1
|
Silva T, Oliveira E, Oliveira A, Menezes A, Jeremias WDJ, Grenfell RF, Monte-Neto RLD, Pascoal-Xavier MA, Campos MA, Fernandes G, Alves P. Enhancing the epidemiological surveillance of SARS-CoV-2 using Sanger sequencing to identify circulating variants and recombinants. Braz J Microbiol 2024; 55:2085-2099. [PMID: 38802687 PMCID: PMC11405360 DOI: 10.1007/s42770-024-01387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Since the emergence of SARS-CoV-2 in December 2019, more than 12,000 mutations in the virus have been identified. These could cause changes in viral characteristics and directly impact global public health. The emergence of variants is a great concern due to the chance of increased transmissibility and infectivity. Sequencing for surveillance and monitoring circulating strains is extremely necessary as the early identification of new variants allows public health agencies to make faster and more effective decisions to contain the spread of the virus. In the present study, we identified circulating variants in samples collected in Belo Horizonte, Brazil, and detected a recombinant lineage using the Sanger method. The identification of lineages was done through gene amplification of SARS-CoV-2 by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). By using these specific fragments, we were able to differentiate one variant of interest and five circulating variants of concern. We were also able to detect recombinants. Randomly selected samples were sequenced by either Sanger or Next Generation Sequencing (NGS). Our findings validate the effectiveness of Sanger sequencing as a powerful tool for monitoring variants. It is easy to perform and allows the analysis of a larger number of samples in countries that cannot afford NGS.
Collapse
Affiliation(s)
- Thaís Silva
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Eneida Oliveira
- Secretaria Municipal de Saúde, 2336, Afonso Pena Avenue, Belo Horizonte, Minas Gerais, 30130-007, Brazil
| | - Alana Oliveira
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - André Menezes
- Secretaria Municipal de Saúde, 2336, Afonso Pena Avenue, Belo Horizonte, Minas Gerais, 30130-007, Brazil
| | - Wander de Jesus Jeremias
- Department of Pharmacy, Federal University of Ouro Preto (UFOP), 27, Nine Street, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Rafaella Fq Grenfell
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - Rubens Lima do Monte-Neto
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Marcelo A Pascoal-Xavier
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
- Department of Anatomic Pathology, College of Medicine, Federal University of Minas Gerais, 6627, Presidente Antônio Carlos Avenue, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Marco A Campos
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Gabriel Fernandes
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil
| | - Pedro Alves
- Instituto René Rachou, Fundação Oswaldo Cruz, 1715, Augusto de Lima Avenue, Belo Horizonte, Minas Gerais, 30190-002, Brazil.
| |
Collapse
|
2
|
Wang Y, Liu J, Liu T, An X, Huang L, Li J, Zhang Y, Xiang Y, Xiao L, Yi W, Qin J, Liu L, Wang C, Yu J. Pyruvate kinase deficiency and PKLR gene mutations: Insights from molecular dynamics simulation analysis. Heliyon 2024; 10:e26368. [PMID: 38434380 PMCID: PMC10904247 DOI: 10.1016/j.heliyon.2024.e26368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Pyruvate kinase deficiency is a rare hereditary erythrocyte enzyme disease caused by mutations in the pyruvate kinase liver and red blood cell gene. The clinical presentations of pyruvate kinase deficiency are significantly heterogeneous, ranging from just mild anemia to hemolytic crisis or even death. The proband in our study was a 2-year-old girl for severe skin and scleral icterus with progressive aggravation. We collected the family's data for further analysis. Whole exome genome sequencing of the pedigree revealed a novel compound heterozygous mutation, c.1097del (p.P366Lfs*12) and c.1493G > A (p.R498H), in the pyruvate kinase liver and red blood cell gene. Furthermore, molecular dynamics simulations were employed to uncover differences between the wild type and mutant pyruvate kinase liver and red blood cell proteins, focusing on structural stability, protein flexibility, secondary structure, and overall conformation. The combined bioinformatic tools were also utilised to assess the effects of the missense mutation on protein function. Thereafter, wild type and mutant plasmids were constructed and transfected into 293T cells, and Western blot assay was conducted to validate the impact of the mutations on the expression of pyruvate kinase liver and red blood cell protein. The data presented in our study enriches the genotype database and provides evidence for genetic counseling and molecular diagnosis of pyruvate kinase deficiency.
