1
|
Ishigaki Y, Yokogawa S, Shimazaki K, Win-Shwe TT, Irankunda E. Assessing personal PM 2.5 exposure using a novel neck-mounted monitoring device in rural Rwanda. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:935. [PMID: 39278887 PMCID: PMC11402853 DOI: 10.1007/s10661-024-13106-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
There is growing global concern regarding the detrimental health impacts of PM2.5 emissions from traditional stoves that utilize polluting fuels. Conventional methods for estimating daily personal PM2.5 exposure involve personal air samplers and measuring devices placed in a waist pouch, but these instruments are cumbersome and inconvenient. To address this issue, we developed a novel neck-mounted PM2.5 monitoring device (Pocket PM2.5 Logger) that is compact, lightweight, and can operate continuously for 1 week without recharging. Twelve participants who utilized charcoal, firewood, or propane gas for cooking in rural regions of Rwanda wore the Pocket PM2.5 Logger continuously for 1 week, and time-series variations in personal PM2.5 exposure were recorded at 5-min intervals. Individual daily exposure concentrations during cooking differed significantly among users of the different fuel types, and PM2.5 exposure was at least 2.6 and 3.4 times higher for charcoal and firewood users, respectively, than for propane gas users. Therefore, switching from biomass fuels to propane gas would reduce daily individual exposure by at least one-third. An analysis of cooking times showed that the median cooking time per meal was 30 min; however, half the participants cooked for 1.5 h per meal, and one-third cooked for over 4.5 h per meal. Reducing these extremely long cooking times would reduce exposure with all fuel types. The Pocket PM2.5 Logger facilitates the comprehensive assessment of personal PM2.5 exposure dynamics and is beneficial for the development of intervention strategies targeting household air pollution.
Collapse
Affiliation(s)
- Yo Ishigaki
- Research Center for Realizing Sustainable Societies, University of Electro-Communications, 1-5-1, Chofu, Tokyo, 182-8585, Japan.
| | - Shinji Yokogawa
- Info-Powered Energy System Research Center (I-PERC), University of Electro-Communications, Chofu, Tokyo, Japan
| | - Kan Shimazaki
- Department of Human Factors Engineering and Environmental Design, Kindai University, Wakayama, Japan
| | | | | |
Collapse
|
2
|
Singh A, Bartington SE, Abreu P, Anderson R, Cowell N, Leach FC. Impacts of daily household activities on indoor particulate and NO 2 concentrations; a case study from oxford UK. Heliyon 2024; 10:e34210. [PMID: 39165984 PMCID: PMC11333897 DOI: 10.1016/j.heliyon.2024.e34210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 08/22/2024] Open
Abstract
This study explores indoor air pollutant (PM1, PM2.5 and NO2) concentrations over a 15-week period during the COVID-19 pandemic in a typical suburban household in Oxford, UK. A multi-room intensive monitoring study was conducted in a single dwelling using 10 air quality sensors measuring real-time pollutant concentrations at 10 second intervals to assess temporal and spatial variability in PM1, PM2.5 and NO2 concentrations, identify pollution-prone areas, and investigate the impact of residents' activities on indoor air quality. Significant spatial variations in PM concentrations were observed within the study dwelling, with highest hourly concentrations (769.0 & 300.9 μg m-3 for PM2.5, and PM1, respectively) observed in the upstairs study room, which had poor ventilation. Cooking activities were identified as a major contributor to indoor particulate pollution, with peak concentrations aligning with cooking events. Indoor NO2 levels were typically higher than outdoor levels, particularly in the kitchen where a gas-cooking appliance was used. There was no significant association observed between outdoor and indoor PM concentrations; however, a clear correlation was evident between kitchen PM emissions and indoor levels. Similarly, outdoor NO2 had a limited influence on indoor air quality compared to kitchen activities. Indoor sources were found to dominate for both PM and NO2, with higher Indoor/Outdoor (I/O) ratios observed in the upstairs bedroom and the kitchen. Overall, our findings highlight the contribution of indoor air pollutant sources and domestic activities to indoor air pollution exposure, notably during the COVID-19 pandemic when people were typically spending more time in domestic settings. Our novel findings, which suggest high levels of pollutant concentrations in upstairs (first floor) rooms, underscore the necessity for targeted interventions. These interventions include the implementation of source control measures, effective ventilation strategies and occupant education for behaviour change, all aimed at improving indoor air quality and promoting healthier living environments.
