1
|
Nagaja SA, John RS, G S, Kumar SP, Krishnan M. Injectable Platelet-Rich Fibrin and Hyaluronic Acid Mesotherapy for Management of Actinic Elastosis of Lower Eyelids: A Case Series. Cureus 2024; 16:e68429. [PMID: 39360098 PMCID: PMC11445689 DOI: 10.7759/cureus.68429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Rejuvenating the skin on the lower eyelids is often complicated. Treatment alternatives that have been practiced in the past had several complications. Additionally, they were not completely effective in addressing skin aging or actinic elastosis symptoms such as dark circles under the eyes. A minimally invasive therapy approach that improves the above-mentioned issues in a desirable way has been discussed in this case series. The patients selected were of the age group between 20-40 years who had actinic elastosis of the lower eyelid. The patients were injected twice at one-month intervals with a combination of injectable platelet-rich fibrin (iPRF) and hyaluronic acid. The patients were examined on the day of treatment and one month after the second injection. A progressive improvement in the esthetic outcome and a high level of patient satisfaction were observed. Apart from the predicted visible swelling right away following the iPRF injection. The outcomes have shown that a series of iPRF with hyaluronic acid injections in the lower eyelid region is a safe, proficient, pain-free, simple and rapid treatment option for actinic elastosis.
Collapse
Affiliation(s)
- Sharanika A Nagaja
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Rubin S John
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Swetha G
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Santhosh P Kumar
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Murugesan Krishnan
- Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2024. [PMID: 38243683 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of Queensland, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Shim JR, Kang M, Woo KS, Rha SH, Han JY. Whole-mount Electron Microscopy to Quantitate Platelet Dense Granules: Reference Intervals for Healthy Controls in Korea. Ann Lab Med 2023; 43:208-210. [PMID: 36281517 PMCID: PMC9618897 DOI: 10.3343/alm.2023.43.2.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/02/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Affiliation(s)
- Jae-Ryong Shim
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea,Department of Laboratory Medicine, Dong-A University Hospital, Busan, Korea
| | - Miri Kang
- Department of Laboratory Medicine, Dong-A University Hospital, Busan, Korea
| | - Kwang-Sook Woo
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea,Department of Laboratory Medicine, Dong-A University Hospital, Busan, Korea
| | - Seo-Hee Rha
- Department of Pathology, Dong-A University College of Medicine, Busan, Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, Korea,Department of Laboratory Medicine, Dong-A University Hospital, Busan, Korea,Corresponding author: Jin-Yeong Han, M.D., Ph.D. Department of Laboratory Medicine, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan 49201, Korea Tel: +82-51-240-5323, Fax: +82-51-255-9366, E-mail:
| |
Collapse
|
4
|
Platelets’ Nanomechanics and Morphology in Neurodegenerative Pathologies. Biomedicines 2022; 10:biomedicines10092239. [PMID: 36140340 PMCID: PMC9496241 DOI: 10.3390/biomedicines10092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The imaging and force–distance curve modes of atomic force microscopy (AFM) are explored to compare the morphological and mechanical signatures of platelets from patients diagnosed with classical neurodegenerative diseases (NDDs) and healthy individuals. Our data demonstrate the potential of AFM to distinguish between the three NDDs—Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD), and normal healthy platelets. The common features of platelets in the three pathologies are reduced membrane surface roughness, area and height, and enhanced nanomechanics in comparison with healthy cells. These changes might be related to general phenomena associated with reorganization in the platelet membrane morphology and cytoskeleton, a key factor for all platelets’ functions. Importantly, the platelets’ signatures are modified to a different extent in the three pathologies, most significant in ALS, less pronounced in PD and the least in AD platelets, which shows the specificity associated with each pathology. Moreover, different degree of activation, distinct pseudopodia and nanocluster formation characterize ALS, PD and AD platelets. The strongest alterations in the biophysical properties correlate with the highest activation of ALS platelets, which reflect the most significant changes in their nanoarchitecture. The specific platelet signatures that mark each of the studied pathologies can be added as novel biomarkers to the currently used diagnostic tools.