Collapse
Affiliation(s)
- Yang Wang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiaqi Liu
- Shanghai Cinopath Medical Testing Co Ltd, Shanghai 200000, China
| | - Tao Liu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiacheng Li
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Yongjie Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Yan Xiang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Li Xiao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Weijia Yi
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Jiebin Qin
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| | - Lili Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Cuilan Wang
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Tangshan 063000, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, 136 Zhong shan er lu, Yu zhong district, Chongqing 400014, China
| |
Collapse
|
3
|
Ishige T. Molecular biology of SARS-CoV-2 and techniques of diagnosis and surveillance. Adv Clin Chem 2023; 118:35-85. [PMID: 38280807 DOI: 10.1016/bs.acc.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19), a disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic in March 2020. Reverse transcription-polymerase chain reaction (RT-PCR) is the reference technique for molecular diagnosis of SARS-CoV-2 infection. The SARS-CoV-2 virus is constantly mutating, and more transmissible variants have emerged, making genomic surveillance a crucial tool for investigating virus transmission dynamics, detecting novel genetic variants, and assessing mutation impact. The S gene, which encodes the spike protein, is frequently mutated, and it plays an important role in transmissibility. Spike protein mutations affect infectivity and vaccine effectiveness. SARS-CoV-2 variants are tracked using whole genome sequencing (WGS) and S-gene analysis. WGS, Sanger sequencing, and many S-gene-targeted RT-PCR methods have been developed. WGS and Sanger sequencing are standard methods for detecting mutations and can be used to identify known and unknown mutations. Melting curve analysis, endpoint genotyping assay, and S-gene target failure are used in the RT-PCR-based method for the rapid detection of specific mutations in SARS-CoV-2 variants. Therefore, these assays are suitable for high-throughput screening. The combinatorial use of RT-PCR-based assays, Sanger sequencing, and WGS enables rapid and accurate tracking of SARS-CoV-2 variants. In this review, we described RT-PCR-based detection and surveillance techniques for SARS-CoV-2.
Collapse
Affiliation(s)
- Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
4
|
Cai X, Sun H, Yan B, Bai H, Zhou X, Shen P, Jiang C. Salt stress perception and metabolic regulation network analysis of a marine probiotic Meyerozyma guilliermondii GXDK6. Front Microbiol 2023; 14:1193352. [PMID: 37529325 PMCID: PMC10387536 DOI: 10.3389/fmicb.2023.1193352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Extremely salt-tolerant microorganisms play an important role in the development of functional metabolites or drug molecules. Methods In this work, the salt stress perception and metabolic regulation network of a marine probiotic Meyerozyma guilliermondii GXDK6 were investigated using integrative omics technology. Results Results indicated that GXDK6 could accept the salt stress signals from signal transduction proteins (e.g., phosphorelay intermediate protein YPD1), thereby contributing to regulating the differential expression of its relevant genes (e.g., CTT1, SOD) and proteins (e.g., catalase, superoxide dismutase) in response to salt stress, and increasing the salt-tolerant viability of GXDK6. Omics data also suggested that the transcription (e.g., SMD2), translation (e.g., MRPL1), and protein synthesis and processing (e.g., inner membrane protein OXA1) of upregulated RNAs may contribute to increasing the salt-tolerant survivability of GXDK6 by improving protein transport activity (e.g., Small nuclear ribonucleoprotein Sm D2), anti-apoptotic ability (e.g., 54S ribosomal protein L1), and antioxidant activity (e.g., superoxide dismutase). Moreover, up to 65.9% of the differentially expressed genes/proteins could stimulate GXDK6 to biosynthesize many salt tolerant-related metabolites (e.g., β-alanine, D-mannose) and drug molecules (e.g., deoxyspergualin, calcitriol), and were involved in the metabolic regulation of GXDK6 under high NaCl stress. Discussion This study provided new insights into the exploration of novel functional products and/or drugs from extremely salt-tolerant microorganisms.Graphical Abstract.
