1
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
2
|
Eckert RJ, Sturm AB, Carreiro AM, Klein AM, Voss JD. Cryptic diversity of shallow and mesophotic Stephanocoenia intersepta corals across Florida Keys National Marine Sanctuary. Heredity (Edinb) 2024; 133:137-148. [PMID: 38937604 PMCID: PMC11350147 DOI: 10.1038/s41437-024-00698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024] Open
Abstract
Population genetic analyses can provide useful data on species' regional connectivity and diversity which can inform conservation and restoration efforts. In this study, we quantified the genetic connectivity and diversity of Stephanocoenia intersepta corals from shallow (<30 m) to mesophotic (30-45 m) depths across Florida Keys National Marine Sanctuary. We generated single nucleotide polymorphism (SNP) markers to identify genetic structuring of shallow and mesophotic S. intersepta corals. We uncovered four distinct, cryptic genetic lineages with varying levels of depth-specificity. Shallow-specific lineages exhibited lower heterozygosity and higher inbreeding relative to depth-generalist lineages found across both shallow and mesophotic reefs. Estimation of recent genetic migration rates demonstrated that mesophotic sites are more prolific sources than shallow sites, particularly in the Lower Keys and Upper Keys. Additionally, we compared endosymbiotic Symbiodiniaceae among sampled S. intersepta using the ITS2 region and SYMPORTAL analysis framework, identifying symbionts from the genera Symbiodinium, Breviolum, and Cladocopium. Symbiodiniaceae varied significantly across depth and location and exhibited significant, but weak correlation with host lineage and genotype. Together, these data demonstrate that despite population genetic structuring across depth, some mesophotic populations may provide refuge for shallow populations moving forward and remain important contributors to the overall genetic diversity of this species throughout the region. This study highlights the importance of including mesophotic as well as shallow corals in population genetic assessments and informs future science-based management, conservation, and restoration efforts within Florida Keys National Marine Sanctuary.
Collapse
Affiliation(s)
- Ryan J Eckert
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA.
| | - Alexis B Sturm
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Ashley M Carreiro
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Allison M Klein
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Joshua D Voss
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| |
Collapse
|
3
|
Ip YCA, Chang JJM, Tun KPP, Meier R, Huang D. Multispecies environmental DNA metabarcoding sheds light on annual coral spawning events. Mol Ecol 2023; 32:6474-6488. [PMID: 35852023 DOI: 10.1111/mec.16621] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/28/2022]
Abstract
Synchronous multispecific coral spawning generally occurs annually and forms an integral part of the coral life cycle. Apart from spawning times and species participation, however, much else remains unknown. Here, we applied environmental DNA (eDNA) metabarcoding to study two tropical reef sites of contrasting coral cover before, during and after coral spawning. Using coral-ITS2 and vertebrate-12S markers, we evaluated eDNA as an alternative monitoring tool by assessing its capabilities in detecting spawning species and tracking relative abundances of coral and fish eDNA. Over 3 years, elevated eDNA coral signals during the event (proportional read increase of up to five-fold) were observed, detecting a total of 38 coral and 133 fish species with all but one of the coral species visually observed to be spawning. This is also the first demonstration that eDNA metabarcoding can be used to infer the diurnal partitioning of night- and day-time spawning, spawning in coral species overlooked by visual surveys, and the associated changes in fish trophic structures as an indicator of spawning events. Our study paves the way for applied quantitative eDNA metabarcoding approaches to better study ephemeral and important biological events.
Collapse
Affiliation(s)
- Yin Cheong Aden Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jia Jin Marc Chang
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Rudolf Meier
- Department of Biological Sciences, National University of Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore
- Tropical Marine Science Institute, National University of Singapore, Singapore
- Centre for Nature-based Climate Solutions, National University of Singapore, Singapore
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| |
Collapse
|
4
|
Olsen KC, Levitan DR. Interpopulation variation in inbreeding is primarily driven by tolerance of mating with relatives in a spermcasting invertebrate. J Evol Biol 2023; 36:95-108. [PMID: 36420993 PMCID: PMC10098478 DOI: 10.1111/jeb.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
Abstract
The degree to which individuals inbreed is a fundamental aspect of population biology shaped by both passive and active processes. Yet, the relative influences of random and non-random mating on the overall magnitude of inbreeding are not well characterized for many taxa. We quantified variation in inbreeding among qualitatively accessible and isolated populations of a sessile marine invertebrate (the colonial ascidian Lissoclinum verrilli) in which hermaphroditic colonies cast sperm into the water column for subsequent uptake and internal fertilization. We compared estimates of inbreeding to simulations predicting random mating within sites to evaluate if levels of inbreeding were (1) less than expected because of active attempts to limit inbreeding, (2) as predicted by genetic subdivision and passive inbreeding tolerance, or (3) greater than simulations due to active attempts to promote inbreeding via self-fertilization or a preference for related mates. We found evidence of restricted gene flow and significant differences in the genetic diversity of L. verrilli colonies among sites, indicating that on average colonies were weakly related in accessible locations, but their levels of relatedness matched that of first cousins or half-siblings on isolated substrates. Irrespective of population size, progeny arrays revealed variation in the magnitude of inbreeding across sites that tracked with the mean relatedness of conspecifics. Biparental reproduction was confirmed in most offspring (86%) and estimates of total inbreeding largely overlapped with simulations of random mating, suggesting that interpopulation variation in mother-offspring resemblance was primarily due to genetic subdivision and passive tolerance of related mates. Our results highlight the influence of demographic isolation on the genetic composition of populations, and support theory predicting that tolerance of biparental inbreeding, even when mates are closely related, may be favoured under a broad set of ecological and evolutionary conditions.
Collapse
Affiliation(s)
- Kevin C Olsen
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Don R Levitan
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
5
|
Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis. Sci Rep 2022; 12:5026. [PMID: 35322111 PMCID: PMC8943061 DOI: 10.1038/s41598-022-08995-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/02/2022] [Indexed: 11/23/2022] Open
Abstract
All coral species in the genus Acropora are broadcast-spawning hermaphrodites. Fertilization in the ocean requires sufficient numbers of gametes from conspecifics and the contact time for fertilization is thought to be limited by the rapid diffusion of sperm. Many studies have reported a positive correlation between sperm concentration and fertilization success, but it is not clear how gametes diffuse in seawater to produce mixtures of gametes from many colonies, leading to fertilization that improves genetic diversity. To elucidate this, we analyzed the changes in sperm concentration of A.tenuis in situ after spawning and genotyped sperm and fertilized eggs from seawater using seven microsatellite (MS) markers. Results showed that most of the eggs were fertilized at below 106 sperm/mL in situ. MS genotyping showed that the alleles of released sperm were diverse and those alleles also appeared in the fertilized eggs. The MS fragment peak height in released sperm, which presumably reflects the allele frequency of the sperm, was positively correlated with the allele frequencies of the fertilized eggs. Collectively, synchronous spawning populations composed of highly fecund and genetically diverse colonies potentially increases genetic diversity and the number of descendants.
