1
|
Olsson M, Bererhi B, Miller E, Schwartz T, Rollings N, Lindsay W, Wapstra E. Inbreeding effects on telomeres in hatchling sand lizards (Lacerta agilis): An optimal family affair? Mol Ecol 2022; 31:6605-6616. [PMID: 36208022 PMCID: PMC10092626 DOI: 10.1111/mec.16723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 01/13/2023]
Abstract
Telomeres are nucleotide-protein caps, predominantly at the ends of Metazoan linear chromosomes, showing complex dynamics with regard to their lengthening and shortening through life. Their complexity has entertained the idea that net telomere length and attrition could be valuable biomarkers of phenotypic and genetic quality of their bearer. Intuitively, those individuals could be more heterozygous and, hence, less inbred. However, some inbred taxa have longer, not shorter, telomeres. To understand the role of inbreeding in this complex scenario we need large samples across a range of genotypes with known maternity and paternity in telomere-screened organisms under natural conditions. We assessed the effects of parental and hatchling inbreeding on telomere length in >1300 offspring from >500 sires and dams in a population of sand lizards (Lacerta agilis). Maternal and paternal ID and their interactions predict hatchling telomere length at substantial effect sizes (R2 > .50). Deviation from mean maternal heterozygosity statistically predicts shorter offspring telomeres but this only when sibship is controlled for by paternal ID, and then is still limited (R2 = .06). Raw maternal heterozygosity scores, ignoring absolute deviation from the mean, explained 0.07% of the variance in hatchling telomere length. In conclusion, inbreeding is not a driver of telomere dynamics in the sand lizard (Lacerta agilis) study system.
Collapse
Affiliation(s)
- Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.,School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Badreddine Bererhi
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Emily Miller
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Tonia Schwartz
- Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Nicky Rollings
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Willow Lindsay
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Erik Wapstra
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Intronic primers reveal unexpectedly high major histocompatibility complex diversity in Antarctic fur seals. Sci Rep 2022; 12:17933. [PMID: 36289307 PMCID: PMC9606363 DOI: 10.1038/s41598-022-21658-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/29/2022] [Indexed: 01/20/2023] Open
Abstract
The major histocompatibility complex (MHC) is a group of genes comprising one of the most important components of the vertebrate immune system. Consequently, there has been much interest in characterising MHC variation and its relationship with fitness in a variety of species. Due to the exceptional polymorphism of MHC genes, careful PCR primer design is crucial for capturing all of the allelic variation present in a given species. We therefore developed intronic primers to amplify the full-length 267 bp protein-coding sequence of the MHC class II DQB exon 2 in the Antarctic fur seal. We then characterised patterns of MHC variation among mother-offspring pairs from two breeding colonies and detected 19 alleles among 771 clone sequences from 56 individuals. The distribution of alleles within and among individuals was consistent with a single-copy, classical DQB locus showing Mendelian inheritance. Amino acid similarity at the MHC was significantly associated with genome-wide relatedness, but no relationship was found between MHC heterozygosity and genome-wide heterozygosity. Finally, allelic diversity was several times higher than reported by a previous study based on partial exon sequences. This difference appears to be related to allele-specific amplification bias, implying that primer design can strongly impact the inference of MHC diversity.
Collapse
|
3
|
Vandergast AG, Kus BE, Smith JG, Mitelberg A. Recent declines in genetic diversity with limited dispersal among coastal cactus wren populations in San Diego County, California. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Amy G. Vandergast
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Barbara E. Kus
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Julia G. Smith
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| | - Anna Mitelberg
- Western Ecological Research Center U.S. Geological Survey San Diego California USA
| |
Collapse
|
4
|
How Depressing Is Inbreeding? A Meta-Analysis of 30 Years of Research on the Effects of Inbreeding in Livestock. Genes (Basel) 2021; 12:genes12060926. [PMID: 34207101 PMCID: PMC8234567 DOI: 10.3390/genes12060926] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Inbreeding depression has been widely documented for livestock and other animal and plant populations. Inbreeding is generally expected to have a stronger unfavorable effect on fitness traits than on other traits. Traditionally, the degree of inbreeding depression in livestock has been estimated as the slope of the linear regression of phenotypic values on pedigree-based inbreeding coefficients. With the increasing availability of SNP-data, pedigree inbreeding can now be replaced by SNP-based measures. We performed a meta-analysis of 154 studies, published from 1990 to 2020 on seven livestock species, and compared the degree of inbreeding depression (1) across different trait groups, and (2) across different pedigree-based and SNP-based measures of inbreeding. Across all studies and traits, a 1% increase in pedigree inbreeding was associated with a median decrease in phenotypic value of 0.13% of a trait’s mean, or 0.59% of a trait’s standard deviation. Inbreeding had an unfavorable effect on all sorts of traits and there was no evidence for a stronger effect on primary fitness traits (e.g., reproduction/survival traits) than on other traits (e.g., production traits or morphological traits). p-values of inbreeding depression estimates were smaller for SNP-based inbreeding measures than for pedigree inbreeding, suggesting more power for SNP-based measures. There were no consistent differences in p-values for percentage of homozygous SNPs, inbreeding based on runs of homozygosity (ROH) or inbreeding based on a genomic relationship matrix. The number of studies that directly compares these different measures, however, is limited and comparisons are furthermore complicated by differences in scale and arbitrary definitions of particularly ROH-based inbreeding. To facilitate comparisons across studies in future, we provide the dataset with inbreeding depression estimates of 154 studies and stress the importance of always reporting detailed information (on traits, inbreeding coefficients, and models used) along with inbreeding depression estimates.
Collapse
|
5
|
Heterozygous Trees Rebound the Fastest after Felling by Beavers to Positively Affect Arthropod Community Diversity. FORESTS 2021. [DOI: 10.3390/f12060694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although genetic diversity within stands of trees is known to have community-level consequences, whether such effects are present at an even finer genetic scale is unknown. We examined the hypothesis that genetic variability (heterozygosity) within an individual plant would affect its dependent community, which adds a new dimension to the importance of genetic diversity. Our study contrasted foliar arthropod community diversity and microsatellite marker-derived measures of genetic diversity of cottonwood (Populus fremontii) trees that had been felled by beavers (Castor canadensis) and were resprouting, relative to adjacent standing, unfelled trees. Three patterns emerged: 1. Productivity (specific leaf area), phytochemical defenses (salicortin), and arthropod community richness, abundance, and diversity were positively correlated with the heterozygosity of individual felled trees, but not with that of unfelled trees; 2. These relationships were not explained by population substructure, genetic relatedness of the trees, or hybridization; 3. The underlying mechanism appears to be that beaver herbivory stimulates increased productivity (i.e., 2× increase from the most homozygous to the most heterozygous tree) that is the greatest in more heterozygous trees. Salicortin defenses in twigs were also expressed at higher concentrations in more heterozygous trees (i.e., 3× increase from the most homozygous to the most heterozygous tree), which suggests that this compound may dissuade further herbivory by beavers, as has been found for other mammalian herbivores. We suggest that high stress to trees as a consequence of felling reveals a heterozygosity–productivity linkage, which in turn is attractive to arthropods. Although experiments are required to demonstrate causality, these results link the genetic diversity of individual trees to community diversity, supporting the hypothesis that interactions among foundation species (beavers and trees) have community-level effects, and underscores the importance of genetic diversity for biodiversity, conservation, and restoration.
Collapse
|
6
|
Sin SYW, Hoover BA, Nevitt GA, Edwards SV. Demographic History, Not Mating System, Explains Signatures of Inbreeding and Inbreeding Depression in a Large Outbred Population. Am Nat 2021; 197:658-676. [PMID: 33989142 DOI: 10.1086/714079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractInbreeding depression is often found in small, inbred populations, but whether it can be detected in and have evolutionary consequences for large, wide-ranging populations is poorly known. Here, we investigate the possibility of inbreeding in a large population to determine whether mild levels of inbreeding can still have genetic and phenotypic consequences and how genomically widespread these effects can be. We apply genome-wide methods to investigate whether individual and parental heterozygosity is related to morphological, growth, or life-history traits in a pelagic seabird, Leach's storm-petrel (Oceanodroma leucorhoa). Examining 560 individuals as part of a multiyear study, we found a substantial effect of maternal heterozygosity on chick traits: chicks from less heterozygous (relatively inbred) mothers were significantly smaller than chicks from more heterozygous (noninbred) mothers. We show that these heterozygosity-fitness correlations were due to general genome-wide effects and demonstrate a correlation between heterozygosity and inbreeding, suggesting inbreeding depression. We used population genetic models to further show that the variance in inbreeding was probably due to past demographic events rather than the current mating system and ongoing mate choice. Our findings demonstrate that inbreeding depression can be observed in large populations and illustrate how the integration of genomic techniques and fieldwork can elucidate its underlying causes.