Collapse
Affiliation(s)
- Xinghua Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Huijie Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China
| | - Huashan Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Xing Zhou
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Chengjian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, China
| |
Collapse
|
5
|
Rodrigues GM, Volpato FCZ, Wink PL, Paiva RM, Barth AL, de-Paris F. SARS-CoV-2 Variants of Concern: Presumptive Identification via Sanger Sequencing Analysis of the Receptor Binding Domain (RBD) Region of the S Gene. Diagnostics (Basel) 2023; 13:diagnostics13071256. [PMID: 37046474 PMCID: PMC10093469 DOI: 10.3390/diagnostics13071256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
Variants of concern (VOCs) of SARS-CoV-2 are viral strains that have mutations associated with increased transmissibility and/or increased virulence, and their main mutations are in the receptor binding domain (RBD) region of the viral spike. This study aimed to characterize SARS-CoV-2 VOCs via Sanger sequencing of the RBD region and compare the results with data obtained via whole genome sequencing (WGS). Clinical samples (oro/nasopharyngeal) with positive RT-qPCR results for SARS-CoV-2 were used in this study. The viral RNA from SARS-CoV-2 was extracted and a PCR fragment of 1006 base pairs was submitted for Sanger sequencing. The results of the Sanger sequencing were compared to the lineage assigned by WGS using next-generation sequencing (NGS) techniques. A total of 37 specimens were sequenced via WGS, and classified as: VOC gamma (8); delta (7); omicron (10), with 3 omicron specimens classified as the BQ.1 subvariant and 12 specimens classified as non-VOC variants. The results of the partial Sanger sequencing presented as 100% in agreement with the WGS. The Sanger protocol made it possible to characterize the main SARS-CoV-2 VOCs currently circulating in Brazil through partial Sanger sequencing of the RBD region of the viral spike. Therefore, the sequencing of the RBD region is a fast and cost-effective laboratory tool for clinical and epidemiological use in the genomic surveillance of SARS-CoV-2.
Collapse
Affiliation(s)
- Grazielle Motta Rodrigues
- Residência Multiprofissional em Saúde e em Área Profissional da Saúde do Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Fabiana Caroline Zempulski Volpato
- LABRESIS–Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90160-093, Rio Grande do Sul, Brazil
| | - Priscila Lamb Wink
- LABRESIS–Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90160-093, Rio Grande do Sul, Brazil
| | - Rodrigo Minuto Paiva
- Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Afonso Luís Barth
- LABRESIS–Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90160-093, Rio Grande do Sul, Brazil
| | - Fernanda de-Paris
- Residência Multiprofissional em Saúde e em Área Profissional da Saúde do Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Serviço de Diagnóstico Laboratorial, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- LABRESIS–Laboratório de Pesquisa em Resistência Bacteriana, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Correspondence:
| |
Collapse
|
6
|
Daniels RS, McCauley JW. The health of influenza surveillance and pandemic preparedness in the wake of the COVID-19 pandemic. J Gen Virol 2023; 104. [PMID: 36800222 DOI: 10.1099/jgv.0.001822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The COVID-19 pandemic is the first to have emerged when Next Generation Sequencing was readily available and it has played the major role in following evolution of the causative agent, Severe Acute Respiratory Syndrome Coronavirus 2. Response to the pandemic was greatly facilitated though use of existing influenza surveillance networks: World Health Organization (WHO) Global Influenza Surveillance and Response System (GISRS), focussing largely on human influenza, and the OFFLU network of expertise on avian influenza established by the Food and Agricultural Organization of the United Nations (FAO) and the World Organization for Animal Health (WOAH). Data collection/deposition platforms associated with these networks, notably WHO's FluNet and the Global Initiative on Sharing All Influenza Data (GISAID) were/are being used intensely. Measures introduced to combat COVID-19 resulted in greatly decreased circulation of human seasonal influenza viruses for approximately 2 years, but circulation continued in the animal sector with an upsurge in the spread of highly pathogenic avian influenza subtype H5N1 with large numbers of wild bird deaths, culling of many poultry flocks and sporadic spill over into mammalian species, including humans, thereby increasing pandemic risk potential. While there are proposals/implementations to extend use of GISRS and GISAID to other infectious disease agents (e.g. Respiratory Syncytial Virus and Monkeypox), there is need to ensure that influenza surveillance is maintained and improved in both human and animal sectors in a sustainable manner to be truly prepared (early detection) for the next influenza pandemic.