Collapse
|
6
|
Miller MW, Latijnhouwers KRW, Bickel A, Mendoza‐Quiroz S, Schick M, Burton K, Banaszak AT. Settlement yields in large‐scale in situ culture of Caribbean coral larvae for restoration. Restor Ecol 2022. [DOI: 10.1111/rec.13512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Kelly R. W. Latijnhouwers
- SECORE International, 4673 Northwest Pkwy. Hilliard OH 43026 U.S.A
- CARMABI Foundation. P.O. Box 2090 Willemstad Curaçao
| | - Aric Bickel
- SECORE International, 4673 Northwest Pkwy. Hilliard OH 43026 U.S.A
| | - Sandra Mendoza‐Quiroz
- SECORE International, 4673 Northwest Pkwy. Hilliard OH 43026 U.S.A
- Unidad Académica de Sistemas Arrecifales Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, Quintana Roo, C.P. 77580, Mexico
| | - Mark Schick
- John G. Shedd Aquarium, 1200 S. Lake Shore Drive Chicago, IL 60605, U.S.A
| | - Keoki Burton
- John G. Shedd Aquarium, 1200 S. Lake Shore Drive Chicago, IL 60605, U.S.A
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales Universidad Nacional Autónoma de México, Prol. Av. Niños Héroes S/N, Puerto Morelos, Quintana Roo, C.P. 77580, Mexico
| |
Collapse
|
7
|
Prata KE, Riginos C, Gutenkunst RN, Latijnhouwers KRW, Sánchez JA, Englebert N, Hay KB, Bongaerts P. Deep connections: divergence histories with gene flow in mesophotic
Agaricia
corals. Mol Ecol 2022; 31:2511-2527. [PMID: 35152496 PMCID: PMC9303685 DOI: 10.1111/mec.16391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/01/2022]
Abstract
Largely understudied, mesophotic coral ecosystems lie below shallow reefs (at >30 m depth) and comprise ecologically distinct communities. Brooding reproductive modes appear to predominate among mesophotic‐specialist corals and may limit genetic connectivity among populations. Using reduced representation genomic sequencing, we assessed spatial population genetic structure at 50 m depth in an ecologically important mesophotic‐specialist species Agaricia grahamae, among locations in the Southern Caribbean. We also tested for hybridisation with the closely related (but depth‐generalist) species Agaricia lamarcki, within their sympatric depth zone (50 m). In contrast to our expectations, no spatial genetic structure was detected between the reefs of Curaçao and Bonaire (~40 km apart) within A. grahamae. However, cryptic taxa were discovered within both taxonomic species, with those in A. lamarcki (incompletely) partitioned by depth and those in A. grahamae occurring sympatrically (at the same depth). Hybrid analyses and demographic modelling identified contemporary and historical gene flow among cryptic taxa, both within and between A. grahamae and A. lamarcki. These results (1) indicate that spatial connectivity and subsequent replenishment may be possible between islands of moderate geographic distances for A. grahamae, an ecologically important mesophotic species, (2) that cryptic taxa occur in the mesophotic zone and environmental selection along shallow to mesophotic depth gradients may drive divergence in depth‐generalists such as A. lamarcki, and (3) highlight that gene flow links taxa within this relativity diverse Caribbean genus.
Collapse
Affiliation(s)
- Katharine E. Prata
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
| | - Cynthia Riginos
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Ryan N. Gutenkunst
- Department of Molecular and Cellular Biology University of Arizona Tuscon AZ USA
| | | | - Juan A. Sánchez
- Laboratorio de Biología Molecular Marina (BIOMMAR) Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Norbert Englebert
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Kyra B. Hay
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
| | - Pim Bongaerts
- School of Biological Sciences The University of Queensland St Lucia QLD Australia
- California Academy of Sciences San Francisco CA USA
- Caribbean Research and Management of Biodiversity Foundation Willemstad, Curaçao
| |
Collapse
|
8
|
de Palmas S, Soto D, Ho MJ, Denis V, Chen CA. Strong horizontal and vertical connectivity in the coral Pocillopora verrucosa from Ludao, Taiwan, a small oceanic island. PLoS One 2021; 16:e0258181. [PMID: 34634065 PMCID: PMC8504772 DOI: 10.1371/journal.pone.0258181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/22/2021] [Indexed: 12/01/2022] Open
Abstract
Mesophotic habitats could be sheltered from natural and anthropogenic disturbances and act as reproductive refuges, providing propagules to replenish shallower populations. Molecular markers can be used as proxies evaluating the connectivity and inferring population structure and larval dispersal. This study characterizes population structure as well as horizontal and vertical genetic connectivity of the broadcasting coral Pocillopora verrucosa from Ludao, a small oceanic island off the eastern coast of Taiwan. We genotyped 75 P. verrucosa specimens from three sites (Gongguan, Dabaisha, and Guiwan) at three depth ranges (Shallow: 7-15 m, Mid-depth: 23-30 m, and Deep: 38-45 m), spanning shallow to upper mesophotic coral reefs, with eight microsatellite markers. F-statistics showed a moderate differentiation (FST = 0.106, p<0.05) between two adjacent locations (Dabaisha 23-30 and Dabaisha 38-45 m), but no differentiation elsewhere, suggesting high levels of connectivity among sites and depths. STRUCTURE analysis showed no genetic clustering among sites or depths, indicating that all Pocillopora individuals could be drawn from a single panmictic population. Simulations of recent migration assigned 30 individuals (40%) to a different location from where they were collected. Among them, 1/3 were assigned to deeper locations, 1/3 to shallower populations and 1/3 were assigned to the right depth but a different site. These results suggest high levels of vertical and horizontal connectivity, which could enhance the recovery of P. verrucosa following disturbances around Ludao, a feature that agrees with demographic studies portraying this species as an opportunistic scleractinian.
Collapse
Affiliation(s)
- Stéphane de Palmas
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Derek Soto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
| | - Ming-Jay Ho
- Green Island Marine Research Station, Marine Science Thematic Centre, Biodiversity Research Center, Academia Sinica, Green Island, Taitung, Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei, Taiwan
- Department of Life Sciences, Tunghai University, Taichung, Taiwan
| |
Collapse
|
9
|
Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc Natl Acad Sci U S A 2021; 118:2110559118. [PMID: 34493583 PMCID: PMC8463791 DOI: 10.1073/pnas.2110559118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/06/2021] [Indexed: 12/30/2022] Open
Abstract
Global change threatens the genetic diversity of economically important and foundational ecosystem-building species such as corals. We tested whether cryopreserved coral sperm could be used to transfer genetic diversity among genetically isolated populations of the critically endangered Caribbean elkhorn coral, Acropora palmata. Here we report successful assisted gene flow (AGF) in corals using cryopreserved sperm, yielding the largest living wildlife population ever created from cryopreserved cells. Furthermore, we produced direct evidence that genetically distinct populations of Caribbean coral can interbreed. Thus, we demonstrated that sperm cryopreservation can enable efficient, large-scale AGF in corals. This form of assisted genetic migration can enhance genetic diversity and help critically endangered species adapt to local environments in the face of rapid global change. Assisted gene flow (AGF) is a conservation intervention to accelerate species adaptation to climate change by importing genetic diversity into at-risk populations. Corals exemplify both the need for AGF and its technical challenges; corals have declined in abundance, suffered pervasive reproductive failures, and struggled to adapt to climate change, yet mature corals cannot be easily moved for breeding, and coral gametes lose viability within hours. Here, we report the successful demonstration of AGF in corals using cryopreserved sperm that was frozen for 2 to 10 y. We fertilized Acropora palmata eggs from the western Caribbean (Curaçao) with cryopreserved sperm from genetically distinct populations in the eastern and central Caribbean (Florida and Puerto Rico, respectively). We then confirmed interpopulation parentage in the Curaçao–Florida offspring using 19,696 single-nucleotide polymorphism markers. Thus, we provide evidence of reproductive compatibility of a Caribbean coral across a recognized barrier to gene flow. The 6-mo survival of AGF offspring was 42%, the highest ever achieved in this species, yielding the largest wildlife population ever raised from cryopreserved material. By breeding a critically endangered coral across its range without moving adults, we show that AGF using cryopreservation is a viable conservation tool to increase genetic diversity in threatened marine populations.
Collapse
|
10
|
Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc Natl Acad Sci U S A 2021; 118:2101985118. [PMID: 34373318 DOI: 10.1073/pnas.2101985118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synchronized mass coral spawning typically occurs several days after a full moon once a year. It is expected that spawning day is determined by corals sensing environmental change regulated by the lunar cycle (i.e., tide or moonlight); however, the exact regulatory mechanism remains unknown. Here, we demonstrate how moonlight influences the spawning process of coral, Dipsastraea speciosa When corals in the field were shaded 1 and 3 d before the full moon or 1 d after the full moon, spawning always occurred 5 d after shading commenced. These results suggest moonlight suppresses spawning: a hypothesis supported by laboratory experiments in which we monitored the effects of experimental moonlight (night-light) on spawning day. Different night-light treatments in the laboratory showed that the presence of a dark period between day-light and night-light conditions eliminates the suppressive effect of night-light on spawning. In nature, moonrise gets progressively later during the course of the lunar cycle, shifting to after sunset following the day of the full moon. Our results indicate that this period of darkness between sunset and moonrise triggers synchronized mass spawning of D. speciosa in nature.
