1
|
Walsman JC, Lambe M, Stephenson JF. Associating with kin selects for disease resistance and against tolerance. Proc Biol Sci 2024; 291:20240356. [PMID: 38772422 DOI: 10.1098/rspb.2024.0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
Behavioural and physiological resistance are key to slowing epidemic spread. We explore the evolutionary and epidemic consequences of their different costs for the evolution of tolerance that trades off with resistance. Behavioural resistance affects social cohesion, with associated group-level costs, while the cost of physiological resistance accrues only to the individual. Further, resistance, and the associated reduction in transmission, benefit susceptible hosts directly, whereas infected hosts only benefit indirectly, by reducing transmission to kin. We therefore model the coevolution of transmission-reducing resistance expressed in susceptible hosts with resistance expressed in infected hosts, as a function of kin association, and analyse the effect on population-level outcomes. Using parameter values for guppies, Poecilia reticulata, and their gyrodactylid parasites, we find that: (1) either susceptible or infected hosts should invest heavily in resistance, but not both; (2) kin association drives investment in physiological resistance more strongly than in behavioural resistance; and (3) even weak levels of kin association can favour altruistic infected hosts that invest heavily in resistance (versus selfish tolerance), eliminating parasites. Overall, our finding that weak kin association affects the coevolution of infected and susceptible investment in both behavioural and physiological resistance suggests that kin selection may affect disease dynamics across systems.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Earth Research Institute, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Madalyn Lambe
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Gupte PR, Albery GF, Gismann J, Sweeny A, Weissing FJ. Novel pathogen introduction triggers rapid evolution in animal social movement strategies. eLife 2023; 12:e81805. [PMID: 37548365 PMCID: PMC10449382 DOI: 10.7554/elife.81805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2023] [Indexed: 08/08/2023] Open
Abstract
Animal sociality emerges from individual decisions on how to balance the costs and benefits of being sociable. Novel pathogens introduced into wildlife populations should increase the costs of sociality, selecting against gregariousness. Using an individual-based model that captures essential features of pathogen transmission among social hosts, we show how novel pathogen introduction provokes the rapid evolutionary emergence and coexistence of distinct social movement strategies. These strategies differ in how they trade the benefits of social information against the risk of infection. Overall, pathogen-risk-adapted populations move more and have fewer associations with other individuals than their pathogen-risk-naive ancestors, reducing disease spread. Host evolution to be less social can be sufficient to cause a pathogen to be eliminated from a population, which is followed by a rapid recovery in social tendency. Our conceptual model is broadly applicable to a wide range of potential host-pathogen introductions and offers initial predictions for the eco-evolutionary consequences of wildlife pathogen spillover scenarios and a template for the development of theory in the ecology and evolution of animals' movement decisions.
Collapse
Affiliation(s)
- Pratik Rajan Gupte
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Gregory F Albery
- Georgetown UniversityWashingtonUnited States
- Wissenschaftskolleg zu BerlinBerlinGermany
| | - Jakob Gismann
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| | - Amy Sweeny
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningenNetherlands
| |
Collapse
|
3
|
Social dilemmas of sociality due to beneficial and costly contagion. PLoS Comput Biol 2022; 18:e1010670. [DOI: 10.1371/journal.pcbi.1010670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 12/05/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
Levels of sociality in nature vary widely. Some species are solitary; others live in family groups; some form complex multi-family societies. Increased levels of social interaction can allow for the spread of useful innovations and beneficial information, but can also facilitate the spread of harmful contagions, such as infectious diseases. It is natural to assume that these contagion processes shape the evolution of complex social systems, but an explicit account of the dynamics of sociality under selection pressure imposed by contagion remains elusive. We consider a model for the evolution of sociality strategies in the presence of both a beneficial and costly contagion. We study the dynamics of this model at three timescales: using a susceptible-infectious-susceptible (SIS) model to describe contagion spread for given sociality strategies, a replicator equation to study the changing fractions of two different levels of sociality, and an adaptive dynamics approach to study the long-time evolution of the population level of sociality. For a wide range of assumptions about the benefits and costs of infection, we identify a social dilemma: the evolutionarily-stable sociality strategy (ESS) is distinct from the collective optimum—the level of sociality that would be best for all individuals. In particular, the ESS level of social interaction is greater (respectively less) than the social optimum when the good contagion spreads more (respectively less) readily than the bad contagion. Our results shed light on how contagion shapes the evolution of social interaction, but reveals that evolution may not necessarily lead populations to social structures that are good for any or all.