Collapse
Affiliation(s)
- Ajit Singh
- Institute of Applied Health Research, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK
| | - Suzanne E. Bartington
- Institute of Applied Health Research, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK
| | - Pedro Abreu
- Oxford City Council, St Aldates Chambers, 109 St Aldates, Oxford, OX1 1DS, UK
| | - Ruth Anderson
- Oxfordshire County Council, County Hall, New Road, Oxford, OX1 1ND, UK
| | - Nicole Cowell
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston Park Road, Birmingham, B15 2TT, UK
- Centre for Environmental Policy, Imperial College London, Weeks Building, 16-18 Prince's Garden, London SW7 1NE, UK
| | - Felix C.P. Leach
- Department for Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|
3
|
Balakrishnan K, Steenland K, Clasen T, Chang H, Johnson M, Pillarisetti A, Ye W, Naeher LP, Diaz-Artiga A, McCracken JP, Thompson LM, Rosa G, Kirby MA, Thangavel G, Sambandam S, Mukhopadhyay K, Puttaswamy N, Aravindalochanan V, Garg S, Ndagijimana F, Hartinger S, Underhill LJ, Kearns KA, Campbell D, Kremer J, Waller L, Jabbarzadeh S, Wang J, Chen Y, Rosenthal J, Quinn A, Papageorghiou AT, Ramakrishnan U, Howards PP, Checkley W, Peel JL. Exposure-response relationships for personal exposure to fine particulate matter (PM 2·5), carbon monoxide, and black carbon and birthweight: an observational analysis of the multicountry Household Air Pollution Intervention Network (HAPIN) trial. Lancet Planet Health 2023; 7:e387-e396. [PMID: 37164515 PMCID: PMC10186177 DOI: 10.1016/s2542-5196(23)00052-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Household air pollution (HAP) from solid fuel use is associated with adverse birth outcomes, but data for exposure-response relationships are scarce. We examined associations between HAP exposures and birthweight in rural Guatemala, India, Peru, and Rwanda during the Household Air Pollution Intervention Network (HAPIN) trial. METHODS The HAPIN trial recruited pregnant women (9-<20 weeks of gestation) in rural Guatemala, India, Peru, and Rwanda and randomly allocated them to receive a liquefied petroleum gas stove or not (ie, and continue to use biomass fuel). The primary outcomes were birthweight, length-for-age, severe pneumonia, and maternal systolic blood pressure. In this exposure-response subanalysis, we measured 24-h personal exposures to PM2·5, carbon monoxide, and black carbon once pre-intervention (baseline) and twice post-intervention (at 24-28 weeks and 32-36 weeks of gestation), as well as birthweight within 24 h of birth. We examined the relationship between the average prenatal exposure and birthweight or weight-for-gestational age Z scores using multivariate-regression models, controlling for the mother's age, nulliparity, diet diversity, food insecurity, BMI, the mother's education, neonate sex, haemoglobin, second-hand smoke, and geographical indicator for randomisation strata. FINDINGS Between March, 2018, and February, 2020, 3200 pregnant women were recruited. An interquartile increase in the average prenatal exposure to PM2·5 (74·5 μg/m3) was associated with a reduction in birthweight and gestational age Z scores (birthweight: -14·8 g [95% CI -28·7 to -0·8]; gestational age Z scores: -0·03 [-0·06 to 0·00]), as was an interquartile increase in black carbon (7·3 μg/m3; -21·9 g [-37·7 to -6·1]; -0·05 [-0·08 to -0·01]). Carbon monoxide exposure was not associated with these outcomes (1·7; -3·1 [-12·1 to 5·8]; -0·003 [-0·023 to 0·017]). INTERPRETATION Continuing efforts are needed to reduce HAP exposure alongside other drivers of low birthweight in low-income and middle-income countries. FUNDING US National Institutes of Health (1UM1HL134590) and the Bill & Melinda Gates Foundation (OPP1131279).
