1
|
Sancetta BM, Ricci L, Lanzone J, Boscarino M, Narducci F, Lippa G, Nesta M, Di Lazzaro V, Tombini M, Assenza G. Overnight switch from carbamazepine to eslicarbazepine in a real-life clinical scenario: a retrospective study. Neurol Sci 2024; 45:3435-3442. [PMID: 38315252 DOI: 10.1007/s10072-024-07354-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Carbamazepine (CBZ) is a first-choice anti-seizure medication (ASM) whose efficacy is often invalidated by adverse effects (AEs). Eslicarbazepine (ESL) is a structural derivative of CBZ with better pharmacokinetic/tolerability profiles. We describe our experience of the overnight CBZ to ESL switch in people with epilepsy (PwE) to improve seizure control, AEs, and ASMs adherence. METHODS We retrospectively included 19 PwE (12 females, 53 ± 21 years old) who underwent CBZ to ESL overnight switch due to single/multiple issues: poor efficacy (pEff, N = 8, 42%), tolerability (pToll, N = 11, 58%), adherence (pAdh, N = 2, 10%). 9/19 (47%) had psychiatric comorbidities. Clinical variables, seizure frequency, and AEs were recorded at switch time (T0) after 3.5 ± 3 (T1) and 6.5 ± 1.5 months (T2). RESULTS At T1, in pEff group, 1/8 (13%) was seizure free, 2/8 (25%) were responders (> 50% seizure reduction), 2/8 (25%) had no seizure changes, 3/8 (37%) had seizure worsening; the latter were those with the most severe epilepsy and encephalopathy. In pToll group, all PwE experienced AEs disappearance/amelioration. In pAdh group, all PwE reported adherence amelioration. Four dropouts. At T2, no changes were recorded within groups, while in the whole sample, 6/15 (40%) were responders, and 4/15 (27%) were seizure-free. No one complained of Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation psychiatric worsening, while 6/19 (32%) experienced mood/behavior benefits. CONCLUSIONS CBZ to ESL overnight switch offers an opportunity to improve efficacy, tolerability, adherence, and psychiatric symptoms.
Collapse
Affiliation(s)
- Biagio Maria Sancetta
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy.
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy.
| | - Lorenzo Ricci
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Jacopo Lanzone
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Marilisa Boscarino
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Department of the Milano Institute, Milan, Italy
| | - Flavia Narducci
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Giulia Lippa
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Marianna Nesta
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Vincenzo Di Lazzaro
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Mario Tombini
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| | - Giovanni Assenza
- UOC Neurologia, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
| |
Collapse
|
2
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
3
|
Cansu A, Gurgen SG, Demirhan YN, Ozkan Kart P, Yildirim M, Alver A, Yeni Lmez E, Sönmez FM. Effects of treatment with clinically relevant valproate, carbamazepine, oxcarbazepine, topiramate, lamotrigine and levetiracetam on ovarian folliculogenesis in young rats. Epilepsy Res 2022; 184:106966. [PMID: 35763982 DOI: 10.1016/j.eplepsyres.2022.106966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022]
Abstract
AIM To determine the effects of valproate (VPA), carbamazepine (CBZ), oxcarbazepine (OXC), topiramate (TPM), lamotrigine (LTG), and levetiracetam (LEV) on ovarian folliculogenesis in young rats. METHODS Forty-nine female Wistar rats, aged 21-24 days, were divided equally into 7 experimental groups. These were given tap water over 21-24 days (control group), 300 mg/kg of VPA, 150 mg/kg of CBZ, 150 mg/kg of OXC, 100 mg/kg of TPM, 10 mg/kg of LTG, or 50 mg/kg of LEV daily in 2 doses via oral gavage until the end of puberty. At the end of the study, the estrous cycle of each rat was monitored daily, and those rats in pro-estrus or di-estrus were sacrificed and the ovaries removed. Serial sections obtained from the ovaries were stained with hematoxylin and eosin, and the corpora lutea and follicles were enumerated. Apoptotic cells were detected using the TUNEL technique. Various serial sections were immunohistochemically stained with proliferating cell nuclear antigen (PCNA), growth differentiation factor (GDF)-9, caspase-3, caspase-9, transforming growth factor beta 1 (TGF-1), and epidermal growth factor (EGF), and evaluated and photographed under a light microscope. KEY FINDINGS The number of corpora lutea was significantly increased in the VPA, CBZ, OXC, and LTG groups compared to the control group (p < 0.001). The number of TUNEL-positive ovarian follicles was 3.3 ± 1.1 (median, 3), 6.1 ± 0.9 (median, 6), and 5.7 ± 0.8 (median,6) in the control, OXC and LEV groups, respectively (p < 0.001). The number of TUNEL-positive granulosa cells was higher in all the groups treated with antiepileptics, with the exception of the TPM group, compared to the control group (p < 0.001). HSCOREs for immunohistochemical staining using PCNA, GDF-9, TGF-1 and EGF were significantly higher in the control group than in the others (p < 0.001). HSCORE for staining using caspase-3 was significantly higher in the VPA, CBZ, OXC and LEV groups, while the HSCORE was significantly lower in the TPM group than in the control group. HSCORE for staining using caspase-9 was significantly higher in the VPA, CBZ and OXC groups, while it was significantly lower in the TPM group than in the control group (p < 0.001). SIGNIFICANCE Exposure to VPA, CBZ, OXC, TPM, LTG and LEV caused different levels of impaired folliculogenesis in young rats.
Collapse
Affiliation(s)
- Ali Cansu
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey.
| | - Seren Gulsen Gurgen
- Vocational School of Health Services, Celal Bayar University Faculty of Medicine, Manisa, Turkey
| | - Yeseren Nil Demirhan
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Pınar Ozkan Kart
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Mehmet Yildirim
- Department of Physiology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Engin Yeni Lmez
- Department of Histology and Embryology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| | - Fatma Müjgan Sönmez
- Department of Pediatric Neurology, Karadeniz Technical University Faculty of Medicine, Trabzon, Turkey
| |
Collapse
|
4
|
Shishmanova-Doseva M, Peychev L, Yoanidu L, Uzunova Y, Atanasova M, Georgieva K, Tchekalarova J. Anticonvulsant Effects of Topiramate and Lacosamide on Pilocarpine-Induced Status Epilepticus in Rats: A Role of Reactive Oxygen Species and Inflammation. Int J Mol Sci 2021; 22:2264. [PMID: 33668718 PMCID: PMC7956388 DOI: 10.3390/ijms22052264] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Status epilepticus (SE) is a neurological disorder characterized by a prolonged epileptic activity followed by subsequent epileptogenic processes. The aim of the present study was to evaluate the early effects of topiramate (TPM) and lacosamide (LCM) treatment on oxidative stress and inflammatory damage in a model of pilocarpine-induced SE. METHODS Male Wistar rats were randomly divided into six groups and the two antiepileptic drugs (AEDs), TPM (40 and 80 mg/kg, i.p.) and LCM (10 and 30 mg/kg, i.p.), were injected three times repeatedly after pilocarpine administration. Rats were sacrificed 24 h post-SE and several parameters of oxidative stress and inflammatory response have been explored in the hippocampus. RESULTS The two drugs TPM and LCM, in both doses used, succeeded in attenuating the number of motor seizures compared to the SE-veh group 30 min after administration. Pilocarpine-induced SE decreased the superoxide dismutase (SOD) activity and reduced glutathione (GSH) levels while increasing the catalase (CAT) activity, malondialdehyde (MDA), and IL-1β levels compared to the control group. Groups with SE did not affect the TNF-α levels. The treatment with a higher dose of 30 mg/kg LCM restored to control level the SOD activity in the SE group. The two AEDs, in both doses applied, also normalized the CAT activity and MDA levels to control values. In conclusion, we suggest that the antioxidant effect of TPM and LCM might contribute to their anticonvulsant effect against pilocarpine-induced SE, whereas their weak anti-inflammatory effect in the hippocampus is a consequence of reduced SE severity.
Collapse
Affiliation(s)
| | - Lyudmil Peychev
- Department of Pharmacology and Drug Toxicology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Lyubka Yoanidu
- Department of Bioorganic Chemistry, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (L.Y.); (Y.U.)
| | - Yordanka Uzunova
- Department of Bioorganic Chemistry, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria; (L.Y.); (Y.U.)