Collapse
|
4
|
Walsman JC, Cressler CE. Predation shifts coevolution toward higher host contact rate and parasite virulence. Proc Biol Sci 2022; 289:20212800. [PMID: 35858064 PMCID: PMC9277270 DOI: 10.1098/rspb.2021.2800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hosts can avoid parasites (and pathogens) by reducing social contact, but such isolation may carry costs, e.g. increased vulnerability to predators. Thus, many predator-host-parasite systems confront hosts with a trade-off between predation and parasitism. Parasites, meanwhile, evolve higher virulence in response to increased host sociality and consequently, increased multiple infections. How does predation shift coevolution of host behaviour and parasite virulence? What if predators are selective, i.e. predators disproportionately capture the sickest hosts? We answer these questions with an eco-coevolutionary model parametrized for a Trinidadian guppy-Gyrodactylus spp. system. Here, increased predation drives host coevolution of higher grouping, which selects for higher virulence. Additionally, higher predator selectivity drives the contact rate higher and virulence lower. Finally, we show how predation and selectivity can have very different impacts on host density and prevalence depending on whether hosts or parasites evolve, or both. For example, higher predator selectivity led to lower prevalence with no evolution or only parasite evolution but higher prevalence with host evolution or coevolution. These findings inform our understanding of diverse systems in which host behavioural responses to predation may lead to increased prevalence and virulence of parasites.
Collapse
Affiliation(s)
- Jason C. Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
5
|
Ashby B, Farine DR. Social information use shapes the coevolution of sociality and virulence. Evolution 2022; 76:1153-1169. [PMID: 35420704 PMCID: PMC9322624 DOI: 10.1111/evo.14491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/21/2023]
Abstract
Social contacts can facilitate the spread of both survival-related information and infectious diseases, but little is known about how these processes combine to shape host and parasite evolution. Here, we use a theoretical model that captures both infection and information transmission processes to investigate how host sociality (contact effort) and parasite virulence (disease-associated mortality rate) (co)evolve. We show that selection for sociality (and in turn, virulence) depends on both the intrinsic costs and benefits of social information and infection as well as their relative prevalence in the population. Specifically, greater sociality and lower virulence evolve when the risk of infection is either low or high and social information is neither very common nor too rare. Lower sociality and higher virulence evolve when the prevalence patterns are reversed. When infection and social information are both at moderate levels in the population, the direction of selection depends on the relative costs and benefits of being infected or informed. We also show that sociality varies inversely with virulence, and that parasites may be unable to prevent runaway selection for higher contact efforts. Together, these findings provide new insights for our understanding of group living and how apparently opposing ecological processes can influence the evolution of sociality and virulence in a range of ways.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathSomersetUK,Department of MathematicsSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Damien R. Farine
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland,Max Planck Institute of Animal BehaviorRadolfzellGermany,Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
| |
Collapse
|
6
|
Walsman JC, Janecka MJ, Clark DR, Kramp RD, Rovenolt F, Patrick R, Mohammed RS, Konczal M, Cressler CE, Stephenson JF. Shoaling guppies evade predation but have deadlier parasites. Nat Ecol Evol 2022; 6:945-954. [PMID: 35618818 DOI: 10.1038/s41559-022-01772-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022]
Abstract
Parasites exploit hosts to replicate and transmit, but overexploitation kills both host and parasite. Predators may shift this cost-benefit balance by consuming infected hosts or changing host behaviour, but the strength of these effects remains unclear. Here we use field and lab data on Trinidadian guppies and their Gyrodactylus spp. parasites to show how differential predation pressure influences parasite virulence and transmission. We use an experimentally demonstrated virulence-transmission trade-off to parametrize a mathematical model in which host shoaling (as a means of anti-predator defence), increases contact rates and selects for higher virulence. Then we validate model predictions by collecting parasites from wild, Trinidadian populations; parasites from high-predation populations were more virulent in common gardens than those from low-predation populations. Broadly, our results indicate that reduced social contact selects against parasite virulence.