Collapse
Affiliation(s)
- Kalpana Balakrishnan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India.
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - Howard Chang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | | | - Ajay Pillarisetti
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Wenlu Ye
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Luke P Naeher
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Anaite Diaz-Artiga
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - John P McCracken
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Lisa M Thompson
- Rollins School of Public Health and Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Ghislaine Rosa
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Miles A Kirby
- Department of Global Health and Population, Harvard T H Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Gurusamy Thangavel
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Sankar Sambandam
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Krishnendu Mukhopadhyay
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Naveen Puttaswamy
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Vigneswari Aravindalochanan
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | - Sarada Garg
- Department of Environmental Health Engineering, ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute for Higher Education and Research (Deemed University), Chennai, India
| | | | - Stella Hartinger
- Division of Pulmonary and Critical Care, School of Medicine and Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Lindsay J Underhill
- Cardiovascular Division, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine A Kearns
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Devan Campbell
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Jacob Kremer
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Lance Waller
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Shirin Jabbarzadeh
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Jiantong Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Joshua Rosenthal
- Division of Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Aris T Papageorghiou
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Usha Ramakrishnan
- Hubert Department of Global Health, Emory University, Atlanta, GA, USA
| | | | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine and Center for Global Non-Communicable Disease Research and Training, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Liao J, Kirby MA, Pillarisetti A, Piedrahita R, Balakrishnan K, Sambandam S, Mukhopadhyay K, Ye W, Rosa G, Majorin F, Dusabimana E, Ndagijimana F, McCracken JP, Mollinedo E, de Leon O, Díaz-Artiga A, Thompson LM, Kearns KA, Naeher L, Rosenthal J, Clark ML, Steenland K, Waller LA, Checkley W, Peel JL, Clasen T, Johnson M. LPG stove and fuel intervention among pregnant women reduce fine particle air pollution exposures in three countries: Pilot results from the HAPIN trial. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118198. [PMID: 34740288 PMCID: PMC8593210 DOI: 10.1016/j.envpol.2021.118198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
The Household Air Pollution Intervention Network trial is a multi-country study on the effects of a liquefied petroleum gas (LPG) stove and fuel distribution intervention on women's and children's health. There is limited data on exposure reductions achieved by switching from solid to clean cooking fuels in rural settings across multiple countries. As formative research in 2017, we recruited pregnant women and characterized the impact of the intervention on personal exposures and kitchen levels of fine particulate matter (PM2.5) in Guatemala, India, and Rwanda. Forty pregnant women were enrolled in each site. We measured cooking area concentrations of and personal exposures to PM2.5 for 24 or 48 h using gravimetric-based PM2.5 samplers at baseline and two follow-ups over two months after delivery of an LPG cookstove and free fuel supply. Mixed models were used to estimate PM2.5 reductions. Median kitchen PM2.5 concentrations were 296 μg/m3 at baseline (interquartile range, IQR: 158-507), 24 μg/m3 at first follow-up (IQR: 18-37), and 23 μg/m3 at second follow-up (IQR: 14-37). Median personal exposures to PM2.5 were 134 μg/m3 at baseline (IQR: 71-224), 35 μg/m3 at first follow-up (IQR: 23-51), and 32 μg/m3 at second follow-up (IQR: 23-47). Overall, the LPG intervention was associated with a 92% (95% confidence interval (CI): 90-94%) reduction in kitchen PM2.5 concentrations and a 74% (95% CI: 70-79%) reduction in personal PM2.5 exposures. Results were similar for each site. CONCLUSIONS: The intervention was associated with substantial reductions in kitchen and personal PM2.5 overall and in all sites. Results suggest LPG interventions in these rural settings may lower exposures to the WHO annual interim target-1 of 35 μg/m3. The range of exposure contrasts falls on steep sections of estimated exposure-response curves for birthweight, blood pressure, and acute lower respiratory infections, implying potentially important health benefits when transitioning from solid fuels to LPG.