Collapse
|
7
|
Fan Q, E M, Wei Y, Sun W, Wang H. Mate Choice in Double-Breeding Female Great Tits ( Parus Major): Good Males or Compatible Males. Animals (Basel) 2021; 11:ani11010140. [PMID: 33440643 PMCID: PMC7826884 DOI: 10.3390/ani11010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Double breeding is a common reproductive strategy among temperate passerines to increase annual fecundity. To produce two clutches in the same breeding season and to ensure offspring quality, choosing a good mate is important for females. Uncovering the method used in social mate choice for genetic benefits adopted by double-breeding females would provide a better understanding of the life history and rules of female choice. In the present study, we tested the effects of the date of the first egg of the first brood and of female quality on double breeding, and good genes and genetic compatibility hypotheses on mate choice for double breeding female great tits (Parus major) in a population breeding inside nest boxes of Zuojia Natural Reserve in northeast China. The date of the first egg of the first brood did not affect initiation of a second brood, and female individual heterozygosity slightly influenced initiation of a second breeding. Female great tits choose males with both compatible genes and good genes in double-breeding mating. Double-breeding females prefer males with large breast stripes, high heterozygosity, and lower relatedness. The number of offspring of the first clutch did not affect the pairing status of male great tits in double breeding. The genetic quality of offspring from double-breeding pairs was higher than that of those from single-breeding pairs (higher heterozygosity and lower individual F). Abstract Producing two broods within the same season may be a good strategy by which short-lived species can maximize reproductive success. To produce two clutches in the same breeding season and to ensure offspring quality, choosing a good mate is important for females. Previous studies on double breeding focused on the associated influencing factors, and few studies examined how females choose social mates. Good genes and genetic compatibility are the two main hypotheses of the genetic benefit that females obtain from choosing mates. Uncovering the method used in mate choice for genetic benefits adopted by double-breeding females would provide a better understanding of the life history and rules of female choice. The great tit is an optionally double-breeding species in temperate-latitude populations. Here, we used a dataset for a Chinese population monitored between 2014 and 2016 to test two hypotheses on double-breeding female mate choice. A total of 30.1% of the breeding pairs initiated second breeding attempts, always remating with the same mate. The date of the first egg of the first brood did not affect initiation of a second brood, and female individual heterozygosity slightly influenced initiation of a second breeding. Female great tits choose males with both compatible genes and good genes in double-breeding mating. Double-breeding females prefer males with large breast stripes, high heterozygosity, and lower relatedness, while tarsus length, repertoire size, and individual F are not the main factors considered by females when selecting males for double breeding. The number of offspring of the first clutch did not affect the pairing status of male great tits in double breeding. The genetic quality of offspring from double-breeding pairs was higher than that of those from single-breeding pairs (higher heterozygosity and lower individual F). Taken together, our results showed that double breeding female great tits adopt multiple methods for genetic benefits to choose mates.
Collapse
Affiliation(s)
- Qianxi Fan
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Renmin Street 5268, Changchun 130024, China; (Q.F.); (M.E); (Y.W.)
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
| | - Mingju E
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Renmin Street 5268, Changchun 130024, China; (Q.F.); (M.E); (Y.W.)
- School of Life Sciences, Changchun Normal University, 677 Changjibei Road, Changchun 130032, China
| | - Yusheng Wei
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Renmin Street 5268, Changchun 130024, China; (Q.F.); (M.E); (Y.W.)
| | - Wei Sun
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
- Correspondence: (W.S.); (H.W.)
| | - Haitao Wang
- Jilin Engineering Laboratory for Avian Ecology and Conservation Genetics, School of Life Sciences, Northeast Normal University, Renmin Street 5268, Changchun 130024, China; (Q.F.); (M.E); (Y.W.)
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Renmin Street 5268, Changchun 130024, China
- Correspondence: (W.S.); (H.W.)
| |
Collapse
|
8
|
Botero-Delgadillo E, Quirici V, Vásquez RA, Kempenaers B. Heterozygosity-Fitness Correlations in a Continental Island Population of Thorn-Tailed Rayadito. J Hered 2020; 111:628-639. [PMID: 33277658 DOI: 10.1093/jhered/esaa056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/04/2020] [Indexed: 11/15/2022] Open
Abstract
Heterozygosity-fitness correlations (HFCs) have been used to monitor the effects of inbreeding in threatened populations. HFCs can also be useful to investigate the potential effects of inbreeding in isolated relict populations of long-term persistence and to better understand the role of inbreeding and outbreeding as drivers of changes in genetic diversity. We studied a continental island population of thorn-tailed rayadito (Aphrastura spinicauda) inhabiting the relict forest of Fray Jorge National Park, north-central Chile. This population has experienced a long-term, gradual process of isolation since the end of the Tertiary. Using 10 years of field data in combination with molecular techniques, we tested for HFCs to assess the importance of inbreeding depression. If inbreeding depression is important, we predict a positive relationship between individual heterozygosity and fitness-related traits. We genotyped 183 individuals at 12 polymorphic microsatellite loci and used 7 measures of reproductive success and estimates of apparent survival to calculate HFCs. We found weak to moderate statistical support (P-values between 0.05 and 0.01) for a linear effect of female multi-locus heterozygosity (MLH) on clutch size and nonlinear effects on laying date and fledging success. While more heterozygous females laid smaller clutches, nonlinear effects indicated that females with intermediate values of MLH started laying earlier and had higher fledging success. We found no evidence for effects of MLH on annual fecundity or on apparent survival. Our results along with the long-term demographic stability of the study population contradict the hypothesis that inbreeding depression occurs in this population.
Collapse
Affiliation(s)
- Esteban Botero-Delgadillo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Verónica Quirici
- Departamento de Ecología y Biodiversidad, Facultad de Ecología y Recursos Naturales, Universidad Andrés Bello, Santiago, Chile.,Centro de investigación para la sustentabilidad, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo A Vásquez
- Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
9
|
Pourshoushtari RD, Ammerman LK. Genetic variability and connectivity of the Mexican long-nosed bat between two distant roosts. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Genetic variability generally is associated with adaptive potential of species and can be assessed using microsatellite markers. Mexican long-nosed bats (Leptonycteris nivalis) are endangered, migratory nectarivores thought to be experiencing population declines. Despite historical and current tracking efforts, migratory connections among roost sites remain elusive. Our objective was to assess the genetic variability and connectivity of two of the most geographically separated populations of L. nivalis currently known—a mating roost in central Mexico used from September to March, and a maternity roost in western Texas used by adult females and their young from June to August. Twelve loci developed for L. yerbabuenae and four for Glossophaga soricina amplified L. nivalis DNA; of those 16 loci, seven (all from L. yerbabuenae) were useful in genetic analyses of 113 individuals. High levels of genetic variation in L. nivalis from the two sites were not significantly different and no substructure was detected between these two roost sites separated by more than 1,200 km. Further, we recovered evidence of close relationship (parent–offspring) in nine pairs of juveniles captured at the northern roost and adults from the southern roost, confirming a connection between the two locations. For this endangered species, the level of variation detected, the lack of a recent bottleneck, and estimates of effective population size, are encouraging for future recovery. Management plans aimed at conserving Mexican long-nosed bats should recognize the need for managing these bats as a single population and conserving foraging and roosting habitat along migratory routes to reduce population fragmentation.
Collapse
Affiliation(s)
| | - Loren K Ammerman
- Department of Biology, Angelo State University, San Angelo, TX, USA
| |
Collapse
|
10
|
Rabier R, Robert A, Lacroix F, Lesobre L. Genetic assessment of a conservation breeding program of the houbara bustard (Chlamydotis undulata undulata) in Morocco, based on pedigree and molecular analyses. Zoo Biol 2020; 39:422-435. [PMID: 32956518 DOI: 10.1002/zoo.21569] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022]
Abstract
Protection and restoration of species in the wild may require conservation breeding programs under genetic management to minimize deleterious effects of genetic changes that occur in captivity, while preserving populations' genetic diversity and evolutionary resilience. Here, through interannual pedigree analyses, we first assessed the efficiency of a 21-year genetic management, including minimization of mean kinship, inbreeding avoidance, and regular addition of founders, of a conservation breeding program targeting on Houbara bustard (Chlamydotis undulata undulata) in Morocco. Secondly, we compared pedigree analyses, the classical way of assessing and managing genetic diversity in captivity, to molecular analyses based on seven microsatellites. Pedigree-based results indicated an efficient maintenance of the genetic diversity (99% of the initial genetic diversity retained) while molecular-based results indicated an increase in allelic richness and an increase in unbiased expected heterozygosity across time. The pedigree-based average inbreeding coefficient F remained low (between 0.0004 and 0.003 in 2017) while the proportion of highly inbred individuals (F > .1) decreased over time and reached 0.2% in 2017. Furthermore, pedigree-based F and molecular-based individual multilocus heterozygosity were weakly negatively correlated, (Pearson's r = -.061 when considering all genotyped individuals), suggesting that they cannot be considered as alternatives, but rather as complementary sources of information. These findings suggest that a strict genetic monitoring and management, based on both pedigree and molecular tools can help mitigate genetic changes and allow to preserve genetic diversity and evolutionary resilience in conservation breeding programs.
Collapse
Affiliation(s)
- Robin Rabier
- Reneco International Wildlife Consultant LLC, Abu Dhabi, United Arab Emirates.,Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France.,Emirates Center for Wildlife Propagation, Missour, Morocco
| | - Alexandre Robert
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Frédéric Lacroix
- Reneco International Wildlife Consultant LLC, Abu Dhabi, United Arab Emirates.,Emirates Center for Wildlife Propagation, Missour, Morocco
| | - Loïc Lesobre
- Reneco International Wildlife Consultant LLC, Abu Dhabi, United Arab Emirates.,Emirates Center for Wildlife Propagation, Missour, Morocco
| |
Collapse
|
11
|
Botero-Delgadillo E, Gilsenan C, Mueller JC, Kempenaers B. Negative effects of individual heterozygosity on reproductive success in a wild bird population. Mol Ecol 2020; 29:3196-3216. [PMID: 32668071 DOI: 10.1111/mec.15553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/03/2020] [Indexed: 01/01/2023]
Abstract
The evolutionary consequences of individual genetic diversity are frequently studied by assessing heterozygosity-fitness correlations (HFCs). The prevalence of positive and negative HFCs and the predominance of general versus local effects in wild populations are far from understood, partly because comprehensive studies testing for both inbreeding and outbreeding depression are lacking. We studied a genetically diverse population of blue tits in southern Germany using a genome-wide set of 87 microsatellites to investigate the relationship between proxies of reproductive success and measures of multilocus and single-locus individual heterozygosity (MLH and SLH). We used complimentary measures of MLH and partitioned markers into functional categories according to their position in the blue tit genome. HFCs based on MLH were consistently negative for functional loci, whereas correlations were rather inconsistent for loci found in nonfunctional areas of the genome. Clutch size was the only reproductive variable showing a general effect. We found evidence for local effects for three measures of reproductive success: arrival date at the breeding site, the probability of breeding at the study site and male reproductive success. For these, we observed consistent, and relatively strong, negative effects at one functional locus. Remarkably, this marker had a similar effect in another blue tit population from Austria (~400 km to the east). We suggest that a genetic local effect on timing of arrival might be responsible for most negative HFCs detected, with carry-over effects on other reproductive traits. This effect could reflect individual differences in the distance between overwintering areas and breeding sites.