Collapse
Affiliation(s)
- Jason C Walsman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mary J Janecka
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David R Clark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rachael D Kramp
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Faith Rovenolt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Regina Patrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan S Mohammed
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago.,Biology Department, Thompson Biology Lab, Williams College, Williamstown, MA, USA
| | - Mateusz Konczal
- Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Buckingham LJ, Ashby B. Coevolutionary theory of hosts and parasites. J Evol Biol 2022; 35:205-224. [PMID: 35030276 PMCID: PMC9305583 DOI: 10.1111/jeb.13981] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Host and parasite evolution are closely intertwined, with selection for adaptations and counter-adaptations forming a coevolutionary feedback loop. Coevolutionary dynamics are often difficult to intuit due to these feedbacks and are hard to demonstrate empirically in most systems. Theoretical models have therefore played a crucial role in shaping our understanding of host-parasite coevolution. Theoretical models vary widely in their assumptions, approaches and aims, and such variety makes it difficult, especially for non-theoreticians and those new to the field, to: (1) understand how model approaches relate to one another; (2) identify key modelling assumptions; (3) determine how model assumptions relate to biological systems; and (4) reconcile the results of different models with contrasting assumptions. In this review, we identify important model features, highlight key results and predictions and describe how these pertain to model assumptions. We carry out a literature survey of theoretical studies published since the 1950s (n = 219 papers) to support our analysis. We identify two particularly important features of models that tend to have a significant qualitative impact on the outcome of host-parasite coevolution: population dynamics and the genetic basis of infection. We also highlight the importance of other modelling features, such as stochasticity and whether time proceeds continuously or in discrete steps, that have received less attention but can drastically alter coevolutionary dynamics. We finish by summarizing recent developments in the field, specifically the trend towards greater model complexity, and discuss likely future directions for research.
Collapse
Affiliation(s)
- Lydia J. Buckingham
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| | - Ben Ashby
- Department of Mathematical SciencesUniversity of BathBathUK
- Milner Centre for EvolutionUniversity of BathBathUK
| |
Collapse
|
8
|
Hawley DM, Gibson AK, Townsend AK, Craft ME, Stephenson JF. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 2021; 148:274-288. [PMID: 33092680 PMCID: PMC11010184 DOI: 10.1017/s0031182020002048] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.
Collapse
Affiliation(s)
- Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061, USA
| | - Amanda K. Gibson
- Department of Biology, University of Virginia, Charlottesville, VA22903, USA
| | | | - Meggan E. Craft
- Department of Veterinary Population Medicine and Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN55108, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| |
Collapse
|
9
|
Arthur RF, Jones JH, Bonds MH, Ram Y, Feldman MW. Adaptive social contact rates induce complex dynamics during epidemics. PLoS Comput Biol 2021; 17:e1008639. [PMID: 33566839 PMCID: PMC7875423 DOI: 10.1371/journal.pcbi.1008639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
Epidemics may pose a significant dilemma for governments and individuals. The personal or public health consequences of inaction may be catastrophic; but the economic consequences of drastic response may likewise be catastrophic. In the face of these trade-offs, governments and individuals must therefore strike a balance between the economic and personal health costs of reducing social contacts and the public health costs of neglecting to do so. As risk of infection increases, potentially infectious contact between people is deliberately reduced either individually or by decree. This must be balanced against the social and economic costs of having fewer people in contact, and therefore active in the labor force or enrolled in school. Although the importance of adaptive social contact on epidemic outcomes has become increasingly recognized, the most important properties of coupled human-natural epidemic systems are still not well understood. We develop a theoretical model for adaptive, optimal control of the effective social contact rate using traditional epidemic modeling tools and a utility function with delayed information. This utility function trades off the population-wide contact rate with the expected cost and risk of increasing infections. Our analytical and computational analysis of this simple discrete-time deterministic strategic model reveals the existence of an endemic equilibrium, oscillatory dynamics around this equilibrium under some parametric conditions, and complex dynamic regimes that shift under small parameter perturbations. These results support the supposition that infectious disease dynamics under adaptive behavior change may have an indifference point, may produce oscillatory dynamics without other forcing, and constitute complex adaptive systems with associated dynamics. Implications for any epidemic in which adaptive behavior influences infectious disease dynamics include an expectation of fluctuations, for a considerable time, around a quasi-equilibrium that balances public health and economic priorities, that shows multiple peaks and surges in some scenarios, and that implies a high degree of uncertainty in mathematical projections.