Collapse
Affiliation(s)
- Rodney Stuart Daniels
- Worldwide Influenza Centre (WIC), The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - John William McCauley
- Worldwide Influenza Centre (WIC), The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
7
|
Jørgensen TS, Pedersen MS, Blin K, Kuntke F, Salling HK, Marvig RL, Michaelsen TY, Albertsen M, Larsen H. SpikeSeq: A rapid, cost efficient and simple method to identify SARS-CoV-2 variants of concern by Sanger sequencing part of the spike protein gene. J Virol Methods 2023; 312:114648. [PMID: 36368344 PMCID: PMC9642040 DOI: 10.1016/j.jviromet.2022.114648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022]
Abstract
In 2020, the novel coronavirus, SARS-CoV-2, caused a pandemic, which is still raging at the time of writing this. Here, we present results from SpikeSeq, the first published Sanger sequencing-based method for the detection of Variants of Concern (VOC) and key mutations, using a 1 kb amplicon from the recognized ARTIC Network primers. The proposed setup relies entirely on materials and methods already in use in diagnostic RT-qPCR labs and on existing commercial infrastructure offering sequencing services. For data analysis, we provide an automated, open source, and browser-based mutation calling software (https://github.com/kblin/covid-spike-classification, https://ssi.biolib.com/covid-spike-classification). We validated the setup on 195 SARS-CoV-2 positive samples, and we were able to profile 85% of RT-qPCR positive samples, where the last 15% largely stemmed from samples with low viral count. We compared the SpikeSeq results to WGS results. SpikeSeq has been used as the primary variant identification tool on > 10.000 SARS-CoV-2 positive clinical samples during 2021. At approximately 4€ per sample in material cost, minimal hands-on time, little data handling, and a short turnaround time, the setup is simple enough to be implemented in any SARS-CoV-2 RT-qPCR diagnostic lab. Our protocol provides results that can be used to choose antibodies in a clinical setting and for the tracking and surveillance of all positive samples for new variants and known ones such as Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1) Delta (B.1.617.2), Omicron BA.1(B.1.1.529), BA.2, BA.4/5, BA.2.75.x, and many more, as of October 2022.
Collapse
Affiliation(s)
- Tue Sparholt Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DTU, Kongens Lyngby 2800, Denmark.
| | - Martin Schou Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DTU, Kongens Lyngby 2800, Denmark
| | - Franziska Kuntke
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, DTU, Kongens Lyngby 2800, Denmark
| | | | - Rasmus L Marvig
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen 2100, Denmark
| | - Thomas Y Michaelsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Mads Albertsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg 9220, Denmark
| | - Helene Larsen
- Centre for Diagnostics, Department of Health Technology, Technical University of Denmark, DTU, Kongens Lyngby 2800, Denmark
| |
Collapse
|
8
|
Zare Ashrafi F, Mohseni M, Beheshtian M, Fattahi Z, Ghodratpour F, Keshavarzi F, Behravan H, Kalhor M, Jalalvand K, Azad M, Koshki M, Jafarpour A, Ghaziasadi A, Abdollahi A, Kiani SJ, Ataei-Pirkooh A, Rezaei Azhar I, Bokharaei-Salim F, Haghshenas MR, Babamahmoodi F, Mokhames Z, Soleimani A, Ziaee M, Javanmard D, Ghafari S, Ezani A, Ansari Moghaddam A, Shahraki-Sanavi F, Hashemi Shahri SM, Azaran A, Yousefi F, Moattari A, Moghadami M, Fakhim H, Ataei B, Nasri E, Poortahmasebi V, Varshochi M, Mojtahedi A, Jalilian F, Khazeni M, Moradi A, Tabarraei A, Piroozmand A, Yahyapour Y, Bayani M, Aboofazeli A, Ghafari P, Keramat F, Tavakoli M, Jalali T, Pouriayevali MH, Salehi-Vaziri M, Khorram Khorshid HR, Najafipour R, Malekzadeh R, Kahrizi K, Jazayeri SM, Najmabadi H. Implementation of an In-House Platform for Rapid Screening of SARS-CoV-2 Genome Variations. ARCHIVES OF IRANIAN MEDICINE 2023; 26:69-75. [PMID: 37543926 PMCID: PMC10685895 DOI: 10.34172/aim.2023.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/16/2022] [Indexed: 08/08/2023]
Abstract
BACKGROUND Global real-time monitoring of SARS-CoV-2 variants is crucial to controlling the COVID-19 outbreak. The purpose of this study was to set up a Sanger-based platform for massive SARS-CoV-2 variant tracking in laboratories in low-resource settings. METHODS We used nested RT-PCR assay, Sanger sequencing and lineage assignment for 930-bp of the SARS-CoV-2 spike gene, which harbors specific variants of concern (VOCs) mutations. We set up our platform by comparing its results with whole genome sequencing (WGS) data on 137 SARS-CoV-2 positive samples. Then, we applied it on 1028 samples from March-September 2021. RESULTS In total, 125 out of 137 samples showed 91.24% concordance in mutation detection. In lineage assignment, 123 out of 137 samples demonstrated 89.78% concordance, 65 of which were assigned as VOCs and showed 100% concordance. Of 1028 samples screened by our in-house method, 78 distinct mutations were detected. The most common mutations were: S:D614G (21.91%), S:P681R (12.19%), S:L452R (12.15%), S:T478K (12.15%), S:N501Y (8.91%), S:A570D (8.89%), S:P681H (8.89%), S:T716I (8.74%), S:L699I (3.50%) and S:S477N (0.28%). Of 1028 samples, 980 were attributed as VOCs, which include the Delta (B.1.617.2) and Alpha (B.1.1.7) variants. CONCLUSION Our proposed in-house Sanger-based assay for SARS-CoV-2 lineage assignment is an accessible strategy in countries with poor infrastructure facilities. It can be applied in the rapid tracking of SARS-CoV-2 VOCs in the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Fatemeh Ghodratpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Fatemeh Keshavarzi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hanieh Behravan