Collapse
Affiliation(s)
- Esteban Botero-Delgadillo
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Carol Gilsenan
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Jakob C Mueller
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Plank Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
12
|
Phillips P, Livieri TM, Swanson BJ. Genetic signature of disease epizootic and reintroduction history in an endangered carnivore. J Mammal 2020. [DOI: 10.1093/jmammal/gyaa043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AbstractEmerging infectious diseases have recently increased in wildlife and can result in population declines and the loss of genetic diversity in susceptible populations. As populations of impacted species decline, genetic diversity can be lost, with ramifications including reduced effective population size and increased population structuring. For species of conservation concern, which may already have low genetic diversity, the loss of genetic diversity can be especially important. To investigate the impacts of a novel pathogen on genetic diversity in a genetically depauperate endangered species, we assessed the ramifications of a sylvatic plague-induced bottleneck in black-footed ferrets (Mustela nigripes). Following a plague epizootic, we genotyped 184 ferrets from Conata Basin and Badlands National Park, South Dakota, at seven microsatellite loci. We compared our results to pre-plague studies in the same population. We observed population substructuring into three genetic clusters. These clusters reflect founder effects from ferret reintroduction events followed by genetic drift. Compared to the pre-plague population, we observed losses of allelic diversity in all clusters, as well as significantly reduced heterozygosity in one cluster. These results indicate that disease epizootics may reduce population size and also genetic diversity. Our results suggest the importance of early and sustained management in mitigating disease epizootics in naïve populations for the maintenance of genetic diversity.
Collapse
Affiliation(s)
- Payton Phillips
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
- Department of Biology, Temple University, Philadelphia, PA, USA
| | | | - Bradley J Swanson
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| |
Collapse
|
13
|
Hoffman JI, Nagel R, Litzke V, Wells DA, Amos W. Genetic analysis of Boletus edulis suggests that intra-specific competition may reduce local genetic diversity as a woodland ages. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200419. [PMID: 32874636 PMCID: PMC7428248 DOI: 10.1098/rsos.200419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Ectomycorrhizal fungi are key players in terrestrial ecosystems yet their mating systems and population dynamics remain poorly understood. We investigated the fine-scale relatedness structure and genetic diversity of Boletus edulis, one of the world's most commercially important wild mushrooms. Microsatellite genotyping of fruiting bodies from 14 different sites around Bielefeld in Germany revealed little in the way of population structure over a geographic scale of several kilometres. However, on a more local scale we found evidence for elevated relatedness as well as inbreeding. We also observed a significant negative association between the genetic diversity of fruit and the age of the trees under which they were sampled. Taken together, our results suggest that as genets mature, they compete and potentially create conditions under which further spores struggle to become established. By implication, even though this species is widely picked, propagules remain common enough to create strong competition when new habitats become available.
Collapse
Affiliation(s)
- J. I. Hoffman
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 OET, UK
| | - R. Nagel
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - V. Litzke
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
| | - D. A. Wells
- Department of Animal Behaviour, Bielefeld University, 33501 Bielefeld, Germany
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- School of Natural Science and Psychology, Liverpool John Moores University, Liverpool, UK
| | - W. Amos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
14
|
Bubac CM, Miller JM, Coltman DW. The genetic basis of animal behavioural diversity in natural populations. Mol Ecol 2020; 29:1957-1971. [PMID: 32374914 DOI: 10.1111/mec.15461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022]
Abstract
Individual differences in animal behaviour influence ecological and evolutionary processes. Much behavioural variation has a heritable component, suggesting that genetics may play a role in its development. Yet, the study of the mechanistic description linking genes to behaviour in nature remains in its infancy, and such research is considered a challenge in contemporary biology. Here, we performed a literature review and meta-analysis to assess trends in analytical approaches used to investigate the relationship between genes and behaviour in natural systems, specifically candidate gene approaches, quantitative trait locus (QTL) mapping, and genome-wide association studies (GWAS). We aimed to determine the efficacy and success of each approach, while also describing which behaviours and species were examined by researchers most often. We found that the majority of QTL mapping and GWAS results revealed a significant or suggestive effect (Zr = 0.3 [95% CI: 0.25:0.35] and Zr = 0.39 [0.33:0.46], respectively) between the trait of interest and genetic marker(s) tested, while over half of candidate gene accounts (Zr = 0.16 [0.11:0.21]) did not find a significant association. Approximately a third of all study estimates investigated animal personality traits; though, reproductive and migratory behaviours were also well-represented. Our findings show that despite widespread accessibility of molecular approaches given current sequencing technologies, efforts to elucidate the genetic basis of behaviour in free-ranging systems has been limited to relatively few species. We discuss challenges encountered by researchers, and recommend integration of novel genomic methods with longitudinal studies to usher in the next wave of behavioural genomic research.
Collapse
Affiliation(s)
- Christine M Bubac
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Pérez-Tris J, Llanos-Garrido A, Bloor P, Carbonell R, Tellería JL, Santos T, Díaz JA. Increased individual homozygosity is correlated with low fitness in a fragmented lizard population. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AbstractIsolation owing to anthropogenic habitat fragmentation is expected to increase the homozygosity of individuals, which might reduce their fitness as a result of inbreeding depression. Using samples from a fragmented population of the lizard Psammodromus algirus, for which we had data about two correlates of fitness, we genotyped individuals for six microsatellite loci that correctly capture genome-wide individual homozygosity of these lizards (as validated with an independent sample of lizards genotyped for both these microsatellites and > 70 000 single nucleotide polymorphisms). Our data revealed genetic structure at a very small geographical scale, which was compatible with restricted gene flow among populations disconnected in a matrix of inhospitable habitat. Lizards from the same fragment were genetically more related to one another than expected by chance, and individual homozygosity was greater in small than in large fragments. Within fragments, individual homozygosity was negatively associated with adult body size and clutch mass, revealing a link among reduced gene flow, increased homozygosity and lowered fitness that might reduce population viability deterministically. Our results contribute to mounting evidence of the impact of the loss of genetic diversity on fragmented wild populations.
Collapse
Affiliation(s)
- Javier Pérez-Tris
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Alejandro Llanos-Garrido
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul Bloor
- Instituto de Genética, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Roberto Carbonell
- Consejería de Medio Ambiente, Servicio Espacios Naturales, Valladolid, Spain
| | - José Luis Tellería
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Tomás Santos
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - José A Díaz
- Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Hasselgren M, Norén K. Inbreeding in natural mammal populations: historical perspectives and future challenges. Mamm Rev 2019. [DOI: 10.1111/mam.12169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Malin Hasselgren
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| | - Karin Norén
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| |
Collapse
|
17
|
Sun L, Zhou T, Stone GN, Wan QH, Fang SG. Seeing-good-gene-based mate choice: From genes to behavioural preferences. J Anim Ecol 2019; 88:1708-1719. [PMID: 31332779 PMCID: PMC6899946 DOI: 10.1111/1365-2656.13071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/17/2019] [Indexed: 01/22/2023]
Abstract
Although vertebrates have been reported to gain higher reproductive outputs by choosing mates, few studies have been conducted on threatened species. However, species recovery should benefit if natural mate choice could improve reproductive output (i.e. pair performance related to offspring number, such as increased clutch size, numbers of fertilized egg and fledglings). We assessed the evidence for major histocompatibility complex (MHC)‐based mate preference in the endangered crested ibis (Nipponia nippon) and quantified the impacts of such choice on reproductive output. We tested the hypothesis that crested ibis advertise “good genes” through external traits, by testing whether nuptial plumage characteristics and body morphology mediate mate choice for underlying genetic MHC variation. We found differences between males and females in preferred MHC genotypes, external traits used in mate choice and contributions to reproductive outputs. Females preferred MHC‐heterozygous males, which had darker [i.e. lower total reflectance and ultraviolet (UV) reflectance] nuptial plumage. Males preferred females lacking the DAB*d allele at the MHC class II DAB locus, which had higher average body mass. DAB*d‐free females yielded heavier eggs and more fledglings, while MHC‐heterozygous males contributed to more fertilized eggs and fledglings. Fledging rate was highest when both parents had the preferred MHC genotypes (i.e. MHC‐heterozygous father and DAB*d‐free mother). Comparisons showed that free‐mating wild and semi‐natural pairs yielded more fertilized eggs and more fledglings, with a higher fledging rate, than captive pairs matched artificially based on pedigree. Conservation programmes seldom apply modern research results to population management, which could hinder recovery of threatened species. Our results show that mate choice can play an important role in improving reproductive output, with an example in which an endangered bird selects mates using UV visual capability. Despite the undoubted importance of pedigree‐based matching of mates in conservation programmes, we show that free mating can be a better alternative strategy.