Collapse
Affiliation(s)
- Ronan F. Arthur
- School of Medicine, Stanford University, Stanford, California, United States of America
| | - James H. Jones
- Department of Earth Systems Science, Stanford University, Stanford, California, United States of America
| | - Matthew H. Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Yoav Ram
- School of Computer Science, Interdisciplinary Center Herzliya, Herzliya, Israel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Marcus W. Feldman
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Ashby B. When does parasitism maintain sex in the absence of Red Queen Dynamics? J Evol Biol 2020; 33:1795-1805. [PMID: 33073411 DOI: 10.1111/jeb.13718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 11/30/2022]
Abstract
Parasites can select for sexual reproduction in host populations, preventing replacement by faster-growing asexual genotypes. This is usually attributed to so-called 'Red Queen dynamics' (RQD), where antagonistic coevolution causes fluctuating selection in allele frequencies, which provides sex with an advantage over asex. However, parasitism may also maintain sex in the absence of RQD when sexual populations are more genetically diverse-and hence more resistant, on average-than clonal populations, allowing sex and asex to coexist at a stable equilibrium. Although the maintenance of sex due to RQD has been studied extensively, the conditions that allow sex and asex to stably coexist have yet to be explored in detail. In particular, we lack an understanding of how host demography and parasite epidemiology affect the maintenance of sex in the absence of RQD. Here, I use an eco-evolutionary model to show that both population density and the type and strength of virulence are important for maintaining sex, which can be understood in terms of their effects on disease prevalence and severity. In addition, I show that even in the absence of heterozygote advantage, asexual heterozygosity affects coexistence with sex due to variation in niche overlap. These results reveal which host and parasite characteristics are most important for the maintenance of sex in the absence of RQD, and provide empirically testable predictions for how demography and epidemiology mediate competition between sex and asex.
Collapse
Affiliation(s)
- Ben Ashby
- Department of Mathematical Sciences, University of Bath, Bath, UK
| |
Collapse
|
11
|
Cantor M, Maldonado‐Chaparro AA, Beck KB, Brandl HB, Carter GG, He P, Hillemann F, Klarevas‐Irby JA, Ogino M, Papageorgiou D, Prox L, Farine DR. The importance of individual‐to‐society feedbacks in animal ecology and evolution. J Anim Ecol 2020; 90:27-44. [DOI: 10.1111/1365-2656.13336] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Maurício Cantor
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Departamento de Ecologia e Zoologia Universidade Federal de Santa Catarina Florianópolis Brazil
- Centro de Estudos do Mar Universidade Federal do Paraná Pontal do Paraná Brazil
| | - Adriana A. Maldonado‐Chaparro
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Kristina B. Beck
- Department of Behavioural Ecology and Evolutionary Genetics Max Planck Institute for Ornithology Seewiesen Germany
| | - Hanja B. Brandl
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Gerald G. Carter
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Evolution, Ecology and Organismal Biology The Ohio State University Columbus OH USA
| | - Peng He
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Friederike Hillemann
- Edward Grey Institute of Field Ornithology Department of Zoology University of Oxford Oxford UK
| | - James A. Klarevas‐Irby
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
- Department of Migration Max Planck Institute of Animal Behavior Konstanz Germany
| | - Mina Ogino
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Danai Papageorgiou
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| | - Lea Prox
- Department of Biology University of Konstanz Konstanz Germany
- Department of Sociobiology/Anthropology Johann‐Friedrich‐Blumenbach Institute of Zoology & Anthropology University of Göttingen Göttingen Germany
- Behavioral Ecology & Sociobiology Unit German Primate Center Göttingen Germany
| | - Damien R. Farine
- Department of Collective Behaviour Max Planck Institute of Animal Behavior Radolfzell Germany
- Department of Biology University of Konstanz Konstanz Germany
- Centre for the Advanced Study of Collective Behaviour University of Konstanz Konstanz Germany
| |
Collapse
|
12
|
Wilson SN, Sindi SS, Brooks HZ, Hohn ME, Price CR, Radunskaya AE, Williams ND, Fefferman NH. How Emergent Social Patterns in Allogrooming Combat Parasitic Infections. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Reluga TC, Smith RA, Hughes DP. Dynamic and game theory of infectious disease stigmas. J Theor Biol 2019; 476:95-107. [PMID: 31153888 DOI: 10.1016/j.jtbi.2019.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 05/16/2019] [Accepted: 05/30/2019] [Indexed: 10/26/2022]
Abstract
Stigmas are a primal phenomena, ubiquitous in human societies past and present. Some evolutionary anthropologists have argued that stigmatization in response to disease is an adaptive behavior because stigmatization may help people and communities reduce the risks they face from infectious diseases and increase reproductive success. On the other hand, some cultural anthropologists and social critics argue that stigmatization has strong negative impacts on community health. One recent analysis resolved this conflict by hypothesizing that stigmas had individual and group-evolutionary benefits in the past but are now maladaptive because of intervening societal transitions. Here, we present a quantitative theory of infectious disease stigmatization. Using a four-compartment model of stigmatization against a chronic disease, we show a stigma ratio, being the ratio of net transmissions by stigmatized people to net transmissions by unstigmatized people, predicts the impact of stigmatization on lifetime infection risk. When stigmatized people are segregated from the rest of the population and there are no alternative interventions that reduce transmission, stigmatization can reduce prevalence and infection risk. When stigmas do not lead to segregation but do discourage behavior change and reduce access to medical interventions, stigmatization acts to increases the lifetime risk of infection in the community. We further show that fear of stigmas can create policy resistance to healthcare access. The societal consequences of fear are worse when effective medical treatment is available. We conclude that stigma's can be adaptive, but good healthcare and leaky ostracism can make stigmas against chronic infectious disease maladaptive, and that the deprecation of stigmas is a natural transition in the modern urban societies.