Collapse
|
11
|
Rippe JP, Dixon G, Fuller ZL, Liao Y, Matz M. Environmental specialization and cryptic genetic divergence in two massive coral species from the Florida Keys Reef Tract. Mol Ecol 2021; 30:3468-3484. [PMID: 33894013 DOI: 10.1111/mec.15931] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 01/02/2023]
Abstract
Broadcast-spawning coral species have wide geographical ranges spanning strong environmental gradients, but it is unclear how much spatially varying selection these gradients actually impose. Strong divergent selection might present a considerable barrier for demographic exchange between disparate reef habitats. We investigated whether the cross-shelf gradient is associated with spatially varying selection in two common coral species, Montastraea cavernosa and Siderastrea siderea, in the Florida Keys. To this end, we generated a de novo genome assembly for M. cavernosa and used 2bRAD to genotype 20 juveniles and 20 adults of both species from each of the three reef zones to identify signatures of selection occurring within a single generation. Unexpectedly, each species was found to be composed of four genetically distinct lineages, with gene flow between them still ongoing but highly reduced in 13.0%-54.7% of the genome. Each species includes two sympatric lineages that are only found in the deep (20 m) habitat, while the other lineages are found almost exclusively on the shallower reefs (3-10 m). The two "shallow" lineages of M. cavernosa are also specialized for either nearshore or offshore: comparison between adult and juvenile cohorts indicates that cross-shelf migrants are more than twice as likely to die before reaching adulthood than local recruits. S. siderea and M. cavernosa are among the most ecologically successful species on the Florida Keys Reef Tract, and this work offers important insight into the genomic background of divergent selection and environmental specialization that may in part explain their resilience and broad environmental range.
Collapse
Affiliation(s)
- John P Rippe
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Zachary L Fuller
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yi Liao
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, USA
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
12
|
Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr Biol 2021; 31:2286-2298.e8. [PMID: 33811819 DOI: 10.1016/j.cub.2021.03.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
Collapse
|
13
|
Shlesinger T, van Woesik R. Different population trajectories of two reef-building corals with similar life-history traits. J Anim Ecol 2021; 90:1379-1389. [PMID: 33666226 PMCID: PMC8252767 DOI: 10.1111/1365-2656.13463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023]
Abstract
Increases in the frequency and intensity of acute and chronic disturbances are causing declines of coral reefs world‐wide. Although quantifying the responses of corals to acute disturbances is well documented, detecting subtle responses of coral populations to chronic disturbances is less common, but can also result in altered population and community structures. We investigated the population dynamics of two key reef‐building Merulinid coral species, Dipsastraea favus and Platygyra lamellina, with similar life‐history traits, in the Gulf of Eilat and Aqaba, Red Sea from 2015 to 2018, to assess potential differences in their population trajectories. Demographic processes, which included rates of survival, growth, reproduction and recruitment were used to parametrize integral projection models and estimate population growth rates and the likely population trajectories of both coral species. The survival and reproduction rates of both D. favus and P. lamellina were positively related to coral colony size, and elasticity analyses showed that large colonies most influenced population dynamics. Although both species have similar life‐history traits and growth morphologies and are generally regarded as ‘stress‐tolerant’, the populations showed contrasting trajectories—D. favus appears to be increasing whereas P. lamellina appears to be decreasing. As many corals have long‐life expectancies, the process of local and regional decline might be subtle and slow. Ecological assessments based on total living coral coverage, morphological groups or functional traits might overlook subtle, species‐specific trends. However, demographic approaches capable of detecting subtle species‐specific population changes can augment ecological studies and provide valuable early warning signs of decline before major coral loss becomes evident.
Collapse
Affiliation(s)
- Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Robert van Woesik
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| |
Collapse
|
14
|
Corush JB, Fitzpatrick BM, Wolfe EL, Keck BP. Breeding behaviour predicts patterns of natural hybridization in North American minnows (Cyprinidae). J Evol Biol 2020; 34:486-500. [PMID: 33300154 DOI: 10.1111/jeb.13751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/01/2022]
Abstract
Premating barriers such as variation in reproductive behaviour can evolve quickly, but because gametic and postzygotic incompatibilities often evolve more slowly, circumstances that bring gametes into contact can breach the boundaries of premating isolation. In aquatic environments, the gametes of organisms with external fertilization are released into a constantly moving environment and may come into contact with heterospecific gametes. In fishes, nest association (spawning in another species' nest) is a behaviour that brings gametes from different species into close spatiotemporal proximity. These interactions might increase chances of hybridization, especially when multiple species associate with a single nest builder. This study addresses these interactions in the largest clade of North American freshwater fishes, the minnows (Cyprinidae). We compiled a list of over 17,000 hybrid specimens in conjunction with species distribution data, breeding behaviours, and an inferred phylogeny to test if breeding behaviour, in addition to evolutionary history, is an important predictor of hybridization. We find that breeding behaviour is a significant predictor of hybridization, even when phylogenetic relatedness and divergence time are accounted for. Specifically, nest associates are more likely to hybridize with other nest associates whereas non-nesting species had relatively low rates of hybridization.
Collapse
Affiliation(s)
- Joel B Corush
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Biology, Wayne State University, Detroit, MI, USA
| | - Benjamin M Fitzpatrick
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth L Wolfe
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Benjamin P Keck
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
15
|
Gómez‐Corrales M, Prada C. Cryptic lineages respond differently to coral bleaching. Mol Ecol 2020; 29:4265-4273. [DOI: 10.1111/mec.15631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/04/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Matías Gómez‐Corrales
- College of the Environment and Life Sciences University of Rhode Island Kingston RI USA
| | - Carlos Prada
- College of the Environment and Life Sciences University of Rhode Island Kingston RI USA
| |
Collapse
|
16
|
Zonana DM, Gee JM, Breed MD, Doak DF. Dynamic shifts in social network structure and composition within a breeding hybrid population. J Anim Ecol 2020; 90:197-211. [PMID: 32772372 DOI: 10.1111/1365-2656.13314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 06/24/2020] [Indexed: 01/21/2023]
Abstract
Mating behaviour and the timing of reproduction can inhibit genetic exchange between closely related species; however, these reproductive barriers are challenging to measure within natural populations. Social network analysis provides promising tools for studying the social context of hybridization, and the exchange of genetic variation, more generally. We test how social networks within a hybrid population of California Callipepla californica and Gambel's quail Callipepla gambelii change over discrete periods of a breeding season. We assess patterns of phenotypic and genotypic assortment, and ask whether altered associations between individuals (association rewiring), or changes to the composition of the population (individual turnover) drive network dynamics. We use genetic data to test whether social associations and relatedness between individuals correlate with patterns of parentage within the hybrid population. To achieve these aims, we combine RFID association data, phenotypic data and genomic measures with social network analyses. We adopt methods from the ecological network literature to quantify shifts in network structure and to partition changes into those due to individual turnover and association rewiring. We integrate genomic data into networks as node-level attributes (ancestry) and edges (relatedness, parentage) to test links between social and parentage networks. We show that rewiring of associations between individuals that persist across network periods, rather than individual turnover, drives the majority of the changes in network structure throughout the breeding season, and that the traits involved in phenotypic/genotypic assortment were highly dynamic over time. Social networks were randomly assorted based on genetic ancestry, suggesting weak behavioural reproductive isolation within this hybrid population. Finally, we show that the strength of associations within the social network, but not levels of genetic relatedness, predicts patterns of parentage. Social networks play an important role in population processes such as the transmission of disease and information, yet there has been less focus on how networks influence the exchange of genetic variation. By integrating analyses of social structure, phenotypic assortment and reproductive outcomes within a hybrid zone, we demonstrate the utility of social networks for analysing links between social context and gene flow within wild populations.
Collapse
Affiliation(s)
- David M Zonana
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Jennifer M Gee
- James San Jacinto Mountains Reserve, University of California - Riverside, University of California Natural Reserve System, Idyllwild, CA, USA
| | - Michael D Breed
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Daniel F Doak
- Environmental Studies Program, University of Colorado, Boulder, CO, USA
| |
Collapse
|
17
|
Ruiz MB, Taverna A, Servetto N, Sahade R, Held C. Hidden diversity in Antarctica: Molecular and morphological evidence of two different species within one of the most conspicuous ascidian species. Ecol Evol 2020; 10:8127-8143. [PMID: 32788966 PMCID: PMC7417227 DOI: 10.1002/ece3.6504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
The Southern Ocean is one of the most isolated marine ecosystems, characterized by high levels of endemism, diversity, and biomass. Ascidians are among the dominant groups in Antarctic benthic assemblages; thus, recording the evolutionary patterns of this group is crucial to improve our current understanding of the assembly of this polar ocean. We studied the genetic variation within Cnemidocarpa verrucosa sensu lato, one of the most widely distributed abundant and studied ascidian species in Antarctica. Using a mitochondrial and a nuclear gene (COI and 18S), the phylogeography of fifteen populations distributed along the West Antarctic Peninsula and Burdwood Bank/MPA Namuncurá (South American shelf) was characterized, where the distribution of the genetic distance suggested the existence of, at least, two species within nominal C. verrucosa. When reevaluating morphological traits to distinguish between genetically defined species, the presence of a basal disk in one of the genotypes could be a diagnostic morphological trait to differentiate the species. These results are surprising due to the large research that has been carried out with the conspicuous C. verrucosa with no differentiation between species. Furthermore, it provides important tools to distinguish species in the field and laboratory. But also, these results give new insights into patterns of differentiation between closely related species that are distributed in sympatry, where the permeability of species boundaries still needs to be well understood.