Collapse
Affiliation(s)
- Li Sun
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Tong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Sumasgutner P, Terraube J, Coulon A, Villers A, Chakarov N, Kruckenhauser L, Korpimäki E. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front Zool 2019; 16:31. [PMID: 31406493 PMCID: PMC6683578 DOI: 10.1186/s12983-019-0331-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Selecting high-quality habitat and the optimal time to reproduce can increase individual fitness and is a strong evolutionary factor shaping animal populations. However, few studies have investigated the interplay between land cover heterogeneity, limitation in food resources, individual quality and spatial variation in fitness parameters. Here, we explore how individuals of different quality respond to possible mismatches between a cue for prey availability (land cover heterogeneity) and the actual fluctuating prey abundance. RESULTS We analyse timing of breeding and reproductive success in a migratory population of Eurasian kestrels (Falco tinnunculus) breeding in nest-boxes, over a full three-year abundance cycle of main prey (voles), and consider several components of individual quality, including body condition, blood parasite infection, and genetic diversity (n = 448 adults) that act on different time scales. Older individuals, and kestrel parents in higher body condition started egg-laying earlier than younger birds and those in lower body condition. Additionally, egg-laying was initiated earlier during the increase and decrease phases (2011 and 2012) than during the low phase of the vole cycle (2013). Nestling survival (ratio of eggs that fledged successfully) was higher in early nests and in heterogeneous landscapes (i.e., mosaic of different habitat types), which was evident during the increase and decrease phases of the vole cycle, but not during the low vole year. CONCLUSIONS We found a strong positive effect of landscape heterogeneity on nestling survival, but only when voles were relatively abundant, whereas a difference in the timing of breeding related to territory landscape heterogeneity was not evident. Therefore, landscape heterogeneity appeared as the main driver of high reproductive performance under favourable food conditions. Our results show that landscape homogenization linked to agricultural intensification disrupts the expected positive effect of vole abundance on reproductive success of kestrels.
Collapse
Affiliation(s)
- Petra Sumasgutner
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
- Department of Integrative Zoology, University of Vienna, Vienna, Austria
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Julien Terraube
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
- Global Change and Conservation Lab. Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Aurélie Coulon
- CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier 3, Montpellier, France
- Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum national d’Histoire naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
| | - Alexandre Villers
- ONCFS, Unité Avifaune Migratrice, Station de Chizé, 405 route de Prissé-la-Charrière, 79360 Villiers-en-Bois, France
| | - Nayden Chakarov
- Department of Biology, Molecular Ecology and Evolution Lab, Lund University, Lund, Sweden
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
| | - Luise Kruckenhauser
- Museum of Natural History Vienna, Central Research Laboratories, Vienna, Austria
| | - Erkki Korpimäki
- Department of Biology, Section of Ecology, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Litzke V, Ottensmann M, Forcada J, Heitzmann L, Ivan Hoffman J. Heterozygosity at neutral and immune loci is not associated with neonatal mortality due to microbial infection in Antarctic fur seals. Ecol Evol 2019; 9:7985-7996. [PMID: 31380066 PMCID: PMC6662382 DOI: 10.1002/ece3.5317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have reported correlations between the heterozygosity of genetic markers and fitness. These heterozygosity-fitness correlations (HFCs) play a central role in evolutionary and conservation biology, yet their mechanistic basis remains open to debate. For example, fitness associations have been widely reported at both neutral and functional loci, yet few studies have directly compared the two, making it difficult to gauge the relative contributions of genome-wide inbreeding and specific functional genes to fitness. Here, we compared the effects of neutral and immune gene heterozygosity on death from bacterial infection in Antarctic fur seal (Arctocephalus gazella) pups. We specifically developed a panel of 13 microsatellites from expressed immune genes and genotyped these together with 48 neutral loci in 234 individuals, comprising 39 pups that were classified at necropsy as having most likely died of bacterial infection together with a five times larger matched sample of healthy surviving pups. Identity disequilibrium quantified from the neutral markers was positive and significant, indicative of variance in inbreeding within the study population. However, multilocus heterozygosity did not differ significantly between healthy and infected pups at either class of marker, and little evidence was found for fitness associations at individual loci. These results support a previous study of Antarctic fur seals that found no effects of heterozygosity at nine neutral microsatellites on neonatal survival and thereby help to refine our understanding of how HFCs vary across the life cycle. Given that nonsignificant HFCs are underreported in the literature, we also hope that our study will contribute toward a more balanced understanding of the wider importance of this phenomenon.
Collapse
Affiliation(s)
- Vivienne Litzke
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | | | | | | | - Joseph Ivan Hoffman
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
- British Antarctic Survey, High CrossCambridgeUK
| |
Collapse
|
20
|
|
21
|
Zhu Y, Wan QH, Zhang HM, Fang SG. Reproductive Strategy Inferred from Major Histocompatibility Complex-Based Inter-Individual, Sperm-Egg, and Mother-Fetus Recognitions in Giant Pandas ( Ailuropoda melanoleuca). Cells 2019; 8:cells8030257. [PMID: 30893784 PMCID: PMC6468540 DOI: 10.3390/cells8030257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 12/05/2022] Open
Abstract
Few major histocompatibility complex (MHC)-based mate choice studies include all MHC genes at the inter-individual, sperm-egg, and mother-fetus recognition levels. We tested three hypotheses of female mate choice in a 17-year study of the giant panda (Ailuropoda melanoleuca) while using ten functional MHC loci (four MHC class I loci: Aime-C, Aime-F, Aime-I, and Aime-L; six MHC class II loci: Aime-DRA, Aime-DRB3, Aime-DQA1, Aime-DQA2, Aime-DQB1, and Aime-DQB2); five super haplotypes (SuHa, SuHaI, SuHaII, DQ, and DR); and, seven microsatellites. We found female choice for heterozygosity at Aime-C, Aime-I, and DQ and for disassortative mate choice at Aime-C, DQ, and DR at the inter-individual recognition level. High mating success occurred in MHC-dissimilar mating pairs. No significant results were found based on any microsatellite parameters, suggesting that MHCs were the mate choice target and there were no signs of inbreeding avoidance. Our results indicate Aime-DQA1- and Aime-DQA2-associated disassortative selection at the sperm-egg recognition level and a possible Aime-C- and Aime-I-associated assortative maternal immune tolerance mechanism. The MHC genes were of differential importance at the different recognition levels, so all of the functional MHC genes should be included when studying MHC-dependent reproductive mechanisms.
Collapse
Affiliation(s)
- Ying Zhu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qiu-Hong Wan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, No. 98 Tongjiang Road, Dujiangyan 611800, China.
| | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Wang D, Forstmeier W, Valcu M, Dingemanse NJ, Bulla M, Both C, Duckworth RA, Kiere LM, Karell P, Albrecht T, Kempenaers B. Scrutinizing assortative mating in birds. PLoS Biol 2019; 17:e3000156. [PMID: 30789896 PMCID: PMC6400405 DOI: 10.1371/journal.pbio.3000156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/05/2019] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
It is often claimed that pair bonds preferentially form between individuals that resemble one another. Such assortative mating appears to be widespread throughout the animal kingdom. Yet it is unclear whether the apparent ubiquity of assortative mating arises primarily from mate choice (“like attracts like”), which can be constrained by same-sex competition for mates; from spatial or temporal separation; or from observer, reporting, publication, or search bias. Here, based on a conventional literature search, we find compelling meta-analytical evidence for size-assortative mating in birds (r = 0.178, 95% CI 0.142–0.215, 83 species, 35,591 pairs). However, our analyses reveal that this effect vanishes gradually with increased control of confounding factors. Specifically, the effect size decreased by 42% when we used previously unpublished data from nine long-term field studies, i.e., data free of reporting and publication bias (r = 0.103, 95% CI 0.074–0.132, eight species, 16,611 pairs). Moreover, in those data, assortative mating effectively disappeared when both partners were measured by independent observers or separately in space and time (mean r = 0.018, 95% CI −0.016–0.057). Likewise, we also found no evidence for assortative mating in a direct experimental test for mutual mate choice in captive populations of Zebra finches (r = −0.020, 95% CI −0.148–0.107, 1,414 pairs). These results highlight the importance of unpublished data in generating unbiased meta-analytical conclusions and suggest that the apparent ubiquity of assortative mating reported in the literature is overestimated and may not be driven by mate choice or mating competition for preferred mates. Human mate choice is characterized by assortative mating (‘like attracts like’) and similarity of partners is also often reported for birds. A meta-analysis of published and previously unpublished datasets shows that the reported assortative mating in birds may mostly reflect biases in estimation rather than mate choice. Research on mate choice in birds has attracted much attention, partly because many birds form monogamous pair bonds like humans do. Human mate choice is characterized by the phenomenon of “like attracts like,” meaning that partners resemble each other in multiple ways (“assortative mating”). Assortative mating is also frequently reported for birds, but it is unclear whether this in turn implies that birds also have preferences for a similar partner. Here, we show that a range of methodological issues may provide a simpler and more accurate explanation for the frequent observation of assortative mating in birds. First, studies that report assortative mating may achieve greater visibility than studies that yield no such finding. Hence, the scientific literature may be biased toward positive results. Second, in field studies, it is logistically impossible to measure all birds accurately and under standardized conditions. Hence, fluctuations in, for instance, environmental conditions may induce a spurious similarity between partners when these are measured together in space or time. After accounting for such methodological issues, we conclude that mate preferences for a similar partner may be less common than previously thought.