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, 5800 Pleven, Bulgaria;
| | - Katerina Georgieva
- Department of Physiology, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Lazzarotto L, Pflüger P, Regner GG, Santos FM, Aguirre DG, Brito VB, Moura DJ, Dos Santos NM, Picada JN, Parmeggiani B, Frusciante MR, Leipnitz G, Pereira P. Lacosamide improves biochemical, genotoxic, and mitochondrial parameters after PTZ-kindling model in mice. Fundam Clin Pharmacol 2020; 35:351-363. [PMID: 32851690 DOI: 10.1111/fcp.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the effect of lacosamide (LCM) on biochemical and mitochondrial parameters after PTZ kindling in mice. Male mice were treated on alternative days for a period of 11 days with LCM (20, 30, or 40 mg/kg), saline, or diazepam (2 mg/kg), before PTZ administration (50 mg/kg). The hippocampi were collected to evaluate free radicals, the activities of superoxide dismutase (SOD), catalase (CAT), and the mitochondrial complexes I-III, II, and II-III, as well as Bcl-2 and cyclo-oxygenase-2 (COX-2) expressions. Hippocampi, blood, and bone marrow were collected for genotoxic and mutagenic evaluations. LCM 40 mg/kg increased latency and decreased percentage of seizures, only on the 3rd day of observation. The dose of 30 mg/kg only showed positive effects on the percentage of seizures on the 2nd day of observation. LCM decreased free radicals and SOD activity and the dose of 40 mg/kg were able to increase CAT activity. LCM 30 and 40 mg/kg improved the enzymatic mitochondrial activity of the complex I-III and LCM 30 mg/kg improved the activity of the complex II. In the comet assay, the damage induced by PTZ administration was reduced by LCM 20 and 30 mg/kg. The dose of 20 mg/kg increased COX-2 expression while the highest dose used, 40 mg/kg, was able to reduce this expression when compared to the group treated with LCM 20 mg/kg. Although LCM did not produce the antiepileptogenic effect in vivo, it showed the neuroprotective effect against oxidative stress, bioenergetic dysfunction, and DNA damage induced by the repeated PTZ administration.
Collapse
Affiliation(s)
- Letícia Lazzarotto
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Fernanda Marcélia Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Débora Gonçalves Aguirre
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Verônica Bidinotto Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, Brazil
| | | | | | - Belisa Parmeggiani
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Marina Rocha Frusciante
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
6
|
Alelwani W, Elmorsy E, Kattan SW, Babteen NA, Alnajeebi AM, Al-Ghafari A, Carter WG. Carbamazepine induces a bioenergetics disruption to microvascular endothelial cells from the blood-brain barrier. Toxicol Lett 2020; 333:184-191. [PMID: 32805338 DOI: 10.1016/j.toxlet.2020.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
Carbamazepine (CBZ) is a widely employed anti-seizure medication that crosses the blood-brain barrier (BBB) to exert its anti-convulsant action. The effects of CBZ on components of the BBB have yet to be completely delineated. Hence the current study evaluated the effects of CBZ upon mitochondrial functionality of BBB-derived microvascular endothelial cells isolated from Albino rats. The influence of CBZ on cell viability and barrier functions were evaluated by 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), lactate dehydrogenase, and electrophysiological assays over a drug concentration range of 0.1-1000 μM. Bioenergetics effects were measured via ATP production, mitochondrial complexes I and III activities, lactate production, and oxygen consumption rates (OCRs), and mitochondrial membrane potential, fluidity and lipid content. CBZ was cytotoxic to microvascular endothelial cells in a concentration and duration dependent manner. CBZ significantly diminished the endothelial cell's barrier functions, and impacted upon cellular bioenergetics: reducing mitochondrial complex activities with a parallel decrease in OCRs and increased anaerobic lactate production. CBZ significantly decreased mitochondrial membrane potential and induced an increase of membrane fluidity and decrease in levels of mitochondrial saturated and unsaturated fatty acids. In summary, CBZ disrupted functional activity of BBB endothelial cells via damage and modification of mitochondria functionality at therapeutically relevant concentrations.
Collapse
Affiliation(s)
- Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura, Egypt; School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Shahad W Kattan
- Medical Laboratory Department, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Nouf Abubakr Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Afnan M Alnajeebi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK.
| |
Collapse
|
7
|
De Vries MC, Brown DA, Allen ME, Bindoff L, Gorman GS, Karaa A, Keshavan N, Lamperti C, McFarland R, Ng YS, O'Callaghan M, Pitceathly RDS, Rahman S, Russel FGM, Varhaug KN, Schirris TJJ, Mancuso M. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J Inherit Metab Dis 2020; 43:800-818. [PMID: 32030781 PMCID: PMC7383489 DOI: 10.1002/jimd.12196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Collapse
Affiliation(s)
- Maaike C. De Vries
- Radboudumc Amalia Children's HospitalRadboud Center for Mitochondrial MedicineNijmegenThe Netherlands
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Mitchell E. Allen
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Laurence Bindoff
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Amel Karaa
- Genetics Unit, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Costanza Lamperti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Mar O'Callaghan
- Department of Neurology, Metabolic UnitHospital Sant Joan de DéuBarcelonaSpain
- CIBERERInstituto de Salud Carlos IIIBarcelonaSpain
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Frans G. M. Russel
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Kristin N. Varhaug
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Tom J. J. Schirris
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological InstituteUniversity of PisaPisaItaly
| |
Collapse
|
8
|
Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice. Epilepsy Res 2018; 143:60-69. [DOI: 10.1016/j.eplepsyres.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
|
9
|
Nirwan N, Siraj F, Vohora D. Inverted-U response of lacosamide on pilocarpine-induced status epilepticus and oxidative stress in C57BL/6 mice is independent of hippocampal collapsin response mediator protein-2. Epilepsy Res 2018; 145:93-101. [PMID: 29935443 DOI: 10.1016/j.eplepsyres.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Currently, lacosamide (LCM) is not approved for use in status epilepticus (SE) but several shreds of evidence are available to support its use. The present study was, therefore, undertaken to evaluate the effect of LCM on pilocarpine (PILO) induced SE and neurodegeneration in C57BL/6 mice and to ascertain the involvement of CRMP-2 in mediating above effect. METHODS Pilocarpine-induced SE model was developed to explore the effect of LCM 20, 40 and 80 mg/kg in mice. We assessed the seizure severity, seizure latency, spontaneous alternation behavior (SAB) and motor coordination by behavioral observation. Histopathological evaluation and measurement of the levels of CRMP-2, reduced glutathione (GSH) and malondialdehyde (MDA) were carried out in mice hippocampus. RESULTS LCM exhibited a biphasic effect i.e., protection against SE at 20 mg/kg and 40 mg/kg dose whilst aggravated seizure-like behavior and mortality at 80 mg/kg. Further, it increased percentage alternation (i.e., restored spatial memory) in SAB and elevated motor impairment with increasing dose. Histologically, LCM 20 mg/kg and 40 mg/kg (but not 80 mg/kg) reduced neurodegeneration. LCM 20 mg/kg and 40 mg/kg reversed the elevated MDA and GSH levels while 80 mg/kg showed a tendency to increase oxidative stress. In contrast, LCM (at all doses) reversed the pilocarpine-induced elevation of collapsin response mediator protein-2 (CRMP-2). CONCLUSION LCM protected against pilocarpine-induced SE, associated neurodegeneration and improved pilocarpine-associated impairment of spatial memory. The study reveals that CRMP-2 may not be mediating the inverted-U-response of LCM at least in pilocarpine model. Therefore, the anti-oxidant effect of LCM (and not its ability to modulate CRMP-2) was anticipated as the mechanism underlying neuroprotection.
Collapse
Affiliation(s)
- Nikita Nirwan
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Fouzia Siraj
- National Institute of Pathology (ICMR), Safdarjang Hospital Campus, New Delhi 110029, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Design, synthesis, evaluation and molecular modeling studies of some novel N-substituted piperidine-3-carboxylic acid derivatives as potential anticonvulsants. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2141-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Erisgin Z, Ayas B, Nyengaard JR, Ercument Beyhun N, Terzi Y. The neurotoxic effects of prenatal gabapentin and oxcarbazepine exposure on newborn rats. J Matern Fetal Neonatal Med 2017; 32:461-471. [PMID: 28931341 DOI: 10.1080/14767058.2017.1383378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM Teratogenicity is a problematic issue for pregnant women because of X-ray radiation, drugs, and genetic and unknown variables. First-generation antiepileptic drugs (AED) like valproic acid are well-known teratogens for developing fetuses. However, their usage is necessary in order to prevent maternal seizures. The underlying mechanism of birth defects associated with AED exposure remains unclear and information about the neurotoxic effects of prenatal exposure to AED is still limited. Oxcarbazepine (OXC) and gabapentin (GBP) are second-generation AED. It still remains unclear how much these drugs are safe during pregnancy. This study aimed to investigate whether any neurotoxic effect of OXC and GBP in utero exposure on the developing brain. METHODS Eighteen pregnant Wistar albino rats were divided into six groups. The first group was exposed to OXC at 100 mg/kg/day, the second to GBP at 50 mg/kg/day, and third to saline (0.9% NaCl) at 1.5 ml/day between the first and the fifth days of gestation. The same procedure was applied at the same dosages between the 6th and the 15th days of gestation for the 2nd three groups. Five female offspring (total n = 30, 45 days old) were taken from each group and stereological methods were applied in order to analyze the total and dopaminergic neuron number of the substantia nigra pars compacta (SNc). CONCLUSION The result is that the OXC and GBP exposure at different gestational periods may not give rise to congenital malformation and it appears that the GBP exposure during the organogenesis period proliferatively affects the total number of neurons.