Collapse
Affiliation(s)
- Micaela B. Ruiz
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Anabela Taverna
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Natalia Servetto
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Ricardo Sahade
- Instituto de Diversidad y Ecología Animal (IDEA)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)CórdobaArgentina
- Facultad de Ciencias Exactas Físicas y NaturalesDepartamento de Diversidad Biológica y Ecología, Ecología MarinaUniversidad Nacional de CórdobaCórdobaArgentina
| | - Christoph Held
- Section Functional Ecology, Evolutionary MacroecologyAlfred Wegener Institute Helmholtz‐Zentrum für Polar‐ und MeeresforschungBremerhavenGermany
| |
Collapse
|
18
|
Kenchington EL, MacDonald BW, Cogswell A, Hamilton LC, Diz AP. Sex‐specific effects of hybridization on reproductive fitness in Mytilus. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ellen L. Kenchington
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Barry W. MacDonald
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Andrew Cogswell
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Lorraine C. Hamilton
- Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography Dartmouth NS Canada
| | - Angel P. Diz
- Department of Biochemistry, Genetics and Immunology University of Vigo Vigo Spain
| |
Collapse
|
19
|
Sakai Y, Hatta M, Furukawa S, Kawata M, Ueno N, Maruyama S. Environmental factors explain spawning day deviation from full moon in the scleractinian coral Acropora. Biol Lett 2020; 16:20190760. [PMID: 31964259 PMCID: PMC7013481 DOI: 10.1098/rsbl.2019.0760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Broadcast-spawning scleractinian corals annually release their gametes with high levels of synchrony, both within and among species. However, the timing of spawning can vary inter-annually. In particular, the night of spawning relative to the full moon phase can vary considerably among years at some locations. Although multiple environmental factors can affect the night of spawning, their effects have not been quantitatively assessed at the multi-regional level. In this study, we analysed environmental factors that are potentially correlated with spawning day deviation, in relation to the full moon phase, in Acropora corals inhabiting seven reefs in Australia and Japan. We accordingly found that sea surface temperature and wind speed within one to two months prior to the full moon of the spawning month were strongly correlated with spawning day deviations. In addition, solar flux had a weak effect on the night of spawning. These findings indicate that Acropora have the capacity to adjust their development and physiology in response to environmental factors for fine-tuning the timing of synchronous spawning, thereby maximizing reproductive success and post-fertilization survival.
Collapse
Affiliation(s)
- Yusuke Sakai
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Masayuki Hatta
- Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Tokyo, Japan
| | - Seishiro Furukawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | | |
Collapse
|
20
|
Shlesinger T, Loya Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 2019; 365:1002-1007. [PMID: 31488683 DOI: 10.1126/science.aax0110] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/16/2019] [Indexed: 01/14/2023]
Abstract
The impacts of human and natural disturbances on coral reefs are typically quantified through visible damage (e.g., reduced coral coverage as a result of bleaching events), but changes in environmental conditions may also cause damage in less visible ways. Despite the current paradigm, which suggests consistent, highly synchronized spawning events, corals that reproduce by broadcast spawning are particularly vulnerable because their reproductive phenology is governed by environmental cues. Here, we quantify coral spawning intensity during four annual reproductive seasons, alongside laboratory analyses at the polyp, colony, and population levels, and we demonstrate that, compared with historical data, several species from the Red Sea have lost their reproductive synchrony. Ultimately, such a synchrony breakdown reduces the probability of successful fertilization, leading to a dearth of new recruits, which may drive aging populations to extinction.
Collapse
Affiliation(s)
- Tom Shlesinger
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yossi Loya
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
21
|
Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JE, Shantz AA. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01978. [PMID: 31332879 PMCID: PMC6916196 DOI: 10.1002/eap.1978] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 05/06/2023]
Abstract
Active coral restoration typically involves two interventions: crossing gametes to facilitate sexual larval propagation; and fragmenting, growing, and outplanting adult colonies to enhance asexual propagation. From an evolutionary perspective, the goal of these efforts is to establish self-sustaining, sexually reproducing coral populations that have sufficient genetic and phenotypic variation to adapt to changing environments. Here, we provide concrete guidelines to help restoration practitioners meet this goal for most Caribbean species of interest. To enable the persistence of coral populations exposed to severe selection pressure from many stressors, a mixed provenance strategy is suggested: genetically unique colonies (genets) should be sourced both locally as well as from more distant, environmentally distinct sites. Sourcing three to four genets per reef along environmental gradients should be sufficient to capture a majority of intraspecies genetic diversity. It is best for practitioners to propagate genets with one or more phenotypic traits that are predicted to be valuable in the future, such as low partial mortality, high wound healing rate, high skeletal growth rate, bleaching resilience, infectious disease resilience, and high sexual reproductive output. Some effort should also be reserved for underperforming genets because colonies that grow poorly in nurseries sometimes thrive once returned to the reef and may harbor genetic variants with as yet unrecognized value. Outplants should be clustered in groups of four to six genets to enable successful fertilization upon maturation. Current evidence indicates that translocating genets among distant reefs is unlikely to be problematic from a population genetic perspective but will likely provide substantial adaptive benefits. Similarly, inbreeding depression is not a concern given that current practices only raise first-generation offspring. Thus, proceeding with the proposed management strategies even in the absence of a detailed population genetic analysis of the focal species at sites targeted for restoration is the best course of action. These basic guidelines should help maximize the adaptive potential of reef-building corals facing a rapidly changing environment.
Collapse
Affiliation(s)
- Iliana B. Baums
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Andrew C. Baker
- Department of Marine Biology and EcologyRosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFlorida33149USA
| | - Sarah W. Davies
- Department of BiologyBoston UniversityBostonMassachusetts02215USA
| | | | - Carly D. Kenkel
- Department of Biological SciencesUniversity of Southern CaliforniaLos AngelesCalifornia90007USA
| | - Sheila A. Kitchen
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Ilsa B. Kuffner
- U.S. Geological Survey600 4th Street S.St. PetersburgFlorida33701USA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| | - Mikhail V. Matz
- Department of Integrative BiologyThe University of Texas at AustinAustinTexas78712USA
| | | | - John E. Parkinson
- SECORE InternationalMiamiFlorida33145USA
- Department of Integrative BiologyUniversity of South FloridaTampaFlorida33620USA
| | - Andrew A. Shantz
- Department of BiologyPennsylvania State UniversityUniversity ParkPennsylvania16803USA
| |
Collapse
|
22
|
Edmunds PJ. The demography of hurricane effects on two coral populations differing in dynamics. Ecosphere 2019. [DOI: 10.1002/ecs2.2836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Peter J. Edmunds
- Department of Biology California State University 18111 Nordhoff Street Northridge California 91330 USA
| |
Collapse
|
23
|
Populations of the coral species Montastraea cavernosa on the Belize Barrier Reef lack vertical connectivity. Sci Rep 2019; 9:7200. [PMID: 31076586 PMCID: PMC6510931 DOI: 10.1038/s41598-019-43479-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/25/2019] [Indexed: 11/29/2022] Open
Abstract
Larval connectivity among and within coral reefs is important for sustaining coral metapopulations, enhancing ecosystem resilience through species and genetic diversity, and maintaining reef ecosystems’ structure and functions. This study characterized genetic structure and assessed horizontal and vertical connectivity among populations of the ubiquitous gonochoric broadcast spawning coral Montastraea cavernosa in Belize. Using nine polymorphic microsatellite loci, we genotyped M. cavernosa colonies from four depth zones at four study sites within Belizean marine management zones. Study sites were selected within South Water Caye Marine Reserve (3 sites) and Glover’s Reef Marine Reserve (1 site). Strong contemporary genetic differentiation was observed between relatively shallow M. cavernosa populations (10 m, 16 m) and relatively deep (25 m, 35 m) populations, coinciding with a transition from reef crest to reef slope. These results were consistent across both marine reserves. Vertical and horizontal migration models suggest that all populations were historically panmictic, with little unidirectional migration. The relative local isolation of shallow and mesophotic M. cavernosa populations in Belize, coupled with the importance of Belize’s upper mesophotic populations as potential larval sources for other areas in the Tropical Western Atlantic, reinforces the need for management strategies that conserve coral populations across all depth zones.