Collapse
Affiliation(s)
- Daiping Wang
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
- * E-mail:
| | - Mihai Valcu
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Niels J. Dingemanse
- Behavioural Ecology, Department of Biology, Ludwig Maximilians University of Munich, Planegg-Martinsried, Germany
| | - Martin Bulla
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, Den Burg, the Netherlands
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká, Prague, Czech Republic
| | - Christiaan Both
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
| | - Renée A. Duckworth
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Lynna Marie Kiere
- Center for the Study of Biodiversity and Conservation (CIByC), Autonomous University of the State of Morelos, Cuernavaca Morelos, Mexico
- Institute of Ecology, Department of Evolutionary Ecology, Universidad Nacional Autónoma de México, Mexico City, Distrito Federal, Mexico
| | - Patrik Karell
- Bioeconomy Research Team, Novia University of Applied Sciences, Raseborgsvägen, Ekenäs, Finland
| | - Tomáš Albrecht
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, and Faculty of Science, Charles University, Prague, Czech Republic
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
23
|
Bichet C, Vedder O, Sauer‐Gürth H, Becker PH, Wink M, Bouwhuis S. Contrasting heterozygosity‐fitness correlations across life in a long‐lived seabird. Mol Ecol 2019; 28:671-685. [DOI: 10.1111/mec.14979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 01/14/2023]
Affiliation(s)
| | - Oscar Vedder
- Institute of Avian Research Wilhelmshaven Germany
- Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Hedwig Sauer‐Gürth
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology Heidelberg University Heidelberg Germany
| | | |
Collapse
|
24
|
Kolchanova S, Kliver S, Komissarov A, Dobrinin P, Tamazian G, Grigorev K, Wolfsberger WW, Majeske AJ, Velez-Valentin J, Valentin de la Rosa R, Paul-Murphy JR, Guzman DSM, Court MH, Rodriguez-Flores JL, Martínez-Cruzado JC, Oleksyk TK. Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation. Genes (Basel) 2019; 10:E54. [PMID: 30654561 PMCID: PMC6356210 DOI: 10.3390/genes10010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/13/2018] [Accepted: 01/08/2019] [Indexed: 11/17/2022] Open
Abstract
Islands have been used as model systems for studies of speciation and extinction since Darwin published his observations about finches found on the Galapagos. Amazon parrots inhabiting the Greater Antillean Islands represent a fascinating model of species diversification. Unfortunately, many of these birds are threatened as a result of human activity and some, like the Puerto Rican parrot, are now critically endangered. In this study we used a combination of de novo and reference-assisted assembly methods, integrating it with information obtained from related genomes to perform genome reconstruction of three amazon species. First, we used whole genome sequencing data to generate a new de novo genome assembly for the Puerto Rican parrot (Amazona vittata). We then improved the obtained assembly using transcriptome data from Amazona ventralis and used the resulting sequences as a reference to assemble the genomes Hispaniolan (A. ventralis) and Cuban (Amazona leucocephala) parrots. Finally, we, annotated genes and repetitive elements, estimated genome sizes and current levels of heterozygosity, built models of demographic history and provided interpretation of our findings in the context of parrot evolution in the Caribbean.
Collapse
Affiliation(s)
- Sofiia Kolchanova
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei Kliver
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Aleksei Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Pavel Dobrinin
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Gaik Tamazian
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Kirill Grigorev
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Walter W Wolfsberger
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Biological Sciences, Oakland University, 118 Library Drive, Rochester, MI 48309, USA.
- Department of Biological Sciences, Uzhhorod National University, 88000 Uzhhorod, Ukraine.
| | - Audrey J Majeske
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI 48073, USA.
| | - Jafet Velez-Valentin
- Conservation Program of the Puerto Rican Parrot, U.S. Fish and Wildlife Service, Rio Grande, PR 00745, USA.
| | - Ricardo Valentin de la Rosa
- The Recovery Program of the Puerto Rican Parrot at the Rio Abajo State Forest, Departamento de Recursos Naturales y Ambientales de Puerto Rico, Arecibo, PR 00613, USA.
| | - Joanne R Paul-Murphy
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - David Sanchez-Migallon Guzman
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Michael H Court
- Program in Individualized Medicine (PrIMe), Pharmacogenomics Laboratory, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, 100 Grimes Way, Pullman, WA 99164, USA.
| | | | | | - Taras K Oleksyk
- Department of Biology, University of Puerto Rico at Mayaguez, Mayaguez, PR 00680, USA.
- Department of Biological Sciences, Oakland University, 118 Library Drive, Rochester, MI 48309, USA.
- Department of Biological Sciences, Uzhhorod National University, 88000 Uzhhorod, Ukraine.
| |
Collapse
|
25
|
Martinez AS, Willoughby JR, Christie MR. Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecol Evol 2018; 8:12022-12031. [PMID: 30598796 PMCID: PMC6303716 DOI: 10.1002/ece3.4661] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/14/2023] Open
Abstract
Populations of fishes are increasingly threatened by over-exploitation, pollution, habitat destruction, and climate change. In order to better understand the factors that can explain the amount of genetic diversity in wild populations of fishes, we collected estimates of genetic diversity (mean heterozygosity and mean rarefied number of alleles per locus) along with habitat associations, conservation status, and life-history information for 463 fish species. We ran a series of phylogenetic generalized least squares models to determine which factors influence genetic diversity in fishes after accounting for shared evolutionary history among related taxa. We found that marine fishes had significantly higher genetic diversity than freshwater fishes with marine fishes averaging 11.3 more alleles per locus than their freshwater counterparts. However, contrary to our expectations, genetic diversity was not found to be lower in threatened versus not-threatened fishes. Finally, we found that both age at maturity and fecundity were negatively related to genetic variation in both marine and freshwater fishes. Our results demonstrate that both life-history characteristics and habitat play a role in shaping patterns of genetic diversity in fishes and should be considered when prioritizing species for conservation.
Collapse
Affiliation(s)
| | - Janna R. Willoughby
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndiana
| | - Mark R. Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteIndiana
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteIndiana
| |
Collapse
|
26
|
Leroy G, Carroll EL, Bruford MW, DeWoody JA, Strand A, Waits L, Wang J. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol Appl 2018; 11:1066-1083. [PMID: 30026798 PMCID: PMC6050182 DOI: 10.1111/eva.12564] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Genetic erosion is a major threat to biodiversity because it can reduce fitness and ultimately contribute to the extinction of populations. Here, we explore the use of quantitative metrics to detect and monitor genetic erosion. Monitoring systems should not only characterize the mechanisms and drivers of genetic erosion (inbreeding, genetic drift, demographic instability, population fragmentation, introgressive hybridization, selection) but also its consequences (inbreeding and outbreeding depression, emergence of large-effect detrimental alleles, maladaptation and loss of adaptability). Technological advances in genomics now allow the production of data the can be measured by new metrics with improved precision, increased efficiency and the potential to discriminate between neutral diversity (shaped mainly by population size and gene flow) and functional/adaptive diversity (shaped mainly by selection), allowing the assessment of management-relevant genetic markers. The requirements of such studies in terms of sample size and marker density largely depend on the kind of population monitored, the questions to be answered and the metrics employed. We discuss prospects for the integration of this new information and metrics into conservation monitoring programmes.
Collapse
Affiliation(s)
- Gregoire Leroy
- Food and Agriculture Organization (FAO) of the United Nations, Animal Production and Health DivisionRomeItaly
| | - Emma L. Carroll
- Scottish Oceans Institute and School of BiologyUniversity of St AndrewsSt AndrewsUK
| | - Mike W. Bruford
- Cardiff School of Biosciences and Sustainable Places InstituteCardiff UniversityCardiffUK
| | - J. Andrew DeWoody
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
| | - Allan Strand
- Department of BiologyGrice Marine Laboratory, College of CharlestonCharlestonSCUSA
| | - Lisette Waits
- Department of Fish and Wildlife SciencesUniversity of IdahoMoscowIDUSA
| | - Jinliang Wang
- Institute of ZoologyZoological Society of LondonLondonUK
| |
Collapse
|
27
|
RAD Sequencing and a Hybrid Antarctic Fur Seal Genome Assembly Reveal Rapidly Decaying Linkage Disequilibrium, Global Population Structure and Evidence for Inbreeding. G3-GENES GENOMES GENETICS 2018; 8:2709-2722. [PMID: 29954843 PMCID: PMC6071602 DOI: 10.1534/g3.118.200171] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent advances in high throughput sequencing have transformed the study of wild organisms by facilitating the generation of high quality genome assemblies and dense genetic marker datasets. These resources have the potential to significantly advance our understanding of diverse phenomena at the level of species, populations and individuals, ranging from patterns of synteny through rates of linkage disequilibrium (LD) decay and population structure to individual inbreeding. Consequently, we used PacBio sequencing to refine an existing Antarctic fur seal (Arctocephalus gazella) genome assembly and genotyped 83 individuals from six populations using restriction site associated DNA (RAD) sequencing. The resulting hybrid genome comprised 6,169 scaffolds with an N50 of 6.21 Mb and provided clear evidence for the conservation of large chromosomal segments between the fur seal and dog (Canis lupus familiaris). Focusing on the most extensively sampled population of South Georgia, we found that LD decayed rapidly, reaching the background level by around 400 kb, consistent with other vertebrates but at odds with the notion that fur seals experienced a strong historical bottleneck. We also found evidence for population structuring, with four main Antarctic island groups being resolved. Finally, appreciable variance in individual inbreeding could be detected, reflecting the strong polygyny and site fidelity of the species. Overall, our study contributes important resources for future genomic studies of fur seals and other pinnipeds while also providing a clear example of how high throughput sequencing can generate diverse biological insights at multiple levels of organization.
Collapse
|
28
|
Judson JLM, Knapp CR, Welch ME. Age-dependent, negative heterozygosity-fitness correlations and local effects in an endangered Caribbean reptile, Iguana delicatissima. Ecol Evol 2018; 8:2088-2096. [PMID: 29468027 PMCID: PMC5817140 DOI: 10.1002/ece3.3826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity-fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.