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Marzieh Kalhor
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Azad
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Mahdieh Koshki
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Ali Jafarpour
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Gerash Amir-al-Momenin Medical and Educational Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Azam Ghaziasadi
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Iran
| | - Seyed Jalal Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Rezaei Azhar
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Haghshenas
- Department of Medical Microbiology, Antimicrobial Resistance Research Center, Communicable Diseases Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farhang Babamahmoodi
- Department of Medical Microbiology, Antimicrobial Resistance Research Center, Communicable Diseases Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zakiye Mokhames
- Department of Molecular Diagnostic, Emam Ali Educational and Therapeutic Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Alireza Soleimani
- Department of Infectious Diseases, Imam Ali hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Masood Ziaee
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Davod Javanmard
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shokouh Ghafari
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Akram Ezani
- Qazvin Deputy of Treatment Reference Laboratory, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | | | - Azarakhsh Azaran
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farid Yousefi
- Department of Infectious Diseases, School of Medicine, Razi Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afagh Moattari
- Department of Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghadami
- Health policy research center, Shiraz University of medical sciences, Shiraz, Iran
| | - Hamed Fakhim
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behrooz Ataei
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Nasri
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojtaba Varshochi
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Mojtahedi
- Microbiology Department, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farid Jalilian
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical sciences, Hamadan, Iran
| | | | | | | | - Ahmad Piroozmand
- Department of Microbiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Masoumeh Bayani
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Parsa Ghafari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Keramat
- Brucellosis Research Center, Hamedan University of Medical Science, Hamadan, Iran
| | - Mahsa Tavakoli
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Najafipour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Cell and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
9
|
Chung HY, Jian M, Chang CK, Chen CS, Li SY, Lin JC, Yeh KM, Yang YS, Chen CW, Hsieh SS, Tang SH, Perng CL, Hung KS, Chang FY, Shang HS. The application of a novel 5-in-1 multiplex reverse transcriptase-polymerase chain reaction assay for rapid detection of SARS-CoV-2 and differentiation between variants of concern. Int J Infect Dis 2023; 127:56-62. [PMID: 36455809 PMCID: PMC9703862 DOI: 10.1016/j.ijid.2022.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES We have established a novel 5-in-1 VOC assay to rapidly detect SARS-CoV-2 and immediately distinguish whether positive samples represent variants of concern (VOCs). METHODS This assay could distinguish among five VOCs: Alpha, Beta, Gamma, Delta, and Omicron, in a single reaction tube. The five variants exhibit different single nucleotide polymorphisms (SNPs) in their viral genome, which can be used to distinguish them. We selected target SNPs in the spike gene, including N501Y, P681R, K417N, and deletion H69/V70 for the assay. RESULTS The limit of detection of each gene locus was 80 copies per polymerase chain reaction. We observed a high consistency among the results when comparing the performance of our 5-in-1 VOC assay, whole gene sequencing, and the Roche VirSNiP SARS-CoV-2 test in retrospectively analyzing 150 clinical SARS-CoV-2 variant positive samples. The 5-in-1 VOC assay offers an alternative and rapid high-throughput test for most diagnostic laboratories in a flexible sample-to-result platform. CONCLUSION The assay can also be applied in a commercial platform with the completion of the SARS-CoV-2 confirmation test and identification of its variant within 2.5 hours.