Collapse
|
24
|
Pinho C, Cardoso V, Hey J. A population genetic assessment of taxonomic species: The case of Lake Malawi cichlid fishes. Mol Ecol Resour 2019; 19:1164-1180. [PMID: 31012255 PMCID: PMC6764894 DOI: 10.1111/1755-0998.13027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 04/10/2019] [Indexed: 02/05/2023]
Abstract
Organisms sampled for population‐level research are typically assigned to species by morphological criteria. However, if those criteria are limited to one sex or life stage, or the organisms come from a complex of closely related forms, the species assignments may misdirect analyses. The impact of such sampling can be assessed from the correspondence of genetic clusters, identified only from patterns of genetic variation, to the species identified using only phenotypic criteria. We undertook this protocol with the rock‐dwelling mbuna cichlids of Lake Malawi, for which species within genera are usually identified using adult male coloration patterns. Given high local endemism of male colour patterns, and considerable allele sharing among species, there persists considerable taxonomic uncertainty in these fishes. Over 700 individuals from a single transect were photographed, genotyped and separately assigned: (a) to morphospecies using photographs; and (b) to genetic clusters using five widely used methods. Overall, the correspondence between clustering methods was strong for larger clusters, but methods varied widely in estimated number of clusters. The correspondence between morphospecies and genetic clusters was also strong for larger clusters, as well as some smaller clusters for some methods. These analyses generally affirm (a) adult male‐limited sampling and (b) the taxonomic status of Lake Malawi mbuna, as the species in our study largely appear to be well‐demarcated genetic entities. More generally, our analyses highlight the challenges for clustering methods when the number of populations is unknown, especially in cases of highly uneven sample sizes.
Collapse
Affiliation(s)
- Catarina Pinho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Vera Cardoso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Jody Hey
- Rutgers, the State University of New Jersey, Piscataway, New Jersey.,CCGG, Center for Computational Genetics and Genomics, Department of Biology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Chan WY, Peplow LM, van Oppen MJH. Interspecific gamete compatibility and hybrid larval fitness in reef-building corals: Implications for coral reef restoration. Sci Rep 2019; 9:4757. [PMID: 30894593 PMCID: PMC6426996 DOI: 10.1038/s41598-019-41190-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/28/2019] [Indexed: 11/27/2022] Open
Abstract
Climate warming is a major cause of the global decline of coral reefs. Active reef restoration, although still in its infancy, is one of several possible ways to help restore coral cover and reef ecosystem function. The deployment of mature coral larvae onto depauperate reef substratum has been shown to significantly increase larval recruitment, providing a novel option for the delivery of ex situ bred coral stock to the reef for restoration purposes. The success of such reef restoration approaches may be improved by the use of coral larval stock augmented for climate resilience. Here we explore whether coral climate resilience can be enhanced via interspecific hybridization through hybrid vigour. Firstly, we assessed cross-fertility of four pairs of Acropora species from the Great Barrier Reef. Temporal isolation in gamete release between the Acropora species was limited, but gametic incompatibility was present with varying strength between species pairs and depending on the direction of the hybrid crosses. We subsequently examined the fitness of hybrid and purebred larvae under heat stress by comparing their survival and settlement success throughout 10 days of exposure to 28 °C, 29.5 °C and 31 °C. Fitness of the majority of Acropora hybrid larvae was similar to that of the purebred larvae of both parental species, and in some instances it was higher than that of the purebred larvae of one of the parental species. Lower hybrid fertilization success did not affect larval fitness. These findings indicate that high hybrid fitness can be achieved after overcoming partial prezygotic barriers, and that interspecific hybridization may be a tool to enhance coral recruitment and climate resilience.
Collapse
Affiliation(s)
- Wing Yan Chan
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia.
- School of BioSciences, University of Melbourne, VIC, 3010, Australia.
| | - Lesa M Peplow
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville MC, QLD, 4810, Australia
- School of BioSciences, University of Melbourne, VIC, 3010, Australia
| |
Collapse
|
26
|
Olsen KC, Moscoso JA, Levitan DR. Somatic Mutation Is a Function of Clone Size and Depth in Orbicella Reef-Building Corals. THE BIOLOGICAL BULLETIN 2019; 236:1-12. [PMID: 30707605 DOI: 10.1086/700261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In modular organisms, the propagation of genetic variability within a clonal unit can alter the scale at which ecological and evolutionary processes operate. Genetic variation within an individual primarily arises through the accretion of somatic mutations over time, leading to genetic mosaicism. Here, we assess the prevalence of intraorganismal genetic variation and potential mechanisms influencing the degree of genetic mosaicism in the reef corals Orbicella franksi and Orbicella annularis. Colonies of both species, encompassing a range of coral sizes and depths, were sampled multiple times and genotyped at the same microsatellite loci to detect intraorganismal genetic variation. Genetic mosaicism was detected in 38% of corals evaluated, and mutation frequency was found to be positively related with clonal size and negatively associated with coral depth. We suggest that larger clones experience a greater number of somatic cell divisions and consequently have an elevated potential to accumulate mutations. Furthermore, corals at shallower depths may be exposed to abiotic conditions such as elevated thermal regimes, which promote increased mutation rates. The results highlight the pervasiveness of intraorganismal genetic variation in reef-building corals and emphasize potential mechanisms generating somatic mutations in modular organisms.
Collapse
|
27
|
Monotilla AP, Nishimura T, Adachi M, Tanii Y, Largo DB, Hiraoka M. Examination of prezygotic and postzygotic isolating barriers in tropical Ulva (Ulvophyceae, Chlorophyta): evidence for ongoing speciation. JOURNAL OF PHYCOLOGY 2018; 54:539-549. [PMID: 29846951 DOI: 10.1111/jpy.12755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Phylogenetic clades based on DNA sequences such as the chloroplast rbcL gene and the nuclear ITS region are frequently used to delimit algal species. However, these molecular markers cannot accurately delimit boundaries among some Ulva species. Although Ulva reticulata and Ulva ohnoi occasionally bloom in tropical to warm-temperate regions and are clearly distinguishable by their reticulate or plain blade morphology, they have few or no sequence divergences in these molecular markers and form a monophyletic clade. In this study, to clarify the speciation and species delimitation in the U. reticulata-ohnoi complex clade, reproductive relationships among several sexual strains from the Philippines and Japan including offspring that originated from the type specimen of U. ohnoi were examined by culturing and hybridization in addition to the ITS-based analysis. As a result, both prezygotic and postzygotic reproductive isolation were revealed to occur between genetically perforated U. reticulata and imperforate U. ohnoi. They were also separated on the basis of sequence analysis of the ITS region. That strongly supports that the two taxa are independent biological species. Although no prezygotic barrier among the Philippine and Japanese strains of U. reticulata was observed, unexpectedly zoospores produced by hybrid sporophytes in some of their combinations mostly failed to develop, indicating partial formation of a postzygotic barrier despite a 0.2% divergence in the ITS sequence. These findings suggest speciation is still ongoing in U. reticulata.