Collapse
Affiliation(s)
| | - Charles R. Knapp
- San Diego Zoo Institute for Conservation ResearchEscondidoCAUSA
- Present address:
Daniel P. Haerter Center for Conservation and ResearchJohn G. Shedd AquariumChicagoILUSA
| | - Mark E. Welch
- Department of Biological SciencesMississippi State UniversityMississippi StateMSUSA
| |
Collapse
|
29
|
Nietlisbach P, Keller LF, Camenisch G, Guillaume F, Arcese P, Reid JM, Postma E. Pedigree-based inbreeding coefficient explains more variation in fitness than heterozygosity at 160 microsatellites in a wild bird population. Proc Biol Sci 2018; 284:rspb.2016.2763. [PMID: 28250184 DOI: 10.1098/rspb.2016.2763] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/06/2017] [Indexed: 01/14/2023] Open
Abstract
Although the pedigree-based inbreeding coefficient F predicts the expected proportion of an individual's genome that is identical-by-descent (IBD), heterozygosity at genetic markers captures Mendelian sampling variation and thereby provides an estimate of realized IBD. Realized IBD should hence explain more variation in fitness than their pedigree-based expectations, but how many markers are required to achieve this in practice remains poorly understood. We use extensive pedigree and life-history data from an island population of song sparrows (Melospiza melodia) to show that the number of genetic markers and pedigree depth affected the explanatory power of heterozygosity and F, respectively, but that heterozygosity measured at 160 microsatellites did not explain more variation in fitness than F This is in contrast with other studies that found heterozygosity based on far fewer markers to explain more variation in fitness than F Thus, the relative performance of marker- and pedigree-based estimates of IBD depends on the quality of the pedigree, the number, variability and location of the markers employed, and the species-specific recombination landscape, and expectations based on detailed and deep pedigrees remain valuable until we can routinely afford genotyping hundreds of phenotyped wild individuals of genetic non-model species for thousands of genetic markers.
Collapse
Affiliation(s)
- Pirmin Nietlisbach
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Glauco Camenisch
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Arcese
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jane M Reid
- Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
| | - Erik Postma
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
30
|
Heterozygosity–behavior and heterozygosity–fitness correlations in a salamander with limited dispersal. POPUL ECOL 2018. [DOI: 10.1007/s10144-017-0604-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Head ML, Kahn AT, Henshaw JM, Keogh JS, Jennions MD. Sexual selection on male body size, genital length and heterozygosity: Consistency across habitats and social settings. J Anim Ecol 2017; 86:1458-1468. [PMID: 28815592 DOI: 10.1111/1365-2656.12742] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022]
Abstract
Spatial and temporal variation in environmental factors and the social setting can help to maintain genetic variation in sexually selected traits if it affects the strength of directional selection. A key social parameter which affects the intensity of, and sometimes predicts the response to, mating competition is the operational sex ratio (OSR; ratio of receptive males to females). How the OSR affects selection for specific male traits is poorly understood. It is also unclear how sexual selection is affected by interactions between the OSR and environmental factors, such as habitat complexity, that alter key male-female interactions such as mate encounter rates. Here, we experimentally manipulated the OSR and habitat complexity and quantified sexual selection on male mosquitofish (Gambusia holbrooki) by directly measuring male reproductive success (i.e. paternity). We show that despite a more equitable sharing of paternity (i.e. higher levels of multiple paternity) under a male-biased OSR, selection on focal male traits was unaffected by the OSR or habitat complexity. Instead, sexual selection consistently, and significantly, favoured smaller bodied males, males with higher genome wide heterozygosity (based on >3,000 SNP markers) and males with a relatively long gonopodium (intromittent organ). Our results show that sexual selection on male body size, relative genital size and heterozygosity in this system is consistent across environments that vary in ecological parameters that are expected to influence mate encounter rates.
Collapse
Affiliation(s)
- Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Andrew T Kahn
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Jonathan M Henshaw
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - J Scott Keogh
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
32
|
Phillips KP, Jorgensen TH, Jolliffe KG, Richardson DS. Evidence of opposing fitness effects of parental heterozygosity and relatedness in a critically endangered marine turtle? J Evol Biol 2017; 30:1953-1965. [PMID: 28787533 DOI: 10.1111/jeb.13152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023]
Abstract
How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern. Heterozygosity-fitness correlations (HFCs) have been widely used to study this link in wild populations, where key parameters that affect both variability and fitness, such as inbreeding, can be difficult to measure. We used estimates of parental heterozygosity and genetic similarity ('relatedness') derived from 32 microsatellite markers to explore the relationship between genetic variability and fitness in a population of the critically endangered hawksbill turtle, Eretmochelys imbricata. We found no effect of maternal MLH (multilocus heterozygosity) on clutch size or egg success rate, and no single-locus effects. However, we found effects of paternal MLH and parental relatedness on egg success rate that interacted in a way that may result in both positive and negative effects of genetic variability. Multicollinearity in these tests was within safe limits, and null simulations suggested that the effect was not an artefact of using paternal genotypes reconstructed from large samples of offspring. Our results could imply a tension between inbreeding and outbreeding depression in this system, which is biologically feasible in turtles: female-biased natal philopatry may elevate inbreeding risk and local adaptation, and both processes may be disrupted by male-biased dispersal. Although this conclusion should be treated with caution due to a lack of significant identity disequilibrium, our study shows the importance of considering both positive and negative effects when assessing how variation in genetic variability affects fitness in wild systems.
Collapse
Affiliation(s)
- K P Phillips
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK.,NERC Biomolecular Analysis Facility (NBAF), Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Evolutionary Biology Group, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - T H Jorgensen
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK.,Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - K G Jolliffe
- Victoria, Mahé, Republic of Seychelles.,Drie Kuilen Private Nature Reserve, Breede River District, South Africa
| | - D S Richardson
- School of Biological Sciences, Norwich Research Park, University of East Anglia, Norwich, UK
| |
Collapse
|
33
|
Heterozygosity–fitness correlations in blue tit nestlings (Cyanistis caeruleus) under contrasting rearing conditions. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9911-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Paternity success depends on male genetic characteristics in the terrestrial isopod Armadillidium vulgare. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2317-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Willoughby JR, Ivy JA, Lacy RC, Doyle JM, DeWoody JA. Inbreeding and selection shape genomic diversity in captive populations: Implications for the conservation of endangered species. PLoS One 2017; 12:e0175996. [PMID: 28423000 PMCID: PMC5396937 DOI: 10.1371/journal.pone.0175996] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/04/2017] [Indexed: 12/01/2022] Open
Abstract
Captive breeding programs are often initiated to prevent species extinction until reintroduction into the wild can occur. However, the evolution of captive populations via inbreeding, drift, and selection can impair fitness, compromising reintroduction programs. To better understand the evolutionary response of species bred in captivity, we used nearly 5500 single nucleotide polymorphisms (SNPs) in populations of white-footed mice (Peromyscus leucopus) to measure the impact of breeding regimes on genomic diversity. We bred mice in captivity for 20 generations using two replicates of three protocols: random mating (RAN), selection for docile behaviors (DOC), and minimizing mean kinship (MK). The MK protocol most effectively retained genomic diversity and reduced the effects of selection. Additionally, genomic diversity was significantly related to fitness, as assessed with pedigrees and SNPs supported with genomic sequence data. Because captive-born individuals are often less fit in wild settings compared to wild-born individuals, captive-estimated fitness correlations likely underestimate the effects in wild populations. Therefore, minimizing inbreeding and selection in captive populations is critical to increasing the probability of releasing fit individuals into the wild.
Collapse
Affiliation(s)
- Janna R. Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| | - Jamie A. Ivy
- San Diego Zoo Global Collections Department, San Diego, California, United States of America
| | - Robert C. Lacy
- Chicago Zoological Society, Brookfield, Illinois, United States of America
| | - Jacqueline M. Doyle
- Department of Biological Sciences, Towson University, Towson, Maryland, United States of America
| | - J. Andrew DeWoody
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
36
|
Willoughby JR, Sundaram M, Wijayawardena BK, Lamb MC, Kimble SJA, Ji Y, Fernandez NB, Antonides JD, Marra NJ, Dewoody JA. Biome and migratory behaviour significantly influence vertebrate genetic diversity. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
37
|
Rodríguez-Quilón I, Santos-del-Blanco L, Grivet D, Jaramillo-Correa JP, Majada J, Vendramin GG, Alía R, González-Martínez SC. Local effects drive heterozygosity-fitness correlations in an outcrossing long-lived tree. Proc Biol Sci 2017; 282:20152230. [PMID: 26631567 DOI: 10.1098/rspb.2015.2230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterozygosity-fitness correlations (HFCs) have been used to understand the complex interactions between inbreeding, genetic diversity and evolution. Although frequently reported for decades, evidence for HFCs was often based on underpowered studies or inappropriate methods, and hence their underlying mechanisms are still under debate. Here, we used 6100 genome-wide single nucleotide polymorphisms (SNPs) to test for general and local effect HFCs in maritime pine (Pinus pinaster Ait.), an iconic Mediterranean forest tree. Survival was used as a fitness proxy, and HFCs were assessed at a four-site common garden under contrasting environmental conditions (total of 16 288 trees). We found no significant correlations between genome-wide heterozygosity and fitness at any location, despite variation in inbreeding explaining a substantial proportion of the total variance for survival. However, four SNPs (including two non-synonymous mutations) were involved in significant associations with survival, in particular in the common gardens with higher environmental stress, as shown by a novel heterozygosity-fitness association test at the species-wide level. Fitness effects of SNPs involved in significant HFCs were stable across maritime pine gene pools naturally growing in distinct environments. These results led us to dismiss the general effect hypothesis and suggested a significant role of heterozygosity in specific candidate genes for increasing fitness in maritime pine. Our study highlights the importance of considering the species evolutionary and demographic history and different spatial scales and testing environments when assessing and interpreting HFCs.