Collapse
Affiliation(s)
- Zuleyha Erisgin
- a Department of Histology and Embryology , Giresun University, Faculty of Medicine , Giresun , Turkey
| | - Bulent Ayas
- b Department of Histology and Embryology , Ondokuz Mayıs University, Faculty of Medicine , Samsun , Turkey
| | - Jens R Nyengaard
- c Stereology and Electron Microscopy Laboratory , Aarhus University Hospital , Aarhus , Denmark
| | - N Ercument Beyhun
- d Department of Public Health , Black Sea Technical University, Faculty of Medicine , Trabzon , Turkey
| | - Yuksel Terzi
- e Department of Statistic, Faculty of Fine and Art , Ondokuz Mayıs University , Samsun , Turkey
| |
Collapse
|
12
|
Finsterer J, Scorza FA. Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 2017; 136:5-11. [PMID: 28732239 DOI: 10.1016/j.eplepsyres.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Antiepileptic drugs (AEDs) exhibit adverse and beneficial effects on mitochondria, which have a strong impact on the treatment of patients with a mitochondrial disorder (MID) with epilepsy (mitochondrial epilepsy). This review aims at summarizing and discussing recent findings concerning the effect of AEDs on mitochondrial functions and the clinical consequences with regard to therapy of mitochondrial epilepsy and of MIDs in general. METHODS Literature review. RESULTS AEDs may interfere with the respiratory chain, with non-respiratory chain enzymes, carrier proteins, or mitochondrial biogenesis, with carrier proteins, membrane-bound channels or receptors and the membrane potential, with anti-oxidative defense mechanisms, with morphology, dynamics and survival of mitochondria, and with the mtDNA. There are AEDs of which adverse effects outweigh beneficial effects, such as valproic acid, carbamazepine, phenytoin, or phenobarbital and there are AEDs in which beneficial effects dominate over mitochondrial toxic effects, such as lamotrigine, levetiracetam, gabapentin, or zonisamide. However, from most AEDs only little is known about their interference with mitochondria. CONCLUSIONS Mitochondrial epilepsy might be initially treated with AEDs with low mitochondrial toxic potential. Only in case mitochondrial epilepsy is refractory to these AEDs, AEDs with higher mitochondrial toxic potential might be tried. In patients carrying POLG1 mutations AEDs with high mitochondrial toxic potential are contraindicated.
Collapse
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, (EPM/UNIFESP), São Paulo, Brazil.
| |
Collapse
|
13
|
Al-Rubai AJ, Wigmore P, Pratten MK. Evaluation of a human neural stem cell culture method for prediction of the neurotoxicity of anti-epileptics. Altern Lab Anim 2017; 45:67-81. [PMID: 28598192 DOI: 10.1177/026119291704500202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human neural stem cells have been proposed as an in vitro model to predict neurotoxicity. In this study, the potential of in vitro cultures of human-derived neurospheres to predict the effects of various anti-epileptic drugs (sodium valproate, phenytoin, carbamazepine and phenobarbitone) was evaluated. In general, these drugs had no significant effects on cell viability, total cellular protein, and neuronal process length at low doses, but at high doses these parameters were reduced significantly. Therapeutic doses of sodium valproate and phenytoin had a clear effect on neurosphere size and cell migration, with a significant reduction in both parameters when compared with the control group. The other drugs (carbamazepine and phenobarbitone) reduced neurosphere size and cell migration only at higher doses. The expression levels of glial fibrillary protein and tubulin III, which were used to identify astrocytes and neuronal cells, respectively, were reduced in a dose-dependent manner that became significant at high doses. The levels of glial fibrillary protein did not indicate any occurrence of reactive astrocytosis.
Collapse
Affiliation(s)
- Abdal-Jabbar Al-Rubai
- College of Medicine, Almustansiriyah University, Baghdad, Iraq and School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Peter Wigmore
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Margaret K Pratten
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
14
|
Akbar H, Khan A, Mohammadzai I, Khisroon M, Begum I. The genotoxic effect of oxcarbazepine on mice blood lymphocytes. Drug Chem Toxicol 2017; 41:135-140. [PMID: 28503984 DOI: 10.1080/01480545.2017.1321011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study was conducted to assess the amount of DNA damage caused by Oxcarbazepine (OXC) through single cell gel electrophoresis (SCGE) technique/comet assay. OXC derived from dibenzazepine series is an effective second generation antiepileptic drug (AED) for both children and adults. Side effects like genotoxic effects of AEDs are of prime importance resulting from toxic metabolites, free radicals and reactive oxygen species (ROS). Forty Eight adult male Bagg's albino mice (BALB/c) were randomly classified into eight groups, each comprising of six animals. Two of these groups were control and six were tested groups. Control groups were injected with 1% tween 80 while tested groups were injected with 10, 20, and 40 mg/kg-day OXC for seven days (acute therapy) and 28 days (subchronic therapy) in peritoneal cavity. Blood samples were collected by cardiac puncture and subjected to comet assay for the analysis of DNA damage. Per sample 100 cells were scored and classified according to comet tail length. The results showed that OXC in acute and long term therapies had significantly higher (p < 0.05) genotoxicity in treated groups as compared to control groups. Our study suggests that OXC may cause significant DNA damage in both acute as well as in subchronic therapies.
Collapse
Affiliation(s)
- Huma Akbar
- a Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Ajmal Khan
- b Department of Zoology , University of Peshawar , Peshawar , Pakistan
| | | | - Muhammad Khisroon
- b Department of Zoology , University of Peshawar , Peshawar , Pakistan
| | - Ilham Begum
- a Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| |
Collapse
|
15
|
Schmid E, Kuchukhidze G, Kirschner M, Leitinger M, Höfler J, Rohracher A, Kalss G, Wendling AS, Steinhoff BJ, Trinka E. Overnight switching from oxcarbazepine to eslicarbazepine acetate: an observational study. Acta Neurol Scand 2017; 135:449-453. [PMID: 27444636 DOI: 10.1111/ane.12645] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES There are clinical situations where it might be appropriate to switch patients from immediate-release oxcarbazepine (OXC) to eslicarbazepine acetate (ESL). We investigated the effects of transitioning patients overnight from OXC to ESL. MATERIALS AND METHODS A retrospective, single-center study was conducted in which patients with drug-resistant focal epilepsy on a stable dose of immediate-release OXC for at least 4 weeks were switched overnight to ESL. Patients were switched because they experienced persistent seizures with OXC but were unable to tolerate increased OXC dosing due to adverse events. Tolerability was assessed using the Adverse Events Profile (AEP), quality of life was assessed using the Quality of Life in Epilepsy Inventory 10 (QOLIE-10), and alertness was assessed as reaction time using a subtest of the Test Battery for Attention Performance version 2.3. Assessments were performed immediately prior to and 5 days after switching from OXC to ESL (days 0 and 5, respectively). RESULTS The analysis included 21 patients (12 women, 9 men; mean age 36 years). After switching from OXC to ESL, there were significant improvements in mean scores for AEP (P<.001), QOLIE-10 (P=.001), and alertness (P<.05). Adverse Events Profile total scores improved for 21/21 (100.0%) patients, QOLIE-10 total scores improved for 17/21 (81.0%) patients, and alertness scores improved for 16/21 (76.2%) patients. CONCLUSIONS In this short-term, single-center study, an overnight switch from twice-daily OXC to once-daily ESL in patients with drug-resistant focal epilepsies resulted in improvements in side effects, quality of life, and alertness.
Collapse
Affiliation(s)
- E. Schmid
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
| | - G. Kuchukhidze
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
- Department of Neurology; Medical University of Innsbruck; Innsbruck Austria
| | - M. Kirschner
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
- Neuroscience Institute; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - M. Leitinger
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
| | - J. Höfler
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
| | - A. Rohracher
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
| | - G. Kalss
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
| | | | | | - E. Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University, and Centre for Cognitive Neuroscience; Salzburg Austria
| |
Collapse
|
16
|
Vuda M, Kamath A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 2016; 31:63-74. [PMID: 27771494 DOI: 10.1016/j.mito.2016.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/24/2016] [Accepted: 10/17/2016] [Indexed: 01/12/2023]
Abstract
Several commonly used medications impair mitochondrial function resulting in adverse effects or toxicities. Drug induced mitochondrial dysfunction may be a consequence of increased production of reactive oxygen species, altered mitochondrial permeability transition, impaired mitochondrial respiration, mitochondrial DNA damage or inhibition of beta-oxidation of fatty acids. The clinical manifestation depends on the specific drug and its effect on mitochondria. Given the ubiquitous presence of mitochondria and its central role in cellular metabolism, drug-mitochondrial interactions may manifest clinically as hepatotoxicity, enteropathy, myelosuppression, lipodystrophy syndrome or neuropsychiatric adverse effects, to name a few. The current review focuses on specific drug groups which adversely affect mitochondria, the mechanisms involved and the clinical consequences based on the data available from experimental and clinical studies. Knowledge of these adverse drug-mitochondrial interactions may help the clinicians foresee potential issues in individual patients, prevent adverse drug reactions or alter drug regimens to enhance patient safety.