Collapse
|
5
|
Chen J, Yang Y, Liu B, Xie X, Li W. Hermansky-Pudlak syndrome type 2: A rare cause of severe periodontitis in adolescents-A case study. Front Pediatr 2022; 10:914243. [PMID: 35928686 PMCID: PMC9343695 DOI: 10.3389/fped.2022.914243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND AIMS Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism (OCA) and platelet storage pool deficiency. The HPS-2 subtype is distinguished by neutropenia, and little is known about its periodontal phenotype in adolescents. AP3B1 is the causative gene for HPS-2. A 13-year-old Chinese girl presented to our department suffering from gingival bleeding and tooth mobility. Her dental history was otherwise unremarkable. Suspecting some systemic diseases as the underlying cause, the patient was referred for medical consultation, a series of blood tests, and genetic tests. In this case study, periodontal status and mutation screening of one HPS-2 case are presented. METHODS Blood analysis including a complete blood count (CBC) and glycated hemoglobin levels were measured. Platelet transmission electron microscopy (PTEM) was performed to observe the dense granules in platelets. Whole-exome sequencing (WES) and Sanger sequencing were performed to confirm the pathogenic variants. RESULTS A medical diagnosis of HPS-2 was assigned to the patient. Following the medical diagnosis, a periodontal diagnosis of "periodontitis as a manifestation of systemic disease" was assigned to the patient. We identified novel compound heterozygous variants in AP3B1 (NM_003664.4: exon7: c.763C>T: p.Q255*) and (NM_003664.4: exon1: c.53_56dup: p.E19Dfs*21) in this Chinese pedigree with HPS-2. CONCLUSION This case study indicates the importance of periodontitis as a possible indicator of underlying systemic disease. Systemic disease screening is needed when a young patient presents with unusual, severe periodontitis, as the oral condition may be the first of a systemic abnormality. Our work also expands the spectrum of AP3B1 mutations and further provides additional genetic testing information for other HPS-2 patients.
Collapse
Affiliation(s)
- Jun Chen
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Yifan Yang
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Binjie Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Department of Periodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Xiaoli Xie
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China
| | - Wenjie Li
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya School of Stomatology, Central South University, Changsha, China.,Deparment of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha, China.,Department of Oral Health Science, School of Dentistry, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
Hendow EK, Day RM. A facile approach to therapeutic angiogenesis using a platelet concentrate and microsphere composite. NANO SELECT 2021. [DOI: 10.1002/nano.202100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Eseelle K. Hendow
- Centre for Precision Healthcare UCL Division of Medicine University College London London UK
| | - Richard M. Day
- Centre for Precision Healthcare UCL Division of Medicine University College London London UK
| |
Collapse
|
7
|
Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-"double-edged sword". Cancer Metastasis Rev 2020; 39:1205-1221. [PMID: 32869161 PMCID: PMC7458881 DOI: 10.1007/s10555-020-09926-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
Platelets control hemostasis and play a key role in inflammation and immunity. However, platelet function may change during aging, and a role for these versatile cells in many age-related pathological processes is emerging. In addition to a well-known role in cardiovascular disease, platelet activity is now thought to contribute to cancer cell metastasis and tumor-associated venous thromboembolism (VTE) development. Worldwide, the great majority of all patients with cardiovascular disease and some with cancer receive anti-platelet therapy to reduce the risk of thrombosis. However, not only do thrombotic diseases remain a leading cause of morbidity and mortality, cancer, especially metastasis, is still the second cause of death worldwide. Understanding how platelets change during aging and how they may contribute to aging-related diseases such as cancer may contribute to steps taken along the road towards a "healthy aging" strategy. Here, we review the changes that occur in platelets during aging, and investigate how these versatile blood components contribute to cancer progression.