Collapse
Affiliation(s)
- Alvin P Monotilla
- Graduate School of Kuroshio Science, Kochi University, 2-5-1 Akebono, Kochi, 780-8520, Japan
| | - Tomohiro Nishimura
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Nankoku, Kochi, 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Nankoku, Kochi, 783-8502, Japan
| | - Yuta Tanii
- Laboratory of Aquatic Environmental Science (LAQUES), Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Nankoku, Kochi, 783-8502, Japan
| | - Danilo B Largo
- Biology Department, University of San Carlos, Nasipit, Talamban, Cebu City, 6000, Philippines
| | - Masanori Hiraoka
- Usa Marine Biological Institute, Kochi University, Inoshiri 194, Usa, Tosa, Kochi, 781-1164, Japan
| |
Collapse
|
28
|
Gomez EJ, Jamodiong EA, Maboloc EA, Ligson CA, Tabalanza TD, Villanueva RD, Cabaitan PC. Gametogenesis and reproductive pattern of the reef-building coral Acropora millepora in northwestern Philippines. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1496155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Elizabeth J. Gomez
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Emmeline A. Jamodiong
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Elizaldy A. Maboloc
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Charlon A. Ligson
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Tracy D. Tabalanza
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Ronald D. Villanueva
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| | - Patrick C. Cabaitan
- The Marine Science Institute, University of the Philippines, Quezon City, Philippines
| |
Collapse
|
29
|
De novo assembly and annotation of the Acropora gemmifera transcriptome. Mar Genomics 2018; 40:9-12. [DOI: 10.1016/j.margen.2017.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/18/2022]
|
30
|
Non-Pleiotropic Coupling of Daily and Seasonal Temporal Isolation in the European Corn Borer. Genes (Basel) 2018; 9:genes9040180. [PMID: 29587435 PMCID: PMC5924522 DOI: 10.3390/genes9040180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 01/22/2023] Open
Abstract
Speciation often involves the coupling of multiple isolating barriers to produce reproductive isolation, but how coupling is generated among different premating barriers is unknown. We measure the degree of coupling between the daily mating time and seasonal mating time between strains of European corn borer (Ostrinia nubilalis) and evaluate the hypothesis that the coupling of different forms of allochrony is due to a shared genetic architecture, involving genes with pleiotropic effects on both timing phenotypes. We measure differences in gene expression at peak mating times and compare these genes to previously identified candidates that are associated with changes in seasonal mating time between the corn borer strains. We find that the E strain, which mates earlier in the season, also mates 2.7 h earlier in the night than the Z strain. Earlier daily mating is correlated with the differences in expression of the circadian clock genes cycle, slimb, and vrille. However, different circadian clock genes associate with daily and seasonal timing, suggesting that the coupling of timing traits is maintained by natural selection rather than pleiotropy. Juvenile hormone gene expression was associated with both types of timing, suggesting that circadian genes activate common downstream modules that may impose constraint on future evolution of these traits.
Collapse
|
31
|
Wolstenholme J, Nozawa Y, Byrne M, Burke W. Timing of mass spawning in corals: potential influence of the coincidence of lunar factors and associated changes in atmospheric pressure from northern and southern hemisphere case studies. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1434245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Yoko Nozawa
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Maria Byrne
- School of Medical Sciences and School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - William Burke
- Discipline of Physiology, University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
González AM, Prada CA, Ávila V, Medina M. Ecological Speciation in Corals. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_35] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Keith SA, Maynard JA, Edwards AJ, Guest JR, Bauman AG, van Hooidonk R, Heron SF, Berumen ML, Bouwmeester J, Piromvaragorn S, Rahbek C, Baird AH. Coral mass spawning predicted by rapid seasonal rise in ocean temperature. Proc Biol Sci 2017; 283:rspb.2016.0011. [PMID: 27170709 DOI: 10.1098/rspb.2016.0011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/18/2016] [Indexed: 12/26/2022] Open
Abstract
Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.
Collapse
Affiliation(s)
- Sally A Keith
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 2100, Denmark ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| | - Jeffrey A Maynard
- SymbioSeas and the Marine Applied Research Center, Wilmington, NC 28411, USA Laboratoire d'Excellence «CORAIL» USR 3278 CNRS - EPHE, CRIOBE, Papetoai, Moorea, French Polynesia
| | - Alasdair J Edwards
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne NE1 7RU, UK
| | - James R Guest
- SECORE International, 40 Jalan Anjung 5, Horizon Hills, Nusajaya 79100, Johor, Malaysia
| | - Andrew G Bauman
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Ruben van Hooidonk
- Atlantic Oceanographic and Meteorological Laboratory, NOAA, 4301 Rickenbacker Causeway, Miami, FL 33149, USA Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Scott F Heron
- NOAA Coral Reef Watch, 675 Ross River Road, Townsville, Queensland 4817, Australia Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Michael L Berumen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23599-6900, Saudi Arabia
| | - Jessica Bouwmeester
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23599-6900, Saudi Arabia Department of Geology and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Srisakul Piromvaragorn
- Center of Excellence for Biodiversity of Peninsular Thailand, Biology Department, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen 2100, Denmark Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andrew H Baird
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
34
|
Taylor RS, Friesen VL. The role of allochrony in speciation. Mol Ecol 2017; 26:3330-3342. [DOI: 10.1111/mec.14126] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 03/20/2017] [Indexed: 12/15/2022]
|
35
|
Soler-Hurtado MM, López-González PJ, Machordom A. Molecular phylogenetic relationships reveal contrasting evolutionary patterns in Gorgoniidae (Octocorallia) in the Eastern Pacific. Mol Phylogenet Evol 2017; 111:219-230. [PMID: 28344106 DOI: 10.1016/j.ympev.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
The description and delimitation of species in an evolutionary framework is essential for understanding patterns of biodiversity and distribution, and in the assessment of conservation strategies for natural resources. This study seeks to clarify the evolutionary history and genetic variation within and between closely related octocoral species that are fundamental to benthic marine ecosystems for harbouring a high diversity of associated fauna. For our study system, we focused on members of the Gorgoniidae family in the Eastern Pacific, particularly of the Ecuadorian littoral, a less studied marine ecosystem. According to our results, the diagnosis of the genus Pacifigorgia is here amended to include species previously considered in the genus Leptogorgia. The genera Leptogorgia and Eugorgia are included within a single clade, and neither are recovered as monophyletic. In this case, according to the priority rule of the International Code of Zoological Nomenclature (ICZN), our proposal is to include the species considered in these two genera in Leptogorgia. In addition, we found evidence of interesting speciation patterns: morphological differentiation with no apparent genetic differentiation (in Pacifigorgia), and inconsistencies between mitochondrial and nuclear data that suggest a hybridisation phenomenon (in Leptogorgia). In the first case, recent radiation, ancient hybridisation, sympatric speciation, and in the second, reticulate evolution may have contributed to the evolutionary history of the studied taxa. Therefore, incongruences observed between morphological and molecular evidences in these octocorals, and in corals in general, may reveal the types of events/patterns that have influenced their evolution.
Collapse
Affiliation(s)
- M M Soler-Hurtado
- Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain; Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto Nacional de Biodiversidad, Museo Ecuatoriano de Ciencias Naturales, Rumipamba 341 y Av. Shyris, Quito, Ecuador.
| | - P J López-González
- Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - A Machordom
- Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| |
Collapse
|
36
|
Rosenberg Y, Doniger T, Harii S, Sinniger F, Levy O. Canonical and cellular pathways timing gamete release in Acropora digitifera, Okinawa, Japan. Mol Ecol 2017; 26:2698-2710. [PMID: 28214372 DOI: 10.1111/mec.14062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 02/05/2017] [Accepted: 02/06/2017] [Indexed: 11/28/2022]
Abstract
Natural light cycles are important for synchronizing behavioural and physiological rhythms over varying time periods in both plants and animals. An endogenous clock, regulated by positive and negative elements, interacting in feedback loops controls these rhythms. Many corals exhibit diel cycles of polyp expansion and contraction entrained by solar light patterns and monthly cycles of spawning or planulation that correspond to nocturnal lunar light cycles. However, despite considerable interest in studies of coral reproduction, there is currently not enough molecular information about the cellular pathways involved with synchronizing spawning/planulation in broadcast spawners and brooders. To determine whether the endogenous clock is implicated in the regulation of reproductive behaviour in corals, we characterized the transcriptome of Acropora digitifera colonies at twelve time points over a 2-month period of full and new moons, starting with the day of spawning in June 2014. We identified 608 transcripts with differential expression only on the spawning night during the coral setting phase and gamete release. Our data revealed an upregulation of light-sensing molecules and rhodopsin-like receptors that initiate signalling cascades, including the glutamate, SMAD signalling and WNT signalling pathways, neuroactive ligand-receptor interactions and calcium signalling. These are all involved in cell cycling, cell movement, tissue polarity, focal adhesion and cytoskeleton reorganization and together lead to gamete release. These findings can improve the understanding of many time-based cycles and extend our knowledge of the interplay between exogenous signals and the endogenous clock in cnidarians.