Collapse
Affiliation(s)
| | - Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Manipal University, Mangalore, India.
| |
Collapse
|
17
|
Al-Musawi M, Durham J, Whitworth JM, Stone SJ, Nixdorf DR, Valentine RA. Effect of topical neuromodulatory medications on oral and skin keratinocytes. J Oral Pathol Med 2016; 46:134-141. [PMID: 26991677 DOI: 10.1111/jop.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuromodulatory medications (NMs), such as amitriptyline, carbamazepine and gabapentin, are used as topical preparations for the management of neuropathic orofacial pain (NOP) and have produced promising preliminary results. The aim of this study was to investigate the effects of three aforementioned NMs on cell lines relevant to the orofacial tissues in vitro as no published studies have examined the effect of these topical NMs. METHODS Cellular viability was measured using alamarBlue® , testing cumulative and specific time point effects of NMs on human skin keratinocytes and oral keratinocytes. Effects of the NMs on cell counts were investigated by CCK-8 assay. Drug concentrations released from NM orabase pastes after 30-min incubation were measured by high-performance liquid chromatography. Using these clinical concentrations, morphological changes and cytokine expression were investigated using scanning electron microscopy (SEM) and human inflammatory antibody array (AAH), respectively. RESULTS Cumulative and specific time point viability and cell count methods revealed that amitriptyline caused a significant decrease in cellular viability and counts in both cell lines. Carbamazepine also had significant effects after long-term exposure and at higher concentrations, whilst gabapentin had little demonstrable effect. SEM confirmed the cytotoxicity of amitriptyline, whilst AAH revealed no significant changes in cytokine expression following amitriptyline, carbamazepine or gabapentin exposure compared with control. CONCLUSIONS The results raise concerns about the safety of topical amitriptyline as it was cytotoxic to skin and oral keratinocytes in both exposure times and concentrations, whilst carbamazepine was cytotoxic only at high concentrations and after longer exposure times and gabapentin had no demonstrable effects.
Collapse
Affiliation(s)
- Mustafa Al-Musawi
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Justin Durham
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | - John M Whitworth
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon J Stone
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Donald R Nixdorf
- Division of TMD and Orofacial Pain, School of Dentistry, University of Minnesota, Minneapolis, MN, USA.,Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, USA.,HealthPartners Institute for Education and Research, Bloomington, MN, USA
| | - Ruth A Valentine
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK.,Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
18
|
Hargreaves IP, Al Shahrani M, Wainwright L, Heales SJR. Drug-Induced Mitochondrial Toxicity. Drug Saf 2016; 39:661-74. [DOI: 10.1007/s40264-016-0417-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Tambucci R, Basti C, Maresca M, Coppola G, Verrotti A. Update on the role of eslicarbazepine acetate in the treatment of partial-onset epilepsy. Neuropsychiatr Dis Treat 2016; 12:1251-60. [PMID: 27307737 PMCID: PMC4889089 DOI: 10.2147/ndt.s86765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Eslicarbazepine acetate (ESL) is a once daily new third generation antiepileptic drug that shares the basic chemical structure of carbamazepine and oxcarbazepine - a dibenzazepine nucleus with the 5-carboxamide substituent, but is structurally different at the 10,11-position. ESL is a pro-drug metabolized to its major active metabolite eslicarbazepine. Despite the fact that the exact mechanism of action has not been fully elucidated, it is thought to involve inhibition of voltage-gated sodium channels (VGSC). ESL inhibits sodium currents in a voltage-dependent way by an interaction predominantly with the inactivated state of the VGSC, thus selectively reducing the activity of rapidly firing (epileptic) neurons. ESL reduces VGSC availability through enhancement of slow inactivation. In Phase III studies, adjunctive therapy with ESL 800 or 1,200 mg/day leads to a significant decrease in the seizure frequency in adults with refractory partial onset epilepsy. Based on these results, ESL has been approved in Europe (by the European Medicines Agency) and in the United States (by the US Food and Drug Administration) as add-on therapy. Data on efficacy and safety have been confirmed by 1-year extension and real life observational studies. Recently, based on results from two randomized, double-blind, historical control Phase III trials, ESL received US Food and Drug Administration approval also as a monotherapy for patients with partial onset epilepsy. In the pediatric setting, encouraging results have been obtained suggesting its potential role in the management of epileptic children. Overall ESL was generally well tolerated. The most common adverse events were dizziness, somnolence, headache, nausea, diplopia, and vomiting. Adverse events can be minimized by appropriate titration. In conclusion, ESL seems to overcome some drawbacks of the previous antiepileptic drugs, suggesting a major role of ESL in the management of focal onset epilepsy for both new onset and refractory cases, either as monotherapy or as adjunctive treatment.
Collapse
Affiliation(s)
- Renato Tambucci
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Claudia Basti
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Maria Maresca
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| | - Giangennaro Coppola
- Child and Adolescent Neuropsychiatry Unit, University of Salerno, Salerno, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
20
|
Abstract
Some of the side and beneficial effects of antiepileptic drugs (AEDs) are mediated via the influence on mitochondria. This is of particular importance in patients requiring AED treatment for mitochondrial epilepsy. AED treatment in patients with mitochondrial disorders should rely on the known influences of AEDs on these organelles. AEDs may influence various mitochondrial functions or structures in a beneficial or detrimental way. There are AEDs in which the toxic effect outweighs the beneficial effect, such as valproic acid (VPA), carbamazepine (CBZ), phenytoin (PHT), or phenobarbital (PB). There are, however, also AEDs in which the beneficial effect on mitochondria outweighs the mitochondrion-toxic effect, such as gabapentin (GBT), lamotrigine (LTG), levetiracetam (LEV), or zonisamide (ZNS). In the majority of the AEDs, however, information about their influence of mitochondria is lacking. In clinical practice mitochondrial epilepsy should be initially treated with AEDs with low mitochondrion-toxic potential. Only in cases of ineffectivity or severe mitochondrial epilepsy, mitochondrion-toxic AEDs should be given. This applies for AEDs given orally or intravenously.
Collapse
|
21
|
Abstract
This chapter includes the aspects of carbamazepine. The drug is synthesized by the use of 5H-dibenz[b,f]azepine and phosgene followed by subsequent reaction with ammonia. Carbamazepine is generally used for the treatment of seizure disorders and neuropathic pain, it is also important as off-label for a second-line treatment for bipolar disorder and in combination with an antipsychotic in some cases of schizophrenia when treatment with a conventional antipsychotic alone has failed. Other uses may include attention deficit hyperactivity disorder, schizophrenia, phantom limb syndrome, complex regional pain syndrome, borderline personality disorder, and posttraumatic stress disorder. The chapter discusses the drug metabolism and pharmacokinetics and presents various methods of analysis of this drug such electrochemical analysis, spectroscopic analysis, and chromatographic techniques of separation. It also discusses its physical properties such as solubility characteristics, X-ray powder diffraction pattern, and thermal methods of analysis. The chapter is concluded with a discussion on its biological properties such as activity, toxicity, and safety.
Collapse
|
22
|
|
23
|
Banach M, Borowicz KK, Czuczwar SJ. Pharmacokinetic/pharmacodynamic evaluation of eslicarbazepine for the treatment of epilepsy. Expert Opin Drug Metab Toxicol 2015; 11:639-48. [DOI: 10.1517/17425255.2015.1021686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Yaraghi A, Eizadi-Mood N, Salehi M, Massoumi G, Zunic L, Sabzghabaee AM. Risk factors and the outcome of therapy in patients with seizure after Carbamazepine poisoning: A two-year cross-sectional study. J Res Pharm Pract 2015; 4:18-23. [PMID: 25710046 PMCID: PMC4326967 DOI: 10.4103/2279-042x.150046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Objective: We aimed to investigate the frequency of seizure after acute carbamazepine poisoning and the important risk factors related to the outcomes of therapy. Methods: In this two-year cross-sectional study conducted in a University Hospital in Iran, 114 patients with acute carbamazepine poisoning were divided into two groups of with seizure (n = 8) and without seizure (n = 106) after intoxication. Demographic data, average amount of drug ingestion, time elapsed from ingestion to hospital admission, history of seizure before poisoning, mental status, visual disturbances and nystagmus, duration of hospitalization, the outcomes of therapy, arterial blood gas values and serum biochemical indices were compared between the two groups. Findings: Patients with seizure had an estimated (Mean ± SD) ingestion of 14,300 ± 570 mg carbamazepine, which was significantly higher (P < 0.0001) than the seizure-free group (4600 ± 420 mg). The estimated average time between drug ingestion and hospital admission in patients with seizure and the seizure-free group were 515 ± 275 and 370 ± 46 minutes, respectively (P < 0.0001). In this study, 104 out of the total number of patients had recovered without any complication. Need for respiratory support, including airway support or intubation were the most recorded complication. One patient died after status epilepticus and aspiration pneumonia. Conclusion: The ingested amount of carbamazepine and the time elapsed from the ingestion of drug to hospital admission may influence the occurrence of seizure after acute carbamazepine poisoning; however, the outcome of supportive care in these patients seems to be positive.