Collapse
Affiliation(s)
- Jiawen Liao
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Miles A Kirby
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ajay Pillarisetti
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; School of Public Health, University of California, Berkeley, CA, USA
| | | | - Kalpana Balakrishnan
- SRU-ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sankar Sambandam
- SRU-ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Krishnendu Mukhopadhyay
- SRU-ICMR Center for Advanced Research on Air Quality, Climate and Health, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Wenlu Ye
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Ghislaine Rosa
- London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona Majorin
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | - John P McCracken
- Center for Health Studies, Universidad del Valle De Guatemala, Guatemala City, Guatemala; College of Public Health, University of Georgia, Athens, GA, USA
| | - Erick Mollinedo
- Center for Health Studies, Universidad del Valle De Guatemala, Guatemala City, Guatemala; College of Public Health, University of Georgia, Athens, GA, USA
| | - Oscar de Leon
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Center for Health Studies, Universidad del Valle De Guatemala, Guatemala City, Guatemala
| | - Anaité Díaz-Artiga
- Center for Health Studies, Universidad del Valle De Guatemala, Guatemala City, Guatemala
| | - Lisa M Thompson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA; Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | | | - Luke Naeher
- College of Public Health, University of Georgia, Athens, GA, USA
| | - Joshua Rosenthal
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kyle Steenland
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Lance A Waller
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Center for Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas Clasen
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Alli AS, Clark SN, Hughes A, Nimo J, Bedford-Moses J, Baah S, Wang J, Vallarino J, Agyemang E, Barratt B, Beddows A, Kelly F, Owusu G, Baumgartner J, Brauer M, Ezzati M, Agyei-Mensah S, Arku RE. Spatial-temporal patterns of ambient fine particulate matter (PM 2.5) and black carbon (BC) pollution in Accra. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2021; 16:074013. [PMID: 34239599 PMCID: PMC8227509 DOI: 10.1088/1748-9326/ac074a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 05/06/2023]
Abstract
Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major environmental health concern in growing cities. Yet, effective air quality management is hindered by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement campaign and characterized within-city variations in fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra, Ghana. Between April 2019 and June 2020, we measured weekly gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations, comprising of 10 fixed (∼1 year) and 136 rotating (7 day) sites covering a range of land-use and source influences. Filters were weighed for mass, and light absorbance (10-5m-1) of the filters was used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a previous study (2006-2007) were compared to assess changes in PM2.5 concentrations. The mean annual PM2.5 across the fixed sites ranged from 26 μg m-3 at a peri-urban site to 43 μg m-3 at a commercial, business, and industrial (CBI) site. CBI areas had the highest PM2.5 levels (mean: 37 μg m-3), followed by high-density residential neighborhoods (mean: 36 μg m-3), while peri-urban areas recorded the lowest (mean: 26 μg m-3). Both PM2.5 and BC levels were highest during the dry dusty Harmattan period (mean PM2.5: 89 μg m-3) compared to non-Harmattan season (mean PM2.5: 23 μg m-3). PM2.5 at all sites peaked at dawn and dusk, coinciding with morning and evening heavy traffic. We found about a 50% reduction (71 vs 37 μg m-3) in mean annual PM2.5 concentrations when compared to measurements in 2006-2007 in Accra. Ambient PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and equitable policies are needed to reduce pollution levels and protect public health.