Collapse
Affiliation(s)
- Y Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - T Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| | - S Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - F Sinniger
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa, 905-0227, Japan
| | - O Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 52900, Israel
| |
Collapse
|
37
|
Oldach MJ, Workentine M, Matz MV, Fan TY, Vize PD. Transcriptome dynamics over a lunar month in a broadcast spawning acroporid coral. Mol Ecol 2017; 26:2514-2526. [DOI: 10.1111/mec.14043] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Matthew J. Oldach
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta Canada T2N1N4
| | - Matthew Workentine
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta Canada T2N1N4
| | | | - Tung-Yung Fan
- National Museum of Marine Biology and Aquarium; Checheng Pingtung 944 Taiwan
| | - Peter D. Vize
- Department of Biological Sciences; University of Calgary; 2500 University Drive NW Calgary Alberta Canada T2N1N4
- School of Biological Sciences; University of Queensland; St. Lucia Qld 4072 Australia
| |
Collapse
|
38
|
Olito C, Marshall DJ, Connallon T. The Evolution of Reproductive Phenology in Broadcast Spawners and the Maintenance of Sexually Antagonistic Polymorphism. Am Nat 2017; 189:153-169. [PMID: 28107061 DOI: 10.1086/690010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Reproductive phenology is a crucial life-history trait that evolves in response to external environmental conditions and frequency- and density-dependent interactions within species. Broadcast spawners-which represent a large fraction of aquatic biodiversity-evolve phenologies that balance strong density-dependent fertilization success against abiotic environmental conditions that are required for successful reproduction. The overall balance between these processes may be particularly complex in dioecious species, where selection on reproductive timing potentially differs between the sexes. Here, we develop a population genetic model of reproductive phenology in a dioecious broadcast spawning species and show that environmental variability and density-dependent fertilization dynamics naturally give rise to profound sex differences in selection on gamete release strategies. The frequency-dependent nature of sperm competition generates sexually antagonistic selection on reproductive timing and facilitates the maintenance of genetic variation in phenological traits. Selection in females favors monomorphic spawning phenologies that maximize net fertilization success and offspring survival across environmental conditions, whereas selection in males often favors polymorphic phenologies that are primarily shaped by sperm competition. Our model helps explain several well-documented empirical observations in aquatic species, including high intraspecific variance of reproductive phenologies, sex-specific spawning phenologies, and spawning during environmentally suboptimal times.
Collapse
|
39
|
Nydam ML, Yanckello LM, Bialik SB, Giesbrecht KB, Nation GK, Peak JL. Introgression in two species of broadcast spawning marine invertebrate. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Tsounis G, Edmunds PJ. The potential for self-seeding by the coral Pocillopora spp. in Moorea, French Polynesia. PeerJ 2016; 4:e2544. [PMID: 27867759 PMCID: PMC5111889 DOI: 10.7717/peerj.2544] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/08/2016] [Indexed: 11/29/2022] Open
Abstract
Coral reefs in Moorea, French Polynesia, suffered catastrophic coral mortality through predation by Acanthaster planci from 2006 to 2010, and Cyclone Oli in 2010, yet by 2015 some coral populations were approaching pre-disturbance sizes. Using long-term study plots, we quantified population dynamics of spawning Pocillopora spp. along the north shore of Moorea between 2010 and 2014, and considered evidence that population recovery could be supported by self-seeding. Results scaled up from study plots and settlement tiles suggest that the number of Pocillopora spp. colonies on the outer reef increased 1,890-fold between 2010 and 2014/2015, and in the back reef, 8-fold between 2010 and 2014/2015. Assuming that spawning Pocillopora spp. in Moorea release similar numbers of eggs as con-generics in Hawaii, and fertilization success is similar to other spawning corals, the capacity of Pocillopora spp. to produce larvae was estimated. These estimates suggest that Pocillopora spp. in Moorea produced a large excess of larvae in 2010 and 2014 relative to the number required to produce the recruits found in the back reef and outer reef in 2010 and 2014, even assuming that ∼99.9% of the larvae do not recruit in Moorea. Less than a third of the recruits in one year would have to survive to produce the juvenile Pocillopora spp. found in the back and outer reefs in 2010 and 2014/2015. Our first order approximations reveal the potential for Pocillopora spp. on the north shore of Moorea to produce enough larvae to support local recruitment and population recovery following a catastrophic disturbance.
Collapse
Affiliation(s)
- Georgios Tsounis
- Department of Biology, California State University, Northridge, CA, United States
| | - Peter J Edmunds
- Department of Biology, California State University, Northridge, CA, United States
| |
Collapse
|
41
|
Kenney AM, Sweigart AL. Reproductive isolation and introgression between sympatric
Mimulus
species. Mol Ecol 2016; 25:2499-517. [DOI: 10.1111/mec.13630] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Amanda M. Kenney
- Department of Genetics University of Georgia Athens GA 30602 USA
- Department of Biological Sciences St. Edward's University Austin TX 78704 USA
| | | |
Collapse
|
42
|
Brady AK, Willis BL, Harder LD, Vize PD. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora. THE BIOLOGICAL BULLETIN 2016; 230:130-142. [PMID: 27132135 DOI: 10.1086/bblv230n2p130] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.
Collapse
Affiliation(s)
- Aisling K Brady
- Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; and
| | - Bette L Willis
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Lawrence D Harder
- Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; and
| | - Peter D Vize
- Department of Biological Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada; and
| |
Collapse
|
43
|
Gilmour JP, Underwood JN, Howells EJ, Gates E, Heyward AJ. Biannual Spawning and Temporal Reproductive Isolation in Acropora Corals. PLoS One 2016; 11:e0150916. [PMID: 26963249 PMCID: PMC4786224 DOI: 10.1371/journal.pone.0150916] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/22/2016] [Indexed: 11/19/2022] Open
Abstract
Coral spawning on the oceanic reef systems of north-western Australia was recently discovered during autumn and spring, but the degree to which species and particularly colonies participated in one or both of these spawnings was unknown. At the largest of the oceanic reef systems, the participation by colonies in the two discrete spawning events was investigated over three years in 13 species of Acropora corals (n = 1,855 colonies). Seven species spawned during both seasons; five only in autumn and one only in spring. The majority of tagged colonies (n = 218) spawned once a year in the same season, but five colonies from three species spawned during spring and autumn during a single year. Reproductive seasonality was not influenced by spatial variation in habitat conditions, or by Symbiodinium partners in the biannual spawner Acropora tenuis. Colonies of A. tenuis spawning during different seasons separated into two distinct yet cryptic groups, in a bayesian clustering analysis based on multiple microsatellite markers. These groups were associated with a major genetic divergence (G"ST = 0.469), despite evidence of mixed ancestry in a small proportion of individuals. Our results confirm that temporal reproductive isolation is a common feature of Acropora populations at Scott Reef and indicate that spawning season is a genetically determined trait in at least A. tenuis. This reproductive isolation may be punctuated occasionally by interbreeding between genetic groups following favourable environmental conditions, when autumn spawners undergo a second annual gametogenic cycle and spawn during spring.
Collapse
Affiliation(s)
- James P Gilmour
- Australian Institute of Marine Science (AIMS), The University of Western Australia Oceans Institute, Perth, Western Australia, Australia
| | - Jim N Underwood
- Australian Institute of Marine Science (AIMS), The University of Western Australia Oceans Institute, Perth, Western Australia, Australia
| | - Emily J Howells
- Australian Institute of Marine Science (AIMS), Townsville, Queensland, Australia
| | - Emily Gates
- Australian Institute of Marine Science (AIMS), The University of Western Australia Oceans Institute, Perth, Western Australia, Australia
| | - Andrew J Heyward
- Australian Institute of Marine Science (AIMS), The University of Western Australia Oceans Institute, Perth, Western Australia, Australia
| |
Collapse
|
44
|
Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides. Sci Rep 2016; 6:21619. [PMID: 26899614 PMCID: PMC4761953 DOI: 10.1038/srep21619] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/26/2016] [Indexed: 01/22/2023] Open
Abstract
To date, most assessments of coral connectivity have emphasized long-distance horizontal dispersal of propagules from one shallow reef to another. The extent of vertical connectivity, however, remains largely understudied. Here, we used newly-developed and existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of horizontal and vertical connectivity in 590 colonies collected from three depth zones (≤10 m, 15-20 m and ≥25 m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal symbionts at two of these locations. Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and vertically despite its brooding reproductive mode and maternal transmission of algal symbionts. In addition, these findings might help explain the ecological success reported for P. astreoides in the Caribbean in recent decades.