Collapse
Affiliation(s)
- Ahmad Yaraghi
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Salehi
- Department of Clinical Toxicology, Noor and Ali Asghar (PBUH) University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Massoumi
- Department of Anesthesiology and Critical Care, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Lejla Zunic
- Department of Biochemistry, Faculty of Health Sciences, University of Zenica, Zenica, Bosnia and Herzegovina
| | - Ali Mohammad Sabzghabaee
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Zaccara G, Giovannelli F, Cincotta M, Carelli A, Verrotti A. Clinical utility of eslicarbazepine: current evidence. Drug Des Devel Ther 2015; 9:781-9. [PMID: 25709402 PMCID: PMC4330027 DOI: 10.2147/dddt.s57409] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eslicarbazepine acetate (ESL) is a new antiepileptic drug whose mechanism of action is blockade of the voltage-gated sodium channel (VGSC). However, in respect to carbamazepine and oxcarbazepine, the active ESL metabolite (eslicarbazepine) affects slow inactivation of VGSC and has a similar affinity for the inactivated state and a lower affinity for the resting state of the channel. This new antiepileptic drug has been recently approved in Europe (trade name Zebinix) and in the United States (trade name Stedesa) for adjunctive treatment in adult subjects with partial-onset seizures, with or without secondary generalization. Following oral administration, ESL is rapidly and extensively metabolized by hepatic esterases to eslicarbazepine. This active metabolite has a linear pharmacokinetic profile, a low binding to plasma proteins (<40%), and a half-life of 20-24 hours and is mainly excreted by kidneys in an unchanged form or as glucuronide conjugates. ESL is administered once a day and has a low potential for drug-drug interactions. Efficacy and safety of this drug in patients with focal seizures have been assessed in four randomized clinical trials, and responder rates (percentage of patients with a ≥50% improvement of their seizures) ranged between 17% and 43%. Adverse events were usually mild to moderate, and the most common were dizziness, somnolence, diplopia, abnormal coordination, blurred vision, vertigo, headache, fatigue, nausea, and vomiting. ESL may be considered an interesting alternative to current antiepileptic drugs for the treatment of drug-resistant focal epilepsies. Additionally, it is under investigation in children with focal epilepsies, in patients with newly diagnosed focal epilepsies, and also in other neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Gaetano Zaccara
- Department of Medicine, Unit of Neurology, Florence Health Authority, Florence, Italy
| | - Fabio Giovannelli
- Department of Medicine, Unit of Neurology, Florence Health Authority, Florence, Italy
- Department of Neuroscience, Psychology, Pharmacology and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Massimo Cincotta
- Department of Medicine, Unit of Neurology, Florence Health Authority, Florence, Italy
| | - Alessia Carelli
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | |
Collapse
|
26
|
Doeser A, Dickhof G, Reitze M, Uebachs M, Schaub C, Pires NM, Bonifácio MJ, Soares-da-Silva P, Beck H. Targeting pharmacoresistant epilepsy and epileptogenesis with a dual-purpose antiepileptic drug. Brain 2014; 138:371-87. [DOI: 10.1093/brain/awu339] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
27
|
Hebeisen S, Pires N, Loureiro AI, Bonifácio MJ, Palma N, Whyment A, Spanswick D, Soares-da-Silva P. Eslicarbazepine and the enhancement of slow inactivation of voltage-gated sodium channels: a comparison with carbamazepine, oxcarbazepine and lacosamide. Neuropharmacology 2014; 89:122-35. [PMID: 25242737 DOI: 10.1016/j.neuropharm.2014.09.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/17/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022]
Abstract
This study aimed at evaluating the effects of eslicarbazepine, carbamazepine (CBZ), oxcarbazepine (OXC) and lacosamide (LCM) on the fast and slow inactivated states of voltage-gated sodium channels (VGSC). The anti-epileptiform activity was evaluated in mouse isolated hippocampal slices. The anticonvulsant effects were evaluated in MES and the 6-Hz psychomotor tests. The whole-cell patch-clamp technique was used to investigate the effects of eslicarbazepine, CBZ, OXC and LCM on sodium channels endogenously expressed in N1E-115 mouse neuroblastoma cells. CBZ and eslicarbazepine exhibit similar concentration dependent suppression of epileptiform activity in hippocampal slices. In N1E-115 mouse neuroblastoma cells, at a concentration of 250 μM, the voltage dependence of the fast inactivation was not influenced by eslicarbazepine, whereas LCM, CBZ and OXC shifted the V0.5 value (mV) by -4.8, -12.0 and -16.6, respectively. Eslicarbazepine- and LCM-treated fast-inactivated channels recovered similarly to control conditions, whereas CBZ- and OXC-treated channels required longer pulses to recover. CBZ, eslicarbazepine and LCM shifted the voltage dependence of the slow inactivation (V0.5, mV) by -4.6, -31.2 and -53.3, respectively. For eslicarbazepine, LCM, CBZ and OXC, the affinity to the slow inactivated state was 5.9, 10.4, 1.7 and 1.8 times higher than to the channels in the resting state, respectively. In conclusion, eslicarbazepine did not share with CBZ and OXC the ability to alter fast inactivation of VGSC. Both eslicarbazepine and LCM reduce VGSC availability through enhancement of slow inactivation, but LCM demonstrated higher interaction with VGSC in the resting state and with fast inactivation gating.
Collapse
Affiliation(s)
| | - Nuno Pires
- BIAL - Portela & C(a), S.A., S. Mamede do Coronado, Portugal
| | - Ana I Loureiro
- BIAL - Portela & C(a), S.A., S. Mamede do Coronado, Portugal
| | | | - Nuno Palma
- BIAL - Portela & C(a), S.A., S. Mamede do Coronado, Portugal
| | | | - David Spanswick
- Neurosolutions Ltd, Coventry CV4 7ZS, UK; Department of Physiology, Monash University, Victoria, Australia
| | - Patrício Soares-da-Silva
- BIAL - Portela & C(a), S.A., S. Mamede do Coronado, Portugal; Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal; MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Verrotti A, Scaparrotta A, Cofini M, Chiarelli F, Tiboni GM. Developmental neurotoxicity and anticonvulsant drugs: a possible link. Reprod Toxicol 2014; 48:72-80. [PMID: 24803404 DOI: 10.1016/j.reprotox.2014.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/05/2014] [Accepted: 04/18/2014] [Indexed: 01/16/2023]
Abstract
In utero exposure to antiepileptic drugs (AEDs) may affect neurodevelopment causing postnatal cognitive and behavioral alterations. Phenytoin and phenobarbital may lead to motor and learning dysfunctions in the pre-exposed children. These disorders may reflect the interference of these AEDs with the development of hippocampal and cerebellar neurons, as suggested by animal studies. Exposure to valproic acid may result in inhibition of neural stem cell proliferation and/or immature neuron migration in the cerebral cortex with consequent increased risk of neurodevelopmental impairment, such as autistic spectrum disorders. A central issue in the prevention of AED-mediated developmental effects is the identification of drugs that should be avoided in women of child-bearing potential and during pregnancy. The aim of this review is to explore the possible link between AEDs and neurodevelopmental dysfunctions both in human and in animal studies. The possible mechanisms underlying this association are also discussed.
Collapse
Affiliation(s)
- A Verrotti
- Department of Pediatrics, University of Perugia, Italy
| | - A Scaparrotta
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - M Cofini
- Department of Pediatrics, University of Perugia, Italy
| | - F Chiarelli
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - G M Tiboni
- Department of Medicine and Aging Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy.
| |
Collapse
|
29
|
Massot A, Vivanco R, Principe A, Roquer J, Rocamora R. Post-authorisation study of eslicarbazepine as treatment for drug-resistant epilepsy: preliminary results. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2013.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Fortuna A, Alves G, Soares-da-Silva P, Falcão A. Pharmacokinetics, brain distribution and plasma protein binding of carbamazepine and nine derivatives: New set of data for predictive in silico ADME models. Epilepsy Res 2013; 107:37-50. [DOI: 10.1016/j.eplepsyres.2013.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/29/2013] [Accepted: 08/08/2013] [Indexed: 01/27/2023]
|
31
|
Morte MI, Carreira BP, Falcão MJ, Ambrósio AF, Soares-da-Silva P, Araújo IM, Carvalho CM. Evaluation of neurotoxic and neuroprotective pathways affected by antiepileptic drugs in cultured hippocampal neurons. Toxicol In Vitro 2013; 27:2193-202. [PMID: 24055897 DOI: 10.1016/j.tiv.2013.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 08/10/2013] [Accepted: 09/11/2013] [Indexed: 11/25/2022]
Abstract
In this study we evaluated the neurotoxicity of eslicarbazepine acetate (ESL), and of its in vivo metabolites eslicarbazepine (S-Lic) and R-licarbazepine (R-Lic), as compared to the structurally-related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), in an in vitro model of cultured rat hippocampal neurons. The non-related antiepileptic drugs (AEDs) lamotrigine (LTG) and sodium valproate (VPA) were also studied. We assessed whether AEDs modulate pro-survival/pro-apoptotic pathways, such as extracellular-regulated kinase (ERK1/2), Akt and stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). We found that neither ESL nor its metabolites, CBZ or LTG, up to 0.3mM, for 24h of exposure, decreased cell viability. OXC was the most toxic drug decreasing cell viability in a concentration-dependent manner, leading to activation of caspase-3 and PARP cleavage. VPA caused the appearance of the apoptotic markers, but did not alter cell viability. ESL, S-Lic and OXC decreased the levels of phospho-ERK1/2 and of phospho-Akt, when compared to basal levels, whereas CBZ decreased phospho-SAPK/JNK and phospho-Akt levels. LTG and VPA increased the phosphorylation levels of SAPK/JNK. These results suggest that ESL and its main metabolite S-Lic, as well as CBZ, LTG and VPA, are less toxic to hippocampal neurons than OXC, which was the most toxic agent.