Collapse
Affiliation(s)
- Timothy C Reluga
- Department of Mathematics, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802, United States.
| | - Rachel A Smith
- Department of Communication Arts and Sciences, Center for Infectious Disease Dynamics, and The Methodology Center, Pennsylvania State University, University Park, PA 16802, United States
| | - David P Hughes
- Departments of Entomology and Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, United States
| |
Collapse
|
14
|
Poirotte C, Massol F, Herbert A, Willaume E, Bomo PM, Kappeler PM, Charpentier MJE. Mandrills use olfaction to socially avoid parasitized conspecifics. SCIENCE ADVANCES 2017; 3:e1601721. [PMID: 28435875 PMCID: PMC5384805 DOI: 10.1126/sciadv.1601721] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 02/10/2017] [Indexed: 05/30/2023]
Abstract
The evolutionary transition from a solitary to a social lifestyle entails an elevated parasite cost because the social proximity associated with group living favors parasite transmission. Despite this cost, sociality is widespread in a large range of taxonomic groups. In this context, hosts would be expected to have evolved behavioral mechanisms to reduce the risk of parasite infection. Few empirical studies have focused on the influence of pathogen-mediated selection on the evolution of antiparasitic behavior in wild vertebrates. We report an adaptive functional relationship between parasitism and social behavior in mandrills, associated with evidence that they are able to gauge parasite status of their group members. Using long-term observations, controlled experiments, and chemical analyses, we show that (i) wild mandrills avoid grooming conspecifics infected with orofecally transmitted parasites; (ii) mandrills receive significantly more grooming after treatment that targets these parasites; (iii) parasitism influences the host's fecal odors; and (iv) mandrills selectively avoid fecal material from parasitized conspecifics. These behavioral adaptations reveal that selecting safe social partners may help primates to cope with parasite-mediated costs of sociality and that "behavioral immunity" plays a crucial role in the coevolutionary dynamics between hosts and their parasites.
Collapse
Affiliation(s)
- Clémence Poirotte
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)–CNRS, UMR 5175, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR 5554, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - François Massol
- CNRS, Université de Lille–Sciences et Technologies, UMR 8198, Evo-Eco-Paléo, F-59655 Villeneuve d’Ascq, France
| | - Anaïs Herbert
- Centre de Primatologie, Centre International de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon
| | - Eric Willaume
- Projet Mandrillus, Société d’exploitation du Parc de Lékédi (SODEPAL), BP 52, Bakoumba, Gabon
| | - Pacelle M. Bomo
- Projet Mandrillus, Société d’exploitation du Parc de Lékédi (SODEPAL), BP 52, Bakoumba, Gabon
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany
| | - Marie J. E. Charpentier
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE)–CNRS, UMR 5175, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
- Institut des Sciences de l’Evolution de Montpellier (ISEM), UMR 5554, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
15
|
Schmid-Hempel P. Parasites and Their Social Hosts. Trends Parasitol 2017; 33:453-462. [PMID: 28169113 DOI: 10.1016/j.pt.2017.01.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 11/16/2022]
Abstract
The study of parasitism in socially living organisms shows that social group size correlates with the risk of infection, but group structure - and thus differences in contact networks - is generally more important. Also, genetic makeup or environmental conditions have effects. 'Social immunity' focuses on defence against parasites that are particular to social living. Recently, the role of socially transmitted microbiota for defence has become a focus, too. But whether and how parasites adapt to social organisms - beyond adaptation to solitary hosts - is poorly understood. Genomic and proteomic methods, as well as network analysis, will be tools that hold promise for many unsolved questions, but to expand our concepts in the first place is a much needed agenda.