Collapse
Affiliation(s)
- Isabel Rodríguez-Quilón
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain
| | - Luis Santos-del-Blanco
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Delphine Grivet
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain
| | - Juan Pablo Jaramillo-Correa
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain Department of Evolutionary Ecology, Institute of Ecology, Universidad Nacional Autónoma de México, AP 70-275, México D.F., Mexico
| | - Juan Majada
- CETEMAS-SERIDA, Sección Forestal, Finca Experimental La Mata, Grado 33820, Spain
| | - Giovanni G Vendramin
- Institute of Biosciences and Bioresources, National Research Council, Sesto Fiorentino (Florence) 50019, Italy
| | - Ricardo Alía
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain Sustainable Forest Management Research Institute, University of Valladolid-INIA, Palencia 34071, Spain
| | - Santiago C González-Martínez
- Department of Forest Ecology and Genetics, Forest Research Centre, INIA, Carretera A Coruña km 7.5, Madrid 28040, Spain INRA, UMR 1202 Biodiversité Gènes Ecosystèmes (Biogeco), Cestas 33610, France Université de Bordeaux, UMR 1202 Biodiversité Gènes Ecosystèmes (Biogeco), Talence 33170, France
| |
Collapse
|
38
|
Vega‐Trejo R, Head ML, Keogh JS, Jennions MD. Experimental evidence for sexual selection against inbred males. J Anim Ecol 2017; 86:394-404. [DOI: 10.1111/1365-2656.12615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/24/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - Megan L. Head
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - J. Scott Keogh
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
| | - Michael D. Jennions
- Division of Ecology and Evolution, Research School of Biology The Australian National University, Acton Canberra ACT 2601 Australia
- Wissenschaftskolleg zu Berlin Wallotstraße 19 14193 Berlin Germany
| |
Collapse
|
39
|
Pérez‐González J, Costa V, Santos P, Carranza J, Zsolnai A, Fernández‐Llario P, Monteiro NM, Anton I, Beja‐Pereira A. Heterozygosity decrease in wild boar mating system ‐ a case of outbreeding avoidance? J Zool (1987) 2016. [DOI: 10.1111/jzo.12426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Pérez‐González
- Ungulate Research Unit Cátedra de Recursos Cinegéticos y Piscícolas (CRCP) University of Córdoba Córdoba Spain
| | - V. Costa
- Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto (CIBIO‐UP) Vairão Portugal
| | - P. Santos
- Departamento de Paisagem, Ambiente e Ordenamento Escola de Ciências e Tecnologia Instituto de Ciências Agrárias e Ambientais Mediterrânicas Instituto de Investigaçao e Formaçao Avançada Universidade de Évora Évora Portugal
| | - J. Carranza
- Ungulate Research Unit Cátedra de Recursos Cinegéticos y Piscícolas (CRCP) University of Córdoba Córdoba Spain
| | - A. Zsolnai
- NARIC ‐ Research Institute for Animal Breeding Nutrition and Food Science Herceghalom Hungary
- University of Kaposvár Kaposvár Hungary
| | - P. Fernández‐Llario
- Biology and Ethology Unit University of Extremadura Cáceres Spain
- Innovación en Gestión y Conservación de Ungulados S.L. Cáceres Spain
| | - N. M. Monteiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto (CIBIO‐UP) Vairão Portugal
- Centro de Investigação em Biomedicina (CEBIMED) Faculty of Health Sciences University Fernando Pessoa Porto Portugal
| | - I. Anton
- NARIC ‐ Research Institute for Animal Breeding Nutrition and Food Science Herceghalom Hungary
| | - A. Beja‐Pereira
- Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto (CIBIO‐UP) Vairão Portugal
| |
Collapse
|
40
|
Ferrer ES, García-Navas V, Sanz JJ, Ortego J. The strength of the association between heterozygosity and probability of interannual local recruitment increases with environmental harshness in blue tits. Ecol Evol 2016; 6:8857-8869. [PMID: 28035274 PMCID: PMC5192745 DOI: 10.1002/ece3.2591] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 02/02/2023] Open
Abstract
The extent of inbreeding depression and the magnitude of heterozygosity–fitness correlations (HFC) have been suggested to depend on the environmental context in which they are assayed, but little evidence is available for wild populations. We combine extensive molecular and capture–mark–recapture data from a blue tit (Cyanistes caeruleus) population to (1) analyze the relationship between heterozygosity and probability of interannual adult local recruitment and (2) test whether environmental stress imposed by physiologically suboptimal temperatures and rainfall influence the magnitude of HFC. To address these questions, we used two different arrays of microsatellite markers: 14 loci classified as neutral and 12 loci classified as putatively functional. We found significant relationships between heterozygosity and probability of interannual local recruitment that were most likely explained by variation in genomewide heterozygosity. The strength of the association between heterozygosity and probability of interannual local recruitment was positively associated with annual accumulated precipitation. Annual mean heterozygosity increased over time, which may have resulted from an overall positive selection on heterozygosity over the course of the study period. Finally, neutral and putatively functional loci showed similar trends, but the former had stronger effect sizes and seemed to better reflect genomewide heterozygosity. Overall, our results show that HFC can be context dependent, emphasizing the need to consider the role of environmental heterogeneity as a key factor when exploring the consequences of individual genetic diversity on fitness in natural populations.
Collapse
Affiliation(s)
- Esperanza S Ferrer
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real Spain; Departamento de Ciencias Ambientales Facultad de Ciencias Ambientales y Bioquímica Universidad de Castilla-La Mancha Toledo Spain
| | - Vicente García-Navas
- Grupo de Investigación de la Biodiversidad Genética y Cultural Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM) Ciudad Real Spain; Departamento de Ciencias Ambientales Facultad de Ciencias Ambientales y Bioquímica Universidad de Castilla-La Mancha Toledo Spain; Institute of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland; Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| | - Juan José Sanz
- Departamento de Ecología Evolutiva Museo Nacional de Ciencias Naturales (CSIC) Madrid Spain
| | - Joaquín Ortego
- Department of Integrative Ecology Estación Biológica de Doñana (EBD-CSIC) Seville Spain
| |
Collapse
|
41
|
Dunn SJ, Byers JA. How Pronghorn Females Avoid Inbreeding Depression. Ethology 2016. [DOI: 10.1111/eth.12567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Stacey J. Dunn
- Department of Biological Sciences University of Idaho Moscow ID USA
| | - John A. Byers
- Department of Biological Sciences University of Idaho Moscow ID USA
| |
Collapse
|
42
|
Michaelides SN, While GM, Zajac N, Aubret F, Calsbeek B, Sacchi R, Zuffi MAL, Uller T. Loss of genetic diversity and increased embryonic mortality in non-native lizard populations. Mol Ecol 2016; 25:4113-25. [DOI: 10.1111/mec.13755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Sozos N. Michaelides
- Edward Grey Institute; Department of Zoology; University of Oxford; South Parks Rd OX1 3PS Oxford UK
| | - Geoffrey M. While
- Edward Grey Institute; Department of Zoology; University of Oxford; South Parks Rd OX1 3PS Oxford UK
- School of Biological Sciences; University of Tasmania; PO Box 55 Hobart Tas. 7001 Australia
| | - Natalia Zajac
- Edward Grey Institute; Department of Zoology; University of Oxford; South Parks Rd OX1 3PS Oxford UK
| | - Fabien Aubret
- Station d'Ecologie Expérimentale du CNRS à Moulis; 09200 Moulis France
| | - Brittny Calsbeek
- Department of Biological Sciences; Dartmouth College; Hanover NH 03755 USA
| | - Roberto Sacchi
- Dipartimento Sci Terra & Ambiente, Lab Ecoetol; Università di Pavia; I-27100 Pavia Italy
| | - Marco A. L. Zuffi
- Museo di Storia Naturale; Università di Pisa; Via Roma, 79 56011 Calci Pisa Italy
| | - Tobias Uller
- Edward Grey Institute; Department of Zoology; University of Oxford; South Parks Rd OX1 3PS Oxford UK
- Department of Biology; Lund University; Sölvegatan 37 SE 223 62 Lund Sweden
| |
Collapse
|
43
|
Stoffel MA, Esser M, Kardos M, Humble E, Nichols H, David P, Hoffman JI. inbreedR: an
R
package for the analysis of inbreeding based on genetic markers. Methods Ecol Evol 2016. [DOI: 10.1111/2041-210x.12588] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin A. Stoffel
- Department of Animal Behaviour Bielefeld University Box 100131 Bielefeld Germany
- Faculty of Science School of Natural Sciences and Psychology Liverpool John Moores University Liverpool L3 3AF UK
| | - Mareike Esser
- Faculty of Technology Bielefeld University Box 100131 Bielefeld Germany
| | - Marty Kardos
- Department of Evolutionary Biology Evolutionary Biology Centre (EBC) Uppsala University Norbyvagen 18D Uppsala 75236 Sweden
| | - Emily Humble
- Department of Animal Behaviour Bielefeld University Box 100131 Bielefeld Germany
- British Antarctic Survey High Cross, Madingley Road Cambridge CB3 OET UK
| | - Hazel Nichols
- Faculty of Science School of Natural Sciences and Psychology Liverpool John Moores University Liverpool L3 3AF UK
| | - Patrice David
- Centre d'Ecologie Fonctionnelle et Evolutive Centre National de la Recherche Scientifique 34293 Montpellier France
| | - Joseph I. Hoffman
- Department of Animal Behaviour Bielefeld University Box 100131 Bielefeld Germany
| |
Collapse
|
44
|
Ferrandiz-Rovira M, Allainé D, Callait-Cardinal MP, Cohas A. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts? Ecol Evol 2016; 6:4243-57. [PMID: 27386072 PMCID: PMC4930977 DOI: 10.1002/ece3.2189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/11/2016] [Accepted: 04/26/2016] [Indexed: 01/16/2023] Open
Abstract
Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra‐pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.