Collapse
|
45
|
Jones R, Ricardo GF, Negri AP. Effects of sediments on the reproductive cycle of corals. MARINE POLLUTION BULLETIN 2015; 100:13-33. [PMID: 26384866 DOI: 10.1016/j.marpolbul.2015.08.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 05/07/2023]
Abstract
Dredging, river plumes and natural resuspension events can release sediments into the water column where they exert a range of effects on underlying communities. In this review we examine possible cause-effect pathways whereby light reduction, elevated suspended sediments and sediment deposition could affect the reproductive cycle and early life histories of corals. The majority of reported or likely effects (30+) were negative, including a suite of previously unrecognized effects on gametes. The length of each phase of the life-cycle was also examined together with analysis of water quality conditions that can occur during a dredging project over equivalent durations, providing a range of environmentally relevant exposure scenarios for future testing. The review emphasizes the need to: (a) accurately quantify exposure conditions, (b) identify the mechanism of any effects in future studies, and (c) recognize the close interlinking of proximate factors which could confound interpretation of studies.
Collapse
Affiliation(s)
- R Jones
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia; Oceans Institute, University of Western Australia, Perth, Australia.
| | - G F Ricardo
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia; Centre of Microscopy, Charaterisation and Analysis, The University of Western Australia, Perth, Australia.
| | - A P Negri
- Australian Institute of Marine Science (AIMS), Perth, Australia; Western Australian Marine Science Institution (WAMSI), Perth, Australia.
| |
Collapse
|
46
|
Geoffroy A, Mauger S, De Jode A, Le Gall L, Destombe C. Molecular evidence for the coexistence of two sibling species in Pylaiella littoralis (Ectocarpales, Phaeophyceae) along the Brittany coast. JOURNAL OF PHYCOLOGY 2015; 51:480-489. [PMID: 26986664 DOI: 10.1111/jpy.12291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/19/2015] [Indexed: 06/05/2023]
Abstract
The great phenotypic variability and the lack of diagnostic characters in the genus Pylaiella render the systematic study of this genus problematic. In this study, we investigated the diversity of Pylaiella littoralis along the Brittany (France) coast using a DNA barcoding multilocus approach with mitochondrial (cox1, nad1, and atp9) and chloroplastic (rbcL and atpB) markers associated with a population genetics approach using 10 microsatellite markers. In addition, spatio-temporal sampling was conducted along the Brittany coast. We sampled 140 individuals from four sites located between Saint-Malo and Concarneau (380 km) from April to October. Mitochondrial sequence data revealed the occurrence of two sibling species, with a minimum of 2.4% divergence between them. Microsatellite genotypic data congruently revealed two well-supported clusters matching the two mitochondrial clades of Pylaiella. Although gene flow is limited between species, occurrence of genetic admixtures in some populations suggested that reproductive isolation is not complete. Our study highlighted the complementarity of barcoding and population genetics approaches to shed light on the evolutionary processes that lead to speciation.
Collapse
Affiliation(s)
- Alexandre Geoffroy
- Sorbonne Universités, UPMC Université Paris 06, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Roscoff, 29688, France
- CNRS, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, Roscoff, 29688, France
| | - Stéphane Mauger
- Sorbonne Universités, UPMC Université Paris 06, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Roscoff, 29688, France
- CNRS, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, Roscoff, 29688, France
| | - Aurélien De Jode
- Sorbonne Universités, UPMC Université Paris 06, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Roscoff, 29688, France
- CNRS, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, Roscoff, 29688, France
| | - Line Le Gall
- Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS-EPHE-MNHN-UPMC, Equipe Exploration, Espèces, Evolution, case postale No 39, 57 rue Cuvier, 75231, Cedex 05 Paris, France
| | - Christophe Destombe
- Sorbonne Universités, UPMC Université Paris 06, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, CS 90074, Roscoff, 29688, France
- CNRS, UMI 3614 Evolutionary Biology and Ecology of Algae, Station Biologique de Roscoff, Roscoff, 29688, France
| |
Collapse
|
47
|
Couldridge VC, Gordon ML. Diel variation in signalling and signal transmission in the bladder grasshopper, Bullacris unicolor (Orthoptera; Pneumoridae). BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Here we investigate intraspecific variation in diel patterns of acoustic signalling in the bladder grasshopper, Bullacris unicolor. We observed that B. unicolor calls at different times during the night in different parts of its distribution. Males further north typically call just before dawn, while those further south signal throughout the night. Sound transmission experiments were conducted in order to determine whether the observed discrepancy in signal timing can be explained by differences in signal propagation at different times in the night, which might vary geographically. We found significant differences in signal attenuation and fidelity at different broadcast times as well as between locations. However, there was only partial support for the hypothesis that males time their calls to coincide with the most ideal transmission conditions. We suggest that other factors, such as predation pressure, might also contribute to the observed discrepancy in signal timing between populations.
Collapse
Affiliation(s)
- Vanessa C.K. Couldridge
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mikhaila L. Gordon
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
48
|
Prada C, Hellberg ME. Strong Natural Selection on Juveniles Maintains a Narrow Adult Hybrid Zone in a Broadcast Spawner. Am Nat 2014; 184:702-13. [DOI: 10.1086/678403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
49
|
Kosman ET, Levitan DR. Sperm competition and the evolution of gametic compatibility in externally fertilizing taxa. Mol Hum Reprod 2014; 20:1190-7. [PMID: 25323969 DOI: 10.1093/molehr/gau069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins expressed on the surface of sperm and egg mediate gametic compatibility and these proteins can be subject to intense positive selection. In this review, we discuss what is known about the patterns of adaptive evolution of gamete recognition proteins (GRPs). We focus on species that broadcast eggs and sperm into the environment for external fertilization, as the ease of observing and manipulating gamete interactions has allowed for greater advances in the understanding of GRP evolution, uncomplicated by confounding behavioral and physiological components that offer alternative evolutionary targets in internal fertilizers. We discuss whether interspecific mechanisms, such as selection to avoid fertilization between species (reinforcement selection), or intraspecific mechanisms, such as selection to increase (or decrease) the affinity between eggs and sperm based on the intensity of sperm competition, may be responsible for the pattern of GRP evolution observed. Variation in these proteins appears to influence gametic compatibility; GRP divergence among species is a better predictor of hybrid fertilization than neutral genetic markers and GRP variation within species predicts reproductive success among individuals within a population. Evidence suggests that sperm competition may play a large role in the evolution of gametic compatibility.
Collapse
Affiliation(s)
- E T Kosman
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - D R Levitan
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
50
|
Hypothalamic expression and moonlight-independent changes of Cry3 and Per4 implicate their roles in lunar clock oscillators of the lunar-responsive Goldlined spinefoot. PLoS One 2014; 9:e109119. [PMID: 25272159 PMCID: PMC4182804 DOI: 10.1371/journal.pone.0109119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/08/2014] [Indexed: 12/02/2022] Open
Abstract
Lunar cycle-associated physiology has been found in a wide variety of organisms. Studies suggest the presence of a circalunar clock in some animals, but the location of the lunar clock is unclear. We previously found lunar-associated expression of transcripts for Cryptochrome3 gene (SgCry3) in the brain of a lunar phase-responsive fish, the Goldlined spinefoot (Siganus guttatus). Then we proposed a photoperiodic model for the lunar phase response, in which SgCry3 might function as a phase-specific light response gene and/or an oscillatory factor in unidentified circalunar clock. In this study, we have developed an anti-SgCRY3 antibody to identify SgCRY3-immunoreactive cells in the brain. We found immunoreactions in the subependymal cells located in the mediobasal region of the diencephalon, a crucial site for photoperiodic seasonal responses in birds. For further assessment of the lunar-responding mechanism and the circalunar clock, we investigated mRNA levels of Cry3 as well as those of the other clock(-related) genes, Period (Per2 and Per4), in S. guttatus reared under nocturnal moonlight interruption or natural conditions. Not only SgCry3 but SgPer4 mRNA levels showed lunar phase-dependent variations in the diencephalon without depending on light condition during the night. These results suggest that the expressions of SgCry3 and SgPer4 are not directly regulated by moonlight stimulation but endogenously mediated in the brain, and implicate that circadian clock(-related) genes may be involved in the circalunar clock locating within the mediobasal region of the diencephalon.
Collapse
|