Collapse
Affiliation(s)
- Abosede S Alli
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Sierra N Clark
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
| | - Allison Hughes
- Department of Physics, University of Ghana, Legon, Ghana
| | - James Nimo
- Department of Physics, University of Ghana, Legon, Ghana
| | | | - Solomon Baah
- Department of Physics, University of Ghana, Legon, Ghana
| | - Jiayuan Wang
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| | - Jose Vallarino
- Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Ernest Agyemang
- Department of Geography and Resource Development, University of Ghana, Legon, Ghana
| | - Benjamin Barratt
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Andrew Beddows
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - Frank Kelly
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- NIHR HPRU in Environmental Exposures and Health, Imperial College London, London, United Kingdom
| | - George Owusu
- Department of Geography and Resource Development, University of Ghana, Legon, Ghana
| | - Jill Baumgartner
- Institute for Health and Social Policy, McGill University, Montreal, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Michael Brauer
- School of Population and Public Health, The University of British Columbia, Vancouver, Canada
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| | - Majid Ezzati
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- MRC Center for Environment and Health, Imperial College London, London, United Kingdom
- Regional Institute for Population Studies, University of Ghana, Legon, Ghana
| | - Samuel Agyei-Mensah
- Department of Geography and Resource Development, University of Ghana, Legon, Ghana
| | - Raphael E Arku
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States of America
| |
Collapse
|
6
|
Afshar-Mohajer N, Foos R, Ramachandran G, Volckens J. Field Evaluation of the Ultrasonic Personal Aerosol Sampler (UPAS) for Respirable Dust Exposure in a Taconite Mine. Ann Work Expo Health 2021; 65:127-135. [PMID: 32968773 DOI: 10.1093/annweh/wxaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/02/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Exposure to respirable dust (RD; the mass fraction of inhaled particles that penetrate to the unciliated airways) is a major health concern in a variety of workplaces. While the estimation of personal exposure is an essential step in protecting worker health from aerosol hazards, the traditional method for assessing personal exposure to RD, suggested by the National Institute for Occupational Safety and Health (NIOSH method 0600), requires equipment that is heavy, bulky, noisy, and has the need of frequent calibration. The ultrasonic personal aerosol sampler (UPAS) is a new personal sampling technology designed to address some of these drawbacks associated with traditional sampling methods. In this study, we field tested and evaluated the performance of the UPAS for assessing worker exposure to RD in a taconite mine. Mineworkers (n = 39) from various job categories were recruited to wear both UPAS and NIOSH 0600 samplers on a work vest to estimate time-weighted exposure to RD. A strong linear relationship was observed (NIOSH method 0600 = 1.06 (UPAS) -9.22 µg m-3, r2 of 0.72, and Pearson correlation coefficient of 0.854). None of the workers were exposed to a RD concentration above the Occupational Safety and Health Administration permissible exposure limit (5 mg m-3). A Bland-Altman analysis revealed that 72% of the valid UPAS samples agreed within ±25% of the traditional method mean. The impact of job category on the correlation of the methods was not statistically significant. This work suggests that the UPAS may present a viable alternative for assessing personal exposure to RD in the workplace.
Collapse
Affiliation(s)
- Nima Afshar-Mohajer
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Gradient Corporation, Boston, MA, USA
| | - Rebecca Foos
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.,Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
7
|
Kephart JL, Fandiño-Del-Rio M, Williams KN, Malpartida G, Lee A, Steenland K, Naeher LP, Gonzales GF, Chiang M, Checkley W, Koehler K. Nitrogen dioxide exposures from LPG stoves in a cleaner-cooking intervention trial. ENVIRONMENT INTERNATIONAL 2021; 146:106196. [PMID: 33160161 PMCID: PMC8173774 DOI: 10.1016/j.envint.2020.106196] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Liquefied petroleum gas (LPG) stoves have been promoted in low- and middle-income countries (LMICs) as a clean energy alternative to biomass burning cookstoves. OBJECTIVE We sought to characterize kitchen area concentrations and personal exposures to nitrogen dioxide (NO2) within a randomized controlled trial in the Peruvian Andes. The intervention included the provision of an LPG stove and continuous fuel distribution with behavioral messaging to maximize compliance. METHODS We measured 48-hour kitchen area NO2 concentrations at high temporal resolution in homes of 50 intervention participants and 50 control participants longitudinally within a biomass-to-LPG intervention trial. We also collected 48-hour mean personal exposures to NO2 among a subsample of 16 intervention and 9 control participants. We monitored LPG and biomass stove use continuously throughout the trial. RESULTS In 367 post-intervention 24-hour kitchen area samples of 96 participants' homes, geometric mean (GM) highest hourly NO2 concentration was 138 ppb (geometric standard deviation [GSD] 2.1) in the LPG intervention group and 450 ppb (GSD 3.1) in the biomass control group. Post-intervention 24-hour mean NO2 concentrations were a GM of 43 ppb (GSD 1.7) in the intervention group and 77 ppb (GSD 2.0) in the control group. Kitchen area NO2 concentrations exceeded the WHO indoor hourly guideline an average of 1.3 h per day among LPG intervention participants. GM 48-hour personal exposure to NO2 was 5 ppb (GSD 2.4) among 35 48-hour samples of 16 participants in the intervention group and 16 ppb (GSD 2.3) among 21 samples of 9 participants in the control group. DISCUSSION In a biomass-to-LPG intervention trial in Peru, kitchen area NO2 concentrations were substantially lower within the LPG intervention group compared to the biomass-using control group. However, within the LPG intervention group, 69% of 24-hour kitchen area samples exceeded WHO indoor annual guidelines and 47% of samples exceeded WHO indoor hourly guidelines. Forty-eight-hour NO2 personal exposure was below WHO indoor annual guidelines for most participants in the LPG intervention group, and we did not measure personal exposure at high temporal resolution to assess exposure to cooking-related indoor concentration peaks. Further research is warranted to understand the potential health risks of LPG-related NO2 emissions and inform current campaigns which promote LPG as a clean-cooking option.