Collapse
Affiliation(s)
- Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| |
Collapse
|
16
|
Abstract
Parasites are thought to play an important role in sexual selection and the evolution of mating strategies, which in turn are likely to be critical to the transmission and therefore the evolution of parasites. Despite this clear interdependence we have little understanding of parasite-mediated sexual selection in the context of reciprocal parasite evolution. Here we develop a general coevolutionary model between host mate preference and the virulence of a sexually transmitted parasite. We show when the characteristics of both the host and parasite lead to coevolutionarily stable strategies or runaway selection, and when coevolutionary cycling between high and low levels of host mate choosiness and virulence is possible. A prominent argument against parasites being involved in sexual selection is that they should evolve to become less virulent when transmission depends on host mating success. The present study, however, demonstrates that coevolution can maintain stable host mate choosiness and parasite virulence or indeed coevolutionary cycling of both traits. We predict that choosiness should vary inversely with parasite virulence and that both relatively long and short life spans select against choosy behavior in the host. The model also reveals that hosts can evolve different behavioral responses from the same initial conditions, which highlights difficulties in using comparative analysis to detect parasite-mediated sexual selection. Taken as a whole, our results emphasize the importance of viewing parasite-mediated sexual selection in the context of coevolution.
Collapse
|
17
|
Hummert S, Bohl K, Basanta D, Deutsch A, Werner S, Theissen G, Schroeter A, Schuster S. Evolutionary game theory: cells as players. MOLECULAR BIOSYSTEMS 2015; 10:3044-65. [PMID: 25270362 DOI: 10.1039/c3mb70602h] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In two papers we review game theory applications in biology below the level of cognitive living beings. It can be seen that evolution and natural selection replace the rationality of the actors appropriately. Even in these micro worlds, competing situations and cooperative relationships can be found and modeled by evolutionary game theory. Also those units of the lowest levels of life show different strategies for different environmental situations or different partners. We give a wide overview of evolutionary game theory applications to microscopic units. In this first review situations on the cellular level are tackled. In particular metabolic problems are discussed, such as ATP-producing pathways, secretion of public goods and cross-feeding. Further topics are cyclic competition among more than two partners, intra- and inter-cellular signalling, the struggle between pathogens and the immune system, and the interactions of cancer cells. Moreover, we introduce the theoretical basics to encourage scientists to investigate problems in cell biology and molecular biology by evolutionary game theory.
Collapse
Affiliation(s)
- Sabine Hummert
- Fachhochschule Schmalkalden, Faculty of Electrical Engineering, Blechhammer, 98574 Schmalkalden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ebensperger LA, León C, Ramírez-Estrada J, Abades S, Hayes LD, Nova E, Salazar F, Bhattacharjee J, Becker MI. Immunocompetence of breeding females is sensitive to cortisol levels but not to communal rearing in the degu (Octodon degus). Physiol Behav 2014; 140:61-70. [PMID: 25497887 DOI: 10.1016/j.physbeh.2014.12.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/15/2023]
Abstract
One hypothesis largely examined in social insects is that cooperation in the context of breeding benefits individuals through decreasing the burden of immunocompetence and provide passive immunity through social contact. Similarly, communal rearing in social mammals may benefit adult female members of social groups by reducing the cost of immunocompetence, and through the transfer of immunological compounds during allonursing. Yet, these benefits may come at a cost to breeders in terms of a need to increase investment in individual immunocompetence. We examined how these potential immunocompetence costs and benefits relate to reproductive success and survival in a natural population of the communally rearing rodent, Octodon degus. We related immunocompetence (based on ratios of white blood cell counts, total and specific immunoglobulins of G isotype titers) and fecal glucocorticoid metabolite (FGC) levels of adults immunized with hemocyanin from the mollusk Concholepas concholepas to measures of sociality (group size) and communal rearing (number of breeding females). Offspring immunocompetence was quantified based on circulating levels of the same immune parameters. Neither female nor offspring immunocompetence was influenced by communal rearing or sociality. These findings did not support that communal rearing and sociality enhance the ability of females to respond to immunological challenges during lactation, or contribute to enhance offspring condition (based on immunocompetence) or early survival (i.e., to 3months of age). Instead, levels of humoral and cellular components of immunocompetence were associated with variation in glucorcorticoid levels of females. We hypothesize that this covariation is driven by physiological (life-history) adjustments needed to sustain breeding.