Collapse
Affiliation(s)
- Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan
| | - Ming Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Sheng Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yi Li
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Wen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shan-Shan Hsieh
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sheng-Hui Tang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan,Corresponding author
| |
Collapse
|
10
|
Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. ENVIRONMENTAL RESEARCH 2022; 215:114369. [PMID: 36165858 DOI: 10.1016/j.envres.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul - 04763, South Korea.
| |
Collapse
|
11
|
Deminco F, Vaz SN, Santana DS, Pedroso C, Tadeu J, Stoecker A, Vieira SM, Netto E, Brites C. A Simplified Sanger Sequencing Method for Detection of Relevant SARS-CoV-2 Variants. Diagnostics (Basel) 2022; 12:2609. [PMID: 36359452 PMCID: PMC9689870 DOI: 10.3390/diagnostics12112609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 08/26/2023] Open
Abstract
Molecular surveillance of the new coronavirus through new genomic sequencing technologies revealed the circulation of important variants of SARS-CoV-2. Sanger sequencing has been useful in identifying important variants of SARS-CoV-2 without the need for whole-genome sequencing. A sequencing protocol was constructed to cover a region of 1000 base pairs, from a 1120 bp product generated after a two-step RT-PCR assay in samples positive for SARS-CoV-2. Consensus sequence construction and mutation identification were performed. Of all 103 samples sequenced, 69 contained relevant variants represented by 20 BA.1, 13 delta, 22 gamma, and 14 zeta, identified between June 2020 and February 2022. All sequences found were aligned with representative sequences of the variants. Using the Sanger sequencing methodology, we were able to develop a more accessible protocol to assist viral surveillance with a more accessible platform.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carlos Brites
- Laboratório de Pesquisa em Infectologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia (UFBA)/EBSERH, Salvador 40170-110, Bahia, Brazil
| |
Collapse
|
12
|
Wagner GE, Totaro MG, Volland A, Lipp M, Saiger S, Lichtenegger S, Forstner P, von Laer D, Oberdorfer G, Steinmetz I. A Novel High-Throughput Nanopore-Sequencing-Based Strategy for Rapid and Automated S-Protein Typing of SARS-CoV-2 Variants. Viruses 2021; 13:2548. [PMID: 34960817 PMCID: PMC8704619 DOI: 10.3390/v13122548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Rapid molecular surveillance of SARS-CoV-2 S-protein variants leading to immune escape and/or increased infectivity is of utmost importance. Among global bottlenecks for variant monitoring in diagnostic settings are sequencing and bioinformatics capacities. In this study, we aimed to establish a rapid and user-friendly protocol for high-throughput S-gene sequencing and subsequent automated identification of variants. We designed two new primer pairs to amplify only the immunodominant part of the S-gene for nanopore sequencing. Furthermore, we developed an automated "S-Protein-Typer" tool that analyzes and reports S-protein mutations on the amino acid level including a variant of concern indicator. Validation of our primer panel using SARS-CoV-2-positive respiratory specimens covering a broad Ct range showed successful amplification for 29/30 samples. Restriction to the region of interest freed sequencing capacity by a factor of 12-13, compared with whole-genome sequencing. Using either the MinION or Flongle flow cell, our sequencing strategy reduced the time required to identify SARS-CoV-2 variants accordingly. The S-Protein-Typer tool identified all mutations correctly when challenged with our sequenced samples and 50 deposited sequences covering all VOCs (December 2021). Our proposed S-protein variant screening offers a simple, more rapid, and low-cost entry into NGS-based SARS-CoV-2 analysis, compared with current whole-genome approaches.
Collapse
Affiliation(s)
- Gabriel E. Wagner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (M.L.); (S.S.); (S.L.); (P.F.)
| | - Massimo G. Totaro
- Department of Biochemistry, Graz University of Technology, 8010 Graz, Austria; (M.G.T.); (G.O.)
| | - André Volland
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.V.); (D.v.L.)
| | - Michaela Lipp
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (M.L.); (S.S.); (S.L.); (P.F.)
| | - Sabine Saiger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (M.L.); (S.S.); (S.L.); (P.F.)
| | - Sabine Lichtenegger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (M.L.); (S.S.); (S.L.); (P.F.)
| | - Patrick Forstner
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (M.L.); (S.S.); (S.L.); (P.F.)
| | - Dorothee von Laer
- Department of Hygiene, Microbiology and Public Health, Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.V.); (D.v.L.)
| | - Gustav Oberdorfer
- Department of Biochemistry, Graz University of Technology, 8010 Graz, Austria; (M.G.T.); (G.O.)
| | - Ivo Steinmetz
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, 8010 Graz, Austria; (M.L.); (S.S.); (S.L.); (P.F.)
| |
Collapse
|