Collapse
Affiliation(s)
- Mariona Ferrandiz-Rovira
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR 5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France; Université of Lyon VetAgro Sup Campus Vet F-69280 Marcy-L'Étoile France; CREAF Cerdanyola del Vallès 08193 Catalonia Spain; Univ Autònoma de Barcelona Cerdanyola del Vallès 08193 Catalonia Spain
| | - Dominique Allainé
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France
| | - Marie-Pierre Callait-Cardinal
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR 5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France; Université of Lyon VetAgro Sup Campus Vet F-69280 Marcy-L'Étoile France
| | - Aurélie Cohas
- Laboratoire Biométrie et Biologie Evolutive Université de Lyon CNRS UMR5558 Université Lyon 1 F-69622 Villeurbanne F-69000 Lyon France
| |
Collapse
|
45
|
Frasier TR. A note on the use of multiple linear regression in molecular ecology. Mol Ecol Resour 2015; 16:382-7. [PMID: 26650184 DOI: 10.1111/1755-0998.12499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 11/29/2022]
Abstract
Multiple linear regression analyses (also often referred to as generalized linear models--GLMs, or generalized linear mixed models--GLMMs) are widely used in the analysis of data in molecular ecology, often to assess the relative effects of genetic characteristics on individual fitness or traits, or how environmental characteristics influence patterns of genetic differentiation. However, the coefficients resulting from multiple regression analyses are sometimes misinterpreted, which can lead to incorrect interpretations and conclusions within individual studies, and can propagate to wider-spread errors in the general understanding of a topic. The primary issue revolves around the interpretation of coefficients for independent variables when interaction terms are also included in the analyses. In this scenario, the coefficients associated with each independent variable are often interpreted as the independent effect of each predictor variable on the predicted variable. However, this interpretation is incorrect. The correct interpretation is that these coefficients represent the effect of each predictor variable on the predicted variable when all other predictor variables are zero. This difference may sound subtle, but the ramifications cannot be overstated. Here, my goals are to raise awareness of this issue, to demonstrate and emphasize the problems that can result and to provide alternative approaches for obtaining the desired information.
Collapse
Affiliation(s)
- Timothy R Frasier
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, Canada, B3H 3C3
| |
Collapse
|
46
|
Vilas A, Pérez-Figueroa A, Quesada H, Caballero A. Allelic diversity for neutral markers retains a higher adaptive potential for quantitative traits than expected heterozygosity. Mol Ecol 2015. [PMID: 26222582 DOI: 10.1111/mec.13334] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The adaptive potential of a population depends on the amount of additive genetic variance for quantitative traits of evolutionary importance. This variance is a direct function of the expected frequency of heterozygotes for the loci which affect the trait (QTL). It has been argued, but not demonstrated experimentally, that long-term response to selection is more dependent on QTL allelic diversity than on QTL heterozygosity. Conservation programmes, aimed at preserving this variation, usually rely on neutral markers rather than on quantitative traits for making decisions on management. Here, we address, both through simulation analyses and experimental studies with Drosophila melanogaster, the question of whether allelic diversity for neutral markers is a better indicator of a high adaptive potential than expected heterozygosity. In both experimental and simulation studies, we established synthetic populations for which either heterozygosity or allelic diversity was maximized using information from QTL (simulations) or unlinked neutral markers (simulations and experiment). The synthetic populations were selected for the quantitative trait to evaluate the evolutionary potential provided by the two optimization methods. Our results show that maximizing the number of alleles of a low number of markers implies higher responses to selection than maximizing their heterozygosity.
Collapse
Affiliation(s)
- Ana Vilas
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| | - Humberto Quesada
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| | - Armando Caballero
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, 36310, Vigo, Spain
| |
Collapse
|
47
|
Genetic variance components and heritability of multiallelic heterozygosity under inbreeding. Heredity (Edinb) 2015; 116:1-11. [PMID: 26174022 DOI: 10.1038/hdy.2015.59] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 11/08/2022] Open
Abstract
The maintenance of genetic diversity in fitness-related traits remains a central topic in evolutionary biology, for example, in the context of sexual selection for genetic benefits. Among the solutions that have been proposed is directional sexual selection for heterozygosity. The importance of such selection is highly debated. However, a critical evaluation requires knowledge of the heritability of heterozygosity, a quantity that is rarely estimated in this context, and often assumed to be zero. This is at least partly the result of the lack of a general framework that allows for its quantitative prediction in small and inbred populations, which are the focus of most empirical studies. Moreover, while current predictors are applicable only to biallelic loci, fitness-relevant loci are often multiallelic, as are the neutral markers typically used to estimate genome-wide heterozygosity. To this end, we first review previous, but little-known, work showing that under most circumstances, heterozygosity at biallelic loci and in the absence of inbreeding is heritable. We then derive the heritability of heterozygosity and the underlying variances for multiple alleles and any inbreeding level. We also show that heterozygosity at multiallelic loci can be highly heritable when allele frequencies are unequal, and that this heritability is reduced by inbreeding. Our quantitative genetic framework can provide new insights into the evolutionary dynamics of heterozygosity in inbred and outbred populations.
Collapse
|
48
|
Brambilla A, Biebach I, Bassano B, Bogliani G, von Hardenberg A. Direct and indirect causal effects of heterozygosity on fitness-related traits in Alpine ibex. Proc Biol Sci 2015; 282:20141873. [PMID: 25392468 DOI: 10.1098/rspb.2014.1873] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heterozygosity-fitness correlations (HFCs) are a useful tool to investigate the effects of inbreeding in wild populations, but are not informative in distinguishing between direct and indirect effects of heterozygosity on fitness-related traits. We tested HFCs in male Alpine ibex (Capra ibex) in a free-ranging population (which suffered a severe bottleneck at the end of the eighteenth century) and used confirmatory path analysis to disentangle the causal relationships between heterozygosity and fitness-related traits. We tested HFCs in 149 male individuals born between 1985 and 2009. We found that standardized multi-locus heterozygosity (MLH), calculated from 37 microsatellite loci, was related to body mass and horn growth, which are known to be important fitness-related traits, and to faecal egg counts (FECs) of nematode eggs, a proxy of parasite resistance. Then, using confirmatory path analysis, we were able to show that the effect of MLH on horn growth was not direct but mediated by body mass and FEC. HFCs do not necessarily imply direct genetic effects on fitness-related traits, which instead can be mediated by other traits in complex and unexpected ways.
Collapse
Affiliation(s)
- Alice Brambilla
- DSTA-Department of Earth and Environmental Science, University of Pavia, Via A. Ferrata 9, 27100 Pavia (PV), Italy
| | - Iris Biebach
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Bruno Bassano
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, 11010 Valsavarenche, AO, Italy
| | - Giuseppe Bogliani
- DSTA-Department of Earth and Environmental Science, University of Pavia, Via A. Ferrata 9, 27100 Pavia (PV), Italy
| | - Achaz von Hardenberg
- Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, 11010 Valsavarenche, AO, Italy
| |
Collapse
|
49
|
Velando A, Barros Á, Moran P. Heterozygosity-fitness correlations in a declining seabird population. Mol Ecol 2015; 24:1007-18. [PMID: 25626726 DOI: 10.1111/mec.13092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/12/2023]
Abstract
Loss of genetic diversity is thought to lead to increased risk of extinction in endangered populations due to decreasing fitness of homozygous individuals. Here, we evaluated the presence of inbreeding depression in a long-lived seabird, the European shag (Phalacrocorax aristotelis), after a severe decline in population size by nearly 70%. During three reproductive seasons, 85 breeders were captured and genotyped at seven microsatellite loci. Nest sites were monitored during the breeding season to estimate reproductive success as the number of chicks surviving to full-size-grown per nest. Captured birds were tagged with a ring with an individual code, and resighting data were collected during 7-year period. We found a strong effect of multilocus heterozygosity on female reproductive performance, and a significant, although weaker, effect on breeder survival. However, our matrix population model suggests that this relatively small effect of genetic diversity on breeder survival may have a profound effect on fitness. This highlights the importance of integrating life history consequences in HFC studies. Importantly, heterozygosity was correlated across loci, suggesting that genomewide effects, rather than single loci, are responsible for the observed HFCs. Overall, the HFCs are a worrying symptom of genetic erosion in this declining population. Many long-lived species are prone to extinction, and future studies should evaluate the magnitude of fitness impact of genetic deterioration on key population parameters, such as survival of breeders.
Collapse
Affiliation(s)
- Alberto Velando
- Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Campus As Lagoas, 36310, Vigo, Spain
| | | | | |
Collapse
|
50
|
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W. Quantifying realized inbreeding in wild and captive animal populations. Heredity (Edinb) 2015; 114:397-403. [PMID: 25585923 DOI: 10.1038/hdy.2014.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 12/19/2022] Open
Abstract
Most molecular measures of inbreeding do not measure inbreeding at the scale that is most relevant for understanding inbreeding depression-namely the proportion of the genome that is identical-by-descent (IBD). The inbreeding coefficient FPed obtained from pedigrees is a valuable estimator of IBD, but pedigrees are not always available, and cannot capture inbreeding loops that reach back in time further than the pedigree. We here propose a molecular approach to quantify the realized proportion of the genome that is IBD (propIBD), and we apply this method to a wild and a captive population of zebra finches (Taeniopygia guttata). In each of 948 wild and 1057 captive individuals we analyzed available single-nucleotide polymorphism (SNP) data (260 SNPs) spread over four different genomic regions in each population. This allowed us to determine whether any of these four regions was completely homozygous within an individual, which indicates IBD with high confidence. In the highly nomadic wild population, we did not find a single case of IBD, implying that inbreeding must be extremely rare (propIBD=0-0.00094, 95% CI). In the captive population, a five-generation pedigree strongly underestimated the average amount of realized inbreeding (FPed=0.013<propIBD=0.064), as expected given that pedigree founders were already related. We suggest that this SNP-based technique is generally useful for quantifying inbreeding at the individual or population level, and we show analytically that it can capture inbreeding loops that reach back up to a few hundred generations.
Collapse
Affiliation(s)
- U Knief
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - G Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - M Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - A Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany
| | - S C Griffith
- 1] Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia [2] School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - B Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - W Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|