 18 California apartments with low-income residents. We identified and characterized 836 distinct events with median and mean values of 12 and 30 mg emitted mass, 16 and 23 minutes emission duration, 37 and 103 mg/h emission rates, and pseudo-first-order decay rates of 1.3 and 2.0/h. Mean event-averaged concentrations calculated using the determined event characteristics agreed to within 6% of measured values for 14 of the apartments. There were variations in event schedules and emitted mass across homes, with few events overnight and most emissions occurring during late afternoons and evenings. Event characteristics were similar during weekdays and weekends. Emitted mass was positively correlated with number of residents (Spearman coefficient, ρ=.10), bedrooms (ρ=.08), house volume (ρ=.29), and indoor-outdoor CO2 difference (ρ=.27). The event schedules can be used in probabilistic modeling of PM2.5 in low-income apartments.
Collapse
Affiliation(s)
- W R Chan
- Indoor Environment Group, Sustainable Energy and Environmental Systems Department, Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Whole Building Systems Department, Building Technologies and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - J M Logue
- Indoor Environment Group, Sustainable Energy and Environmental Systems Department, Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Whole Building Systems Department, Building Technologies and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - X Wu
- Whole Building Systems Department, Building Technologies and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - N E Klepeis
- Center for Behavioral Epidemiology and Community Health (C-BEACH), Graduate School of Public Health, San Diego State University Research Foundation, San Diego, CA, USA
| | - W J Fisk
- Indoor Environment Group, Sustainable Energy and Environmental Systems Department, Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - F Noris
- R2M Solution Srl, Pavia, Italy
| | - B C Singer
- Indoor Environment Group, Sustainable Energy and Environmental Systems Department, Energy Analysis and Environmental Impacts Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Whole Building Systems Department, Building Technologies and Urban Systems Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|