Collapse
Affiliation(s)
- Alessandra V S Faria
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | | | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands
| | - Carmen V Ferreira-Halder
- Department of Biochemistry and Tissue Biology, University of Campinas, UNICAMP, Campinas, SP, 13083-862, Brazil
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center Rotterdam, NL-3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Balint B, Pavlovic M, Todorovic M. Rapid Cytoreduction by Plateletapheresis in the Treatment of Thrombocythemia. Platelets 2020. [DOI: 10.5772/intechopen.93158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The objective of this chapter is to provide a systematic overview of current knowledge regarding therapeutic apheresis—primarily therapeutic plateletapheresis (TP)—and to summarize evidence-based practical approaches related to cytapheresis treatment of “hyperthrombocytosis” or “extreme thrombocytosis” (ETC). Our results of platelet (Plt) quantitative/qualitative analyses and evaluation of efficacy of apheresis systems/devices—on the basis of Plt removal and in vivo Plt depletion—will be presented. Our preclinical researches confirmed that in Plt concentrates, the initial ratio of discoid shapes was 70%, spherical 20%, and less valuable (dendritic/balloonized) shapes 10%—with morphological score of platelets (MSP = 300–400). After storage, the ratio of discoid and spherical shapes was decreased, while the less valuable ones progressively increased (MSP = 200). Electron microscopy has shown discoid shapes with typical ultrastructural properties. Spherical shapes with reduced electron density and peripheral location of granules/organelles were detected. Also, dendritic shapes with cytoskeletal “rearrangement,” membrane system integrity damages, and pseudopodia formations were documented. Our clinical study demonstrated that TP was useful in ETC treatment and should help prevention of “thrombo-hemorrhagic” events—until chemotherapy, antiplatelet drugs, and other medication take effect. During TP treatment, Plt count and morphology/ultrastructure were examined. Plt functions by multiplate analyzer were evaluated. We concluded that intensive TP was an effective, safe, and rapid cytoreductive treatment for ET.
Collapse
|
9
|
A Novel Microchip Technique for Quickly Identifying Nanogranules in an Aqueous Solution by Transmission Electron Microscopy: Imaging of Platelet Granules. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ultrastructural observation of biological specimens or nanogranules usually requires the use of electron microscopy. Electron microscopy takes a lot of time, requires many steps, and uses many chemicals, which may affect the native state of biological specimens. A novel microchip (K-kit) was used as a specimen kit for in situ imaging of human platelet granules in an aqueous solution using a transmission electron microscope. This microchip enabled us to observe the native human platelet granules very quickly and easily. The protocols included blood collection, platelet purification, platelet granule isolation, sample loading into this microchip, and then observation by a transmission electron microscope. In addition, these granules could still remain in aqueous solution, and only a very small amount of the sample was required for observation and analysis. We used this microchip to identify the native platelet granules by negative staining. Furthermore, we used this microchip to perform immunoelectron microscopy and successfully label α-granules of platelets with the anti-P-selectin antibody. These results demonstrate that the novel microchip can provide researchers with faster and better choices when using a transmission electron microscope to examine nanogranules of biological specimens in aqueous conditions.
Collapse
|
10
|
Tomaiuolo M, Litvinov RI, Weisel JW, Stalker TJ. Use of electron microscopy to study platelets and thrombi. Platelets 2020; 31:580-588. [PMID: 32423268 PMCID: PMC7332414 DOI: 10.1080/09537104.2020.1763939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/23/2023]
Abstract
Electron microscopy has been a valuable tool for the study of platelet biology and thrombosis for more than 70 years. Early studies using conventional transmission and scanning electron microscopy (EM) provided a foundation for our initial understanding of platelet structure and how it changes upon platelet activation. EM approaches have since been utilized to study platelets and thrombi in the context of basic, translational and clinical research, and they are instrumental in the diagnosis of multiple platelet function disorders. In this brief review, we provide a sampling of the many contributions EM based studies have made to the field, including both historical highlights and contemporary applications. We will also discuss exciting new imaging modalities based on EM and their utility for the study of platelets, hemostasis and thrombosis into the future.