Collapse
Affiliation(s)
- Luis A Ebensperger
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | - Cecilia León
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Juan Ramírez-Estrada
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Sebastian Abades
- Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile; Instituto de Ecología y Biodiversidad (IEB), Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Loren D Hayes
- Department of Biological and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
| | - Esteban Nova
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile; Biosonda Corporation, Santiago, Chile
| |
Collapse
|
19
|
Abstract
Many studies have identified various host behavioural and ecological traits that are associated with parasite infection, including host gregariousness. By use of meta-analyses, we investigated to what degree parasite prevalence, intensity and species richness are correlated with group size in gregarious species. We predicted that larger groups would have more parasites and higher parasite species richness. We analysed a total of 70 correlations on parasite prevalence, intensity and species richness across different host group sizes. Parasite intensity and prevalence both increased positively with group size, as expected. No significant relationships were found between host group size and parasite species richness, suggesting that larger groups do not harbour more rare or novel parasite species than smaller groups. We further predicted that the mobility of the host (mobile, sedentary) and the mode of parasite transmission (direct, indirect, mobile) would be important predictors of the effects of group sizes on parasite infection. It was found that group size was positively correlated with the prevalence and intensity of directly and indirectly transmitted parasites. However, a negative relationship was observed between group size and mobile parasite intensity, with larger groups having lower parasite intensities. Further, intensities of parasites did not increase with group size of mobile hosts, suggesting that host mobility may negate parasite infection risk. The implications for the evolution and maintenance of sociality in host species are discussed, and future research directions are highlighted.
Collapse
|
20
|
Bonds MH, Dobson AP, Keenan DC. Disease ecology, biodiversity, and the latitudinal gradient in income. PLoS Biol 2012; 10:e1001456. [PMID: 23300379 PMCID: PMC3531233 DOI: 10.1371/journal.pbio.1001456] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 11/12/2012] [Indexed: 01/19/2023] Open
Abstract
Vector-borne and parasitic diseases are drivers of the latitudinal gradient in income, and the burden of these diseases is predicted to rise as biodiversity falls. While most of the world is thought to be on long-term economic growth paths, more than one-sixth of the world is roughly as poor today as their ancestors were hundreds of years ago. The majority of the extremely poor live in the tropics. The latitudinal gradient in income is highly suggestive of underlying biophysical drivers, of which disease conditions are an especially salient example. However, conclusions have been confounded by the simultaneous causality between income and disease, in addition to potentially spurious relationships. We use a simultaneous equations model to estimate the relative effects of vector-borne and parasitic diseases (VBPDs) and income on each other, controlling for other factors. Our statistical model indicates that VBPDs have systematically affected economic development, evident in contemporary levels of per capita income. The burden of VBDPs is, in turn, determined by underlying ecological conditions. In particular, the model predicts it to rise as biodiversity falls. Through these positive effects on human health, the model thus identifies measurable economic benefits of biodiversity. While most of the world is thought to be growing economically, more than one-sixth of the world is roughly as poor today as their ancestors were hundreds of years ago. The extremely poor live largely in the tropics. This latitudinal gradient in income suggests that there are biophysical factors, such as the burden of disease, driving the effect. However, measuring the effects of disease on broad economic indicators is confounded by the fact that economic indicators simultaneously influence health. We get around this by using simultaneous equation modeling to estimate the relative effects of disease and income on each other while controlling for other factors. Our model indicates that vector-borne and parasitic diseases (VBPDs) have systematically affected economic development. Importantly, we show that the burden of VBPDs is, in turn, determined by underlying ecological conditions. In particular, the model predicts that the burden of disease will rise as biodiversity falls. The health benefits of biodiversity, therefore, potentially constitute an ecosystem service that can be quantified in terms of income generated.
Collapse
Affiliation(s)
- Matthew H Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
21
|
Rifkin JL, Nunn CL, Garamszegi LZ. Do animals living in larger groups experience greater parasitism? A meta-analysis. Am Nat 2012; 180:70-82. [PMID: 22673652 DOI: 10.1086/666081] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasitism is widely viewed as the primary cost of sociality and a constraint on group size, yet studies report varied associations between group size and parasitism. Using the largest database of its kind, we performed a meta-analysis of 69 studies of the relationship between group size and parasite risk, as measured by parasitism and immune defenses. We predicted a positive correlation between group size and parasitism with organisms that show contagious and environmental transmission and a negative correlation for searching parasites, parasitoids, and possibly vector-borne parasites (on the basis of the encounter-dilution effect). Overall, we found a positive effect of group size (r = 0.187) that varied in magnitude across transmission modes and measures of parasite risk, with only weak indications of publication bias. Among different groups of hosts, we found a stronger relationship between group size and parasite risk in birds than in mammals, which may be driven by ecological and social factors. A metaregression showed that effect sizes increased with maximum group size. Phylogenetic meta-analyses revealed no evidence for phylogenetic signal in the strength of the group size-parasitism relationship. We conclude that group size is a weak predictor of parasite risk except in species that live in large aggregations, such as colonial birds, in which effect sizes are larger.