Collapse
Affiliation(s)
- Maria I Morte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
32
|
Elger C, Bialer M, Falcão A, Vaz-da-Silva M, Nunes T, Almeida L, Soares-da-Silva P. Pharmacokinetics and tolerability of eslicarbazepine acetate and oxcarbazepine at steady state in healthy volunteers. Epilepsia 2013; 54:1453-61. [PMID: 23758485 DOI: 10.1111/epi.12242] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2013] [Indexed: 11/28/2022]
Abstract
PURPOSE Investigate the pharmacokinetics of once-daily (QD; 900 mg) and twice-daily (BID; 450 mg) regimens of eslicarbazepine acetate (ESL) and BID (450 mg) regimen of oxcarbazepine (OXC) at steady state in healthy volunteers. METHODS Single-center, open-label, randomized, three-way (n = 12) crossover studies in healthy volunteers. KEY FINDINGS Mean eslicarbazepine Cmax,ss (in μm) following ESL QD (87.3) was 33.3% higher (p < 0.05) compared to ESL BID (65.5) and 82.1% higher (p < 0.05) compared to OXC BID (48.0). The mean area under the curve (AUC)ss,0-τ (in μmol h/L) following the last dose of an 8-day repeated dosing was 1156.3, 1117.6, and 968.4 for ESL QD, ESL BID, and OXC BID, respectively. The ratio eslicarbazepine plasma exposure (μmol h/L) to ESL daily-dose (μmol) was 0.381 (1156.3:3037.3), 0.368 (1117.6:3037.3), and 0.271 (968.4:3567.6) for ESL-QD, ESL-BID, and OXC-BID, respectively, which translates into a 40.6% increase in the ability of ESL-QD compared to OXC-BID to deliver into the plasma their major active entity eslicarbazepine. The extent of plasma exposure to ESL minor metabolites: (R)-licarbazepine and oxcarbazepine after ESL-QD was 71.5% and 61.1% lower, respectively, than after OXC-BID. Twenty, 24 and 38 treatment emergent adverse events were reported with ESL-QD, ESL-BID, and OXC-BID, respectively. SIGNIFICANCE ESL-QD resulted in 33.3% higher peak plasma concentration (Cmax,ss ) of eslicarbazepine and similar extent of plasma exposure (AUCss,0-τ ) when compared to ESL-BID, which may contribute to the efficacy profile reported with once-daily ESL. In comparison to OXC-BID, administration of ESL-QD resulted in 40.6% increase in the delivery of eslicarbazepine into the plasma as well as a significantly lower systemic exposure to (R)-licarbazepine and oxcarbazepine.
Collapse
Affiliation(s)
- Christian Elger
- Department of Epileptology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Massot A, Vivanco R, Principe A, Roquer J, Rocamora R. Post-authorisation study of eslicarbazepine as treatment for drug-resistant epilepsy: preliminary results. Neurologia 2013; 29:94-101. [PMID: 23623701 DOI: 10.1016/j.nrl.2013.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 02/15/2013] [Accepted: 02/19/2013] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Eslicarbazepine acetate (ESL) is a new antiepileptic drug (AED) and an analogue to carbamazepine (CBZ) and oxcarbazepine (OXC). In this study, we evaluate initial therapeutic response to ESL and events in the change from CBZ and OXC. METHODS We evaluated 61 patients with a broad spectrum of drug-resistant epilepsies in a cross-sectional study. The switch from CBZ and OXC to ESL was carried out in a single night at ratios of 1:1.3 and 1:1mg respectively. RESULTS The most common form of epilepsy was temporal lobe epilepsy (62.3%). The most common aetiology was mesial temporal sclerosis (26.2%). Mean follow-up time was 4.7±3.2 months. In 40 patients with a minimum follow-up period of 3 months, monthly median seizure frequency dropped by 63.6% (P<.001) and a reduction of 80% or more was recorded in 30%. Adverse events (AEs) occurred in 54%; all appeared during the titration phase. They were more frequent at doses in excess of 800mg (73.9% vs. 47.4%; P=.042). The most common AE was dizziness (34.4%), which was commonly associated with VPA, LTG and/or LCS consumption (19.2% vs. 45.7%; P=.031). The retention rate at 3 months was 75.4%. A total of 25 patients replaced CBZ or OXC treatment with ESL; any AEs were transient (69.2% for CBZ and 33% for OXC; P=.073). At 3 months after the treatment change, median seizure frequency had decreased by 20% (P<.075). CONCLUSIONS ESL is effective in the treatment of focal epilepsies and its early retention rate is > 70%. AEs occurred during the titration phase and corresponded to associated AEDs. A rapid change from CBZ and OXC to ESL treatment can be safely performed.
Collapse
Affiliation(s)
- A Massot
- Unidad de Epilepsia, Servicio de Neurología, Hospital del Mar, Barcelona, España
| | - R Vivanco
- Unidad de Epilepsia, Servicio de Neurología, Hospital del Mar, Barcelona, España
| | - A Principe
- Unidad de Epilepsia, Servicio de Neurología, Hospital del Mar, Barcelona, España
| | - J Roquer
- Unidad de Epilepsia, Servicio de Neurología, Hospital del Mar, Barcelona, España
| | - R Rocamora
- Unidad de Epilepsia, Servicio de Neurología, Hospital del Mar, Barcelona, España.
| |
Collapse
|
34
|
Almeida L, Minciu I, Nunes T, Butoianu N, Falcão A, Magureanu SA, Soares-da-Silva P. Pharmacokinetics, Efficacy, and Tolerability of Eslicarbazepine Acetate in Children and Adolescents With Epilepsy. J Clin Pharmacol 2013; 48:966-77. [DOI: 10.1177/0091270008319706] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Singh JN, Jain G, Sharma SS. In vitro hyperglycemia enhances sodium currents in dorsal root ganglion neurons: an effect attenuated by carbamazepine. Neuroscience 2012; 232:64-73. [PMID: 23262239 DOI: 10.1016/j.neuroscience.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 12/13/2022]
Abstract
Neuropathy is often seen in uncontrolled diabetes and the mechanisms involved for neuropathic pain are poorly understood. Hyperglycemia is a consequence of chronic uncontrolled diabetes and it is postulated to produce neuropathic pain. Therefore, in this study, we have investigated the effects of hyperglycemia on Na(+) channel kinetics in cultured dorsal root ganglion (DRG) neurons from neonatal rats using whole-cell patch-clamp technique. Hyperglycemia-induced increase in density of tetrodotoxin resistant (TTXr) Na(+) currents was increased in time- and concentration-dependent manner. The increase was maximal with 60 mM and 24 h. There was no change Na(+) current density in time-matched control neurons. The conductance curve of TTXr Na(+) current shifted leftward after 24 h exposure to 45 mM glucose. Carbamazepine (CBZ, 100 μM) depressed TTXr Na(+) current in neurons incubated with control (17.26), 45 and 60 mM of glucose. The depression observed with CBZ in the presence of high glucose, i.e., 45 mM (86.5±4.9%) was significantly greater than control (61.6±1.8%). Hyperglycemia also increased reactive oxygen species (ROS) activity and was attenuated by CBZ. These results suggest that short-term exposure of DRG neurons to high glucose concentrations enhance the Na(+) channel activity, and were attenuated by CBZ via ROS-dependent mechanisms.
Collapse
Affiliation(s)
- J N Singh
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)(1), S. A. S. Nagar (Mohali) 160 062, Punjab, India.
| | - G Jain
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)(1), S. A. S. Nagar (Mohali) 160 062, Punjab, India
| | - S S Sharma
- Electrophysiology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)(1), S. A. S. Nagar (Mohali) 160 062, Punjab, India
| |
Collapse
|
36
|
Ficarra S, Misiti F, Russo A, Carelli-Alinovi C, Bellocco E, Barreca D, Laganà G, Leuzzi U, Toscano G, Giardina B, Galtieri A, Tellone E. Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress. Biochimie 2012; 95:833-41. [PMID: 23246915 DOI: 10.1016/j.biochi.2012.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/30/2012] [Indexed: 12/17/2022]
Abstract
Carbamazepine (CBZ) is an iminostilbene derivative commonly used for treatment of neuralgic pain and bipolar affective disorders. CBZ blood levels of treated patients are within the range of micromolar concentrations and therefore, significant interactions of this drug with erythrocytes are very likely. Moreover, the lipid domains of the cell membrane are believed to be one of the sites where iminostilbene derivatives exert their effects. The present study aimed to deeply characterize CBZ effects on erythrocytes, in order to identify extra and/or cytosolic cell targets. Our results indicate that erythrocyte morphological changes promoted by the drug, may be triggered by an alteration in band 3 functionality i.e. at the level of anionic flux. In addition, from a metabolic point of view this perturbation could be considered, at least in part, as a beneficial event because it could favour the CO2 elimination. Since lipid peroxidation, superoxide and free radical scavenging activities, caspase 3 activity and hemoglobin (Hb) functionality were not modified within the CBZ treated red blood cell (RBC), band 3 protein (B3) may well be a specific membrane target for CBZ and responsible for CBZ-induced toxic effects in erythrocytes. However some beneficial effects of this drug have been evidenced; among them an increased release of ATP and nitric oxide (NO) derived metabolites from erythrocytes to lumen, leading to an increased NO pool in the vasculature. In conclusion, these results indicate that CBZ, though considered responsible for toxic effects on erythrocytes, can also exhibit effects that at least in some conditions may be seen as beneficial.