Collapse
Affiliation(s)
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
11
|
Abate M, Di Carlo L, Belluati A, Salini V. Factors associated with positive outcomes of platelet-rich plasma therapy in Achilles tendinopathy. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2020; 30:859-867. [PMID: 32112184 DOI: 10.1007/s00590-020-02642-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/22/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The efficacy of platelet-rich plasma in the treatment for Achilles tendinopathy is debated. Therefore, it is important to know which factors, related to the subjects and/or the disease, are associated with positive or negative outcomes. Aim of this study was to evaluate in a large cohort of patients with Achilles mid-portion tendinopathy which variables were independently associated with a positive outcome after platelet-rich plasma treatment. MATERIAL AND METHODS Eighty-four subjects with Achilles tendinopathy were evaluated by means of VISA-A score and ultrasound and treated with a single platelet-rich plasma injection once a week for 3 weeks. Afterward, a rehabilitation program, based on eccentric training, was implemented. At 3 and 6 months, the relationship between the mean VISA-A score and the following putative predictors was evaluated: sex, age, physical activity, sport, smoking, metabolic risk factors, BMI, symptoms duration, tendon damage, neovessels, adherence to eccentric training. Finally, the percentage of clinically evident positive outcomes (defined as an increase in VISA-A score ≥ 20 points) related to each variable was computed. RESULTS At final follow-up, using the General Linear Model for Repeated Measures procedure, male sex (0.02), age ≤ 40 (0.05) and adequate eccentric training (0.02) were found to be independently associated with a significant increase in the mean VISA-A score. Moreover, the clinically evident positive outcomes, as previously defined, were significantly associated with male sex (0.01), age ≤ 40 (0.000), BMI ≤ 25 (0.001), symptoms duration ≤ 12 months (0.02) and good adherence to eccentric training (0.004). CONCLUSION Younger age, male sex and good adherence to eccentric training can be considered predictors of better results after platelet-rich plasma therapy in Achilles tendinopathy.
Collapse
Affiliation(s)
- Michele Abate
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti Scalo, CH, Italy.
| | - Luigi Di Carlo
- Department of Medicine and Science of Aging, University G. D'Annunzio, Chieti-Pescara, Via dei Vestini 31, 66013, Chieti Scalo, CH, Italy
| | - Alberto Belluati
- Division of Orthopedics and Traumatology, Santa Maria Delle Croci Hospital, Ravenna, Italy
| | - Vincenzo Salini
- Division of Orthopedics and Traumatology, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
12
|
Tian J, Cheng L, Cui X, Lei X, Tang J, Cheng B. Investigating the effect of age on platelet ultrastructure using transmission electron microscopy. Int Wound J 2019; 16:1457-1463. [PMID: 31486290 PMCID: PMC7949169 DOI: 10.1111/iwj.13214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022] Open
Abstract
In the present study, the age- and sex-related differences in platelet ultrastructure were investigated using transmission electron microscopy (TEM). A total of 15 healthy volunteers were grouped according to age, with 5 people in each of the following groups: young group (25-45 years), middle-aged group (46-65 years), and old-aged group (> 65 years). In the TEM micrographs, the internal components, specifically the α-granules, dense granules, and lysosomal granules, of 20 platelets were counted for each group. Two-way analysis of variance of age and sex variance was used to compare the results. The ultrastructure of the platelets in the old-aged group was observed to be quite different from those of the young and middle-aged groups. Specifically, with ageing, the platelet membrane becomes more irregular in shape and non-smooth, and multiple platelet membrane ruptures are observed. Furthermore, the pseudopodia and protuberances become more numerous and slender, and the number of α-granules is significantly reduced. These morphological changes indicate that ageing may affect the function of platelets, which in turn affects the efficacy of platelet concentrates. Thus, the effects of age should be considered when using platelet concentrates prepared from elderly autologous blood.
Collapse
Affiliation(s)
- Ju Tian
- Department of Plastic SurgeryZhongshan City People's HospitalZhongshanGuangdongChina
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouGuangdongChina
- The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, PLAGuangzhouGuangdongChina
| | - Liu‐Hang‐Hang Cheng
- Key Laboratory of Tissue Repair and Regeneration of PLA, and Beijing Key Research Laboratory of Skin Injury, Repair and RegenerationThe Fourth Medical Center of General Hospital of PLABeijingChina
- Institute of Basic Medical SciencesGeneral Hospital of PLABeijingChina
| | - Xiao Cui
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouGuangdongChina
- The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, PLAGuangzhouGuangdongChina
- Guangdong Provincial Hospital of Chinese MedicineGuangzhouGuangdongChina
| | - Xiao‐Xuan Lei
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouGuangdongChina
- The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, PLAGuangzhouGuangdongChina
| | - Jian‐Bing Tang
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouGuangdongChina
| | - Biao Cheng
- Department of Plastic SurgeryGeneral Hospital of Southern Theater Command, PLAGuangzhouGuangdongChina
- The Key Laboratory of Trauma Treatment and Tissue Repair of Tropical Area, PLAGuangzhouGuangdongChina
| |
Collapse
|