Collapse
Affiliation(s)
- Josiah L Kephart
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Magdalena Fandiño-Del-Rio
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kendra N Williams
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Gary Malpartida
- Molecular Biology and Immunology Laboratory, Research Laboratory of Infectious Diseases, Department of Cell and Molecular Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru; Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Peru
| | | | - Kyle Steenland
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Luke P Naeher
- Department of Environmental Health Science, College of Public Health, The University of Georgia, Athens, GA, USA
| | - Gustavo F Gonzales
- Laboratories of Investigation and Development, Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru; High Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marilu Chiang
- Biomedical Research Unit, Asociación Benéfica PRISMA, Lima, Peru
| | - William Checkley
- Center for Global Non-Communicable Disease Research and Training, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Program in Global Disease Epidemiology and Control, Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Kirsten Koehler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Liao J, McCracken JP, Piedrahita R, Thompson L, Mollinedo E, Canuz E, De Léon O, Díaz-Artiga A, Johnson M, Clark M, Pillarisetti A, Kearns K, Naeher L, Steenland K, Checkley W, Peel J, Clasen TF. The use of bluetooth low energy Beacon systems to estimate indirect personal exposure to household air pollution. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:990-1000. [PMID: 31558836 PMCID: PMC7325654 DOI: 10.1038/s41370-019-0172-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 05/05/2023]
Abstract
Household air pollution (HAP) generated from solid fuel combustion is a major health risk. Direct measurement of exposure to HAP is burdensome and challenging, particularly for children. In a pilot study of the Household Air Pollution Intervention Network (HAPIN) trial in rural Guatemala, we evaluated an indirect exposure assessment method that employs fixed continuous PM2.5 monitors, Bluetooth signal receivers in multiple microenvironments (kitchen, sleeping area and outdoor patio), and a wearable signal emitter to track an individual's time within those microenvironments. Over a four-month period, we measured microenvironmental locations and reconstructed indirect PM2.5 exposures for women and children during two 24-h periods before and two periods after a liquefied petroleum gas (LPG) stove and fuel intervention delivered to 20 households cooking with woodstoves. Women wore personal PM2.5 monitors to compare direct with indirect exposure measurements. Indirect exposure measurements had high correlation with direct measurements (n = 62, Spearman ρ = 0.83, PM2.5 concentration range: 5-528 µg/m3). Indirect exposure had better agreement with direct exposure measurements (bias: -17 µg/m3) than did kitchen area measurements (bias: -89 µg/m3). Our findings demonstrate that indirect exposure reconstruction is a feasible approach to estimate personal exposure when direct assessment is not possible.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Environmental Health, Emory University, Atlanta, GA, USA.
| | - John P McCracken
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Lisa Thompson
- Department of Environmental Health, Emory University, Atlanta, GA, USA
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Erick Mollinedo
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Eduardo Canuz
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Oscar De Léon
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | - Anaité Díaz-Artiga
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Guatemala City, Guatemala
| | | | - Maggie Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ajay Pillarisetti
- Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Katherine Kearns
- College of Public Health, University of Georgia, Athens, GA, USA
| | - Luke Naeher
- College of Public Health, University of Georgia, Athens, GA, USA
| | - Kyle Steenland
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| | - William Checkley
- Division of Pulmonary and Critical Care, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Global Non-Communicable Diseases, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas F Clasen
- Department of Environmental Health, Emory University, Atlanta, GA, USA
| |
Collapse
|