Collapse
Affiliation(s)
- Silvana Ficarra
- Department of Chemical Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mancuso M, Orsucci D, Filosto M, Simoncini C, Siciliano G. Drugs and mitochondrial diseases: 40 queries and answers. Expert Opin Pharmacother 2012; 13:527-43. [DOI: 10.1517/14656566.2012.657177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Finsterer J, Zarrouk Mahjoub S. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol 2011; 8:71-9. [DOI: 10.1517/17425255.2012.644535] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
39
|
Elmlinger MW, Kriebel M, Ziegler D. Neuroprotective and anti-oxidative effects of the hemodialysate actovegin on primary rat neurons in vitro. Neuromolecular Med 2011; 13:266-74. [PMID: 21983748 PMCID: PMC3220826 DOI: 10.1007/s12017-011-8157-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 09/14/2011] [Indexed: 11/25/2022]
Abstract
The recently described therapeutic benefits of the hemodialysate actovegin on neuropathic symptoms in diabetic patients with symptomatic polyneuropathy suggest a neuroprotective activity of the drug. To elucidate the possible cellular mechanism of the pharmacological effects of actovegin, we investigated its effects on cultured primary rat neurons in vitro. Primary neurons were cultured for up to 10 days in the presence of increasing doses of actovegin (0.3–1,000 mg/l). Total cell number, dendrite length and the number of excitatory synapses, i.e., the amount of the synaptic V-Glut1 protein, were measured by immunocytochemistry followed by fluorescence microscopy. The apoptotic level in neurons after induction of apoptosis by amyloid peptide Aβ25–35 was assessed by the level of activated caspase-3. In addition, the capability of the neurons to diminish oxidative stress was assessed by measuring the cellular level of reactive oxygen species ROS in the presence of actovegin. Actovegin treatment yielded an increased maintenance of neuronal cells and total number of synapses and could lower the level of activated caspase-3 in a dose-dependent manner. Dendrite lengths were not significantly affected. In addition, actovegin reduced the cellular level of ROS in cultured neurons. The cellular effects observed suggest neuroprotective and anti-oxidative effects of the drug Actovegin®, which could at least partially explain its therapeutic benefits.
Collapse
Affiliation(s)
- Martin W Elmlinger
- Nycomed International Management GmbH, Thurgauerstrasse 130, 8152, Glattpark-Opfikon, Zurich, Switzerland.
| | | | | |
Collapse
|
40
|
Singh RP, Asconapé JJ. A review of eslicarbazepine acetate for the adjunctive treatment of partial-onset epilepsy. J Cent Nerv Syst Dis 2011; 3:179-87. [PMID: 23861647 PMCID: PMC3663619 DOI: 10.4137/jcnsd.s4888] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eslicarbazepine acetate (ESL) is a novel antiepileptic drug indicated for the treatment of partial-onset seizures. Structurally, it belongs to the dibenzazepine family and is closely related to carbamazepine and oxcarbazepine. Its main mechanism of action is by blocking the voltage-gated sodium channel. ESL is a pro-drug that is rapidly metabolized almost exclusively into S-licarbazepine, the biologically active drug. It has a favorable pharmacokinetic and drug-drug interaction profile. However, it may induce the metabolism of oral contraceptives and should be used with caution in females of child-bearing age. In the pre-marketing placebo-controlled clinical trials ESL has proven effective as adjunctive therapy in adult patients with refractory of partial-onset seizures. Best results were observed on a single daily dose between 800 and 1200 mg. In general, ESL was well tolerated, with most common dose-related side effects including dizziness, somnolence, headache, nausea and vomiting. Hyponatremia has been observed (0.6%–1.3%), but the incidence appears to be lower than with the use of oxcarbazepine. There is very limited information on the use of ESL in children or as monotherapy.
Collapse
Affiliation(s)
- Rajinder P Singh
- Department of Neurology, Stritch School of Medicine, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | |
Collapse
|
41
|
Effects of chronic treatment with valproate and oxcarbazepine on testicular development in rats. Seizure 2010; 20:203-7. [PMID: 21169035 DOI: 10.1016/j.seizure.2010.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/10/2010] [Accepted: 11/22/2010] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The aim of this study was to examine the potential effects of valproate (VPA) and oxcarbazepine (OXC) on testicular development in rats. METHODS Forty-two Wistar rats were randomly divided into three groups of 14 rats each. Each group received the following via gavage over 90 days: group 1, tap water (control group); group 2, VPA (300mg/kg/day); group 3, OXC (100mg/kg/day). After sacrifice, body, testicular and epididymidis weights were measured. Testes were sampled, fixed and processed, and quantitative morphometric analysis of Sertoli cells, spermatocytes and spermatids was performed in stages II, V and XII by histopathological examination. Immunohistochemical staining was performed to transform growth factor beta 1 (TGF-β1) and p53, and the apoptotic index was assessed using the TUNEL method. RESULTS Testis and relative testis weights were significantly lower in the VPA group compared to the control group (p<0.05). Spermatogonia, pachytene spermatocyte and round spermatocyte numbers decreased in all stages in both the VPA and OXC groups compared to the control group, though this was not statistically significant (p>0.05). Apoptotic cell counts and p53 immunoreaction were significantly high and TGF-β1 expression was significantly lower in the VPA group compared to that of the control group (p<0.05). In the OXC group, p53 immunoreaction and TGF-β1 expression decreased compared to the control group, but this difference did not attain statistical significance (p>0.05). CONCLUSIONS Our results show that VPA treatment from prepuberty to adulthood significantly negatively affects spermatogenesis, not only by reducing testicular weight, but also by increasing apoptotic death and p53 and decreasing TGF-β1 activation. OXC has a minimal side effect on testicular development.
Collapse
|
42
|
Milovan D, Almeida L, Romach MK, Nunes T, Rocha JF, Sokowloska M, Sellers EM, Soares-da-Silva P. Effect of eslicarbazepine acetate and oxcarbazepine on cognition and psychomotor function in healthy volunteers. Epilepsy Behav 2010; 18:366-73. [PMID: 20708576 DOI: 10.1016/j.yebeh.2010.04.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/19/2010] [Accepted: 04/20/2010] [Indexed: 11/18/2022]
Abstract
The results of two single-blind studies conducted to evaluate the cognitive and psychomotor effects of eslicarbazepine acetate and oxcarbazepine following single and repeated administration in healthy volunteers are reported. The cognitive and psychomotor evaluation consisted of several computerized and paper-and-pencil measures. Eslicarbazepine acetate and oxcarbazepine had similar overall cognitive profiles and did not cause clinically relevant cognitive impairment. The incidence of adverse events was lower with eslicarbazepine acetate than with oxcarbazepine.
Collapse
|
43
|
Brown ME, El-Mallakh RS. Role of eslicarbazepine in the treatment of epilepsy in adult patients with partial-onset seizures. Ther Clin Risk Manag 2010; 6:103-9. [PMID: 20421910 PMCID: PMC2857610 DOI: 10.2147/tcrm.s6382] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Indexed: 11/23/2022] Open
Abstract
Eslicarbazepine is a new dibenzazepine antiepileptic agent. It is a high affinity antagonist of the voltage-gated sodium channel. It is closely related to both carbamazepine and oxcarbazepine. Eslicarbazepine has similar affinity to inactivated sodium channels (channels in just activated neurons) as carbamazepine, and greater efficacy in animal models of seizure than oxcarbazepine. In human placebo-controlled trials of a single daily dose of eslicarbazepine added to other anti-epileptic agents, significant seizure reductions occurred with 800 and 1200 mg daily, with nearly half of the patients experiencing a greater than 50% reduction in seizure frequency. Adverse events (AEs) occurred in over 50% of patients receiving therapeutic doses of eslicarbazepine (compared to 31.4%–44.7% of placebo-treated subjects), but were generally mild or moderate. Eight to 19.6% of eslicarbazepine treated patients discontinued due to AEs (compared to 3.9%–8.5% of placebo-treated subjects). In these patients receiving combination anticonvulsant therapy, the most common AEs were dizziness, nausea and vomiting, somnolence, and diplopia. Eslicarbazepine is an effective and reasonably well-tolerated adjunct in patients with suboptimal control of their partial seizures.
Collapse
|
44
|
Cansu A, Erdogan D, Serdaroglu A, Take GÃ, Coskun ZK, Gurgen SG. Histologic and morphologic effects of valproic acid and oxcarbazepine on rat uterine and ovarian cells. Epilepsia 2010; 51:98-107. [DOI: 10.1111/j.1528-1167.2009.02259.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Johannessen Landmark C, Johannessen SI. Pharmacological management of epilepsy: recent advances and future prospects. Drugs 2009; 68:1925-39. [PMID: 18778117 DOI: 10.2165/00003495-200868140-00001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is still a need for new antiepileptic drugs (AEDs) as the clinical efficacy, tolerability, toxicity or pharmacokinetic properties of existing AEDs may not be satisfactory. One new AED has recently been approved (rufinamide in 2007) and six others are in late-stage development (phase III and onwards) [brivaracetam, carisbamate, eslicarbazepine, lacosamide, retigabine and stiripentol]. The purpose of this review is to provide updated data on proposed mechanisms of action, efficacy and tolerability on these new AEDs, and to discuss the rationale for their development and possible advantages compared with existing treatment, based on recent publications and MEDLINE searches.Rufinamide, brivaracetam and stiripentol have been given the status of orphan drugs. Rufinamide was approved in Europe in 2007 for the use in Lennox-Gastaut syndrome. Brivaracetam has gained orphan status for development in progressive and symptomatic myoclonic seizures in Europe and the US, respectively. Stiripentol has gained orphan status in children with Dravet's syndrome and pharmaco-resistant epilepsy. All of these drugs demonstrate efficacy as adjunctive therapy in partial seizures. Three of the drugs are derivatives of existing AEDs: brivaracetam is a derivative of levetiracetam with improved affinity for the target molecule; carisbamate is a derivative of felbamate with improved tolerability; and eslicarbazepine is a derivative of carbamazepine with less interaction potential and no auto-induction. Lacosamide, retigabine, rufinamide and stiripentol are new compounds, unrelated to other AEDs.Further investigation and development of new broad-spectrum drugs is important for improved treatment of patients with epilepsy and other neurological and psychiatric disorders.
Collapse
|
46
|
Popp RL, Reneau JC, Dertien JS. Cerebellar granule cells cultured from adolescent rats express functional NMDA receptors: an in vitro model for studying the developing cerebellum. J Neurochem 2008; 106:900-11. [PMID: 18466339 DOI: 10.1111/j.1471-4159.2008.05464.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the developing rat cerebellum functional NMDA receptors (NMDARs) expressing the NR2C subunit have been identified on or after postnatal day 19. We obtained primary cultured cells from 19- to 35-day-old rat cerebellum that expressed few oligodendrocytes or astrocytes. Cultured cells were immunoreactive for neuron-specific proteins thus indicating a neuronal population. The primary neuron present was the granule cell as indicated by immunofluorescence for the GABA(A) alpha 6 subunit. Whole-cell patch-clamp experiments indicated that functional NMDARs were present. Functional characteristics of NMDARs expressed in cerebellar granule cells (CGCs) obtained from adolescent animals were similar to those previously reported for NMDARs expressed in CGCs obtained from neonatal rats. Cultured CGCs obtained from older animals contained NMDARs that were inhibited by EtOH and were less sensitive to the NR2B subunit-specific antagonist Ro 25-6981. Furthermore, NMDA-induced currents were smaller than those observed in CGCs. Western blot analysis indicated the presence of the NMDA NR2A and NR2C subunits, but not the NR2B in cultures obtained from the adolescent rats. CGCs obtained from adolescent rats express functional NMDARs consistent with a developmental profile observed in vivo.
Collapse
Affiliation(s)
- R Lisa Popp
- Department of Pharmacology and Neuroscience, and South Plains Alcohol and Addiction Center, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | | | | |
Collapse
|
47
|
Pérez Martín JM, Fernández Freire P, Labrador V, Hazen MJ. Carbamazepine induces mitotic arrest in mammalian Vero cells. Mutat Res 2008; 637:124-33. [PMID: 17875314 DOI: 10.1016/j.mrfmmm.2007.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 05/17/2023]
Abstract
We reported recently that the anticonvulsant drug carbamazepine, at supratherapeutic concentrations, exerts antiproliferative effects in mammalian Vero cells, but the underlying mechanism has not been elucidated. This motivates us to examine rigorously whether growth arrest was associated with structural changes in cellular organization during mitosis. In the present work, we found that exposure of the cells to carbamazepine led to an increase in mitotic index, mainly due to the sustained block at the metaphase/anaphase boundary, with the consequent inhibition of cell proliferation. Indirect immunofluorescence, using antibodies directed against spindle apparatus proteins, revealed that mitotic arrest was associated with formation of monopolar spindles, caused by impairment of centrosome separation. The final consequence of the spindle defects induced by carbamazepine, depended on the duration of cell cycle arrest. Following the time course of accumulation of metaphase and apoptotic cells during carbamazepine treatments, we observed a causative relationship between mitotic arrest and induction of cell death. Conversely, cells released from the block of metaphase by removal of the drug, continued to progress through mitosis and resume normal proliferation. Our results show that carbamazepine shares a common antiproliferative mechanism with spindle-targeted drugs and contribute to a better understanding of the cytostatic activity previously described in Vero cells. Additional studies are in progress to extend these initial findings that define a novel mode of action of carbamazepine in cultured mammalian cells.
Collapse
Affiliation(s)
- J M Pérez Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | |
Collapse
|
48
|
Abstract
Eslicarbazepine acetate (ESL) [(S)-(--)-10-acetoxy-10,11-dihydro-5H-dibenz[b,f]azepine-5-carboxamide], formerly known as BIA 2-093, is a novel central nervous system (CNS)-active compound with anticonvulsant activity. It behaves as a voltage-gated sodium channel (VGSC) blocker and is currently under clinical development for the treatment of epilepsy and bipolar disorder. ESL shares with carbamazepine and oxcarbazepine the dibenzazepine nucleus bearing the 5-carboxamide substitute, but is structurally different at the 10,11-position. This molecular variation results in differences in metabolism, preventing the formation of toxic epoxide metabolites such as carbamazepine-10,11 epoxide. In pharmacokinetic studies in humans, ESL was rapidly and extensively metabolized to eslicarbazepine (S-licarbazepine), which is responsible for pharmacological activity. ESL has been tested in patients with refractory partial-onset seizures and was found to be efficacious and well tolerated. Monotherapy studies in adult epileptic patients and add-on studies in epileptic children are in the planning process. The efficacy and safety data appear to be very promising considering the refractory nature of the epileptic population enrolled in studies to date. Results of ongoing phase III studies in adult epileptic patients are expected to be available in 2007 and are required to define the position of ESL in the therapy of patients with epilepsy.
Collapse
Affiliation(s)
- Luis Almeida
- Department of Research and Development, BIAL (Portela & Ca, SA), S. Mamede do Coronado, Portugal
| | - Patrício Soares-da-Silva
- Department of Research and Development, BIAL (Portela & Ca, SA), S. Mamede do Coronado, Portugal
| |
Collapse
|
49
|
Suwalsky M, Mennickent S, Norris B, Villena F, Sotomayor CP. Effects of the antiepileptic drug carbamazepine on human erythrocytes. Toxicol In Vitro 2006; 20:1363-9. [PMID: 16844339 DOI: 10.1016/j.tiv.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 01/28/2023]
Abstract
The structural effects of the antiepileptic drug carbamazepine (CBZ) on the human erythrocyte membrane and molecular models have been investigated in the present work. This report presents the following evidence that CBZ interacts with red cell membranes: (a) X-ray diffraction and fluorescence spectroscopy of phospholipid bilayers showed that CBZ perturbed a class of lipids found in the outer moiety of the erythrocyte membrane; (b) in isolated unsealed human erythrocytes (IUM) the drug induced a disordering effect on the polar head groups and acyl chains of the membrane lipid bilayer; (c) in scanning electron microscopy (SEM) studies on human erythrocytes the formation of echinocytes was observed, due to the preferential insertion of CBZ in the outer monolayer of the red cell membrane. The effects of the drug detected in the present work were observed at concentrations of the order of those currently appearing in serum when it is therapeutically administered. This is the first time that toxic effects of carbamazepine on the human erythrocyte membrane have been described.
Collapse
Affiliation(s)
- Mario Suwalsky
- Faculty of Chemical Sciences, University of Concepción, Casilla 160-C, Concepción, Chile.
| | | | | | | | | |
Collapse
|
50
|
Sierra-Paredes G, Núñez-Rodriguez A, Vázquez-López A, Oreiro-García T, Sierra-Marcuño G. Anticonvulsant effect of eslicarbazepine acetate (BIA 2-093) on seizures induced by microperfusion of picrotoxin in the hippocampus of freely moving rats. Epilepsy Res 2006; 72:140-6. [PMID: 16920333 DOI: 10.1016/j.eplepsyres.2006.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 11/16/2022]
Abstract
Eslicarbazepine acetate (BIA 2-093, S-(-)-10-acetoxy-10,11-dihydro-5H-dibenzo/b,f/azepine-5-carboxamide) is a novel antiepileptic drug, now in Phase III clinical trials, designed with the aim of improving efficacy and safety in comparison with the structurally related drugs carbamazepine (CBZ) and oxcarbazepine (OXC). We have studied the effects of oral treatment with eslicarbazepine acetate on a whole-animal model in which partial seizures can be elicited repeatedly on different days without changes in threshold or seizure patterns. In the animals treated with threshold doses of picrotoxin, the average number of seizures was 2.3+/-1.2, and average seizure duration was 39.5+/-8.4s. Pre-treatment with a dose of 30 mg/kg 2h before picrotoxin microperfusion prevented seizures in the 75% of the rats. Lower doses (3 and 10mg/kg) did not suppress seizures, however, after administration of 10mg/kg, significant reductions in seizures duration (24.3+/-6.8s) and seizure number (1.6+/-0.34) were found. No adverse effects of eslicarbazepine acetate were observed in the behavioral/EEG patterns studied, including sleep/wakefulness cycle, at the doses studied.
Collapse
Affiliation(s)
- Germán Sierra-Paredes
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15782 Santiago de Compostela, Spain.
| | | | | | | | | |
Collapse
|