Collapse
Affiliation(s)
- Joanna L Rifkin
- Department of Human Evolutionary Biology, Harvard University, Peabody Museum, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
22
|
Effect of sexual segregation on host-parasite interaction: model simulation for abomasal parasite dynamics in alpine ibex (Capraibex). Int J Parasitol 2010; 40:1285-93. [PMID: 20430029 DOI: 10.1016/j.ijpara.2010.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/08/2010] [Accepted: 03/23/2010] [Indexed: 11/24/2022]
Abstract
We investigated whether sexual segregation might affect parasite transmission and host dynamics, hypothesising that if males are the more heavily infected sex and more responsible for the transmission of parasite infections, female avoidance of males and the space they occupy could reduce infection rates. A mathematical model, simulating the interaction between abomasal parasites and a hypothetical alpine ibex (Capraibex) host population composed of its two sexes, was developed to predict the effect of different degrees of sexual segregation on parasite intensity and on host abundance. The results showed that when females tended to be segregated from males, and males were distributed randomly across space, the impact of parasites was the lowest, resulting in the highest host abundance, with each sex having the lowest parasite intensity. The predicted condition that minimises the impact of parasites in our model was the one closest to that observed in nature where females actively seek out the more segregated sites while males are less selective in their ranging behaviour. The overlapping of field observation with the predicted optimal strategy lends support to our idea that there might be a connection between parasite transmission and sexual segregation. Our simulations provide the biological boundaries of host-parasite interaction needed to determine a parasite-mediated effect on sexual segregation and a formalised null hypothesis against which to test future field experiments.
Collapse
|
23
|
Bonds MH, Keenan DC, Rohani P, Sachs JD. Poverty trap formed by the ecology of infectious diseases. Proc Biol Sci 2009; 277:1185-92. [PMID: 20007179 DOI: 10.1098/rspb.2009.1778] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While most of the world has enjoyed exponential economic growth, more than one-sixth of the world is today roughly as poor as their ancestors were many generations ago. Widely accepted general explanations for the persistence of such poverty have been elusive and are needed by the international development community. Building on a well-established model of human infectious diseases, we show how formally integrating simple economic and disease ecology models can naturally give rise to poverty traps, where initial economic and epidemiological conditions determine the long-term trajectory of the health and economic development of a society. This poverty trap may therefore be broken by improving health conditions of the population. More generally, we demonstrate that simple human ecological models can help explain broad patterns of modern economic organization.
Collapse
Affiliation(s)
- Matthew H Bonds
- François-Xavier Bagnoud Center for Health and Human Rights, Harvard School of Public Health, Harvard University, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
24
|
Prado F, Sheih A, West JD, Kerr B. Coevolutionary cycling of host sociality and pathogen virulence in contact networks. J Theor Biol 2009; 261:561-9. [PMID: 19712687 DOI: 10.1016/j.jtbi.2009.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/20/2009] [Accepted: 08/17/2009] [Indexed: 11/16/2022]
Abstract
Infectious diseases may place strong selection on the social organization of animals. Conversely, the structure of social systems can influence the evolutionary trajectories of pathogens. While much attention has focused on the evolution of host sociality or pathogen virulence separately, few studies have looked at their coevolution. Here we use an agent-based simulation to explore host-pathogen coevolution in social contact networks. Our results indicate that under certain conditions, both host sociality and pathogen virulence exhibit continuous cycling. The way pathogens move through the network (e.g., their interhost transmission and probability of superinfection) and the structure of the network can influence the existence and form of cycling.
Collapse
Affiliation(s)
- Federico Prado
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
25
|
Woodroffe R, Donnelly CA, Wei G, Cox DR, Bourne FJ, Burke T, Butlin RK, Cheeseman CL, Gettinby G, Gilks P, Hedges S, Jenkins HE, Johnston WT, McInerney JP, Morrison WI, Pope LC. Social group size affects Mycobacterium bovis infection in European badgers (Meles meles). J Anim Ecol 2009; 78:818-27. [PMID: 19486382 DOI: 10.1111/j.1365-2656.2009.01545.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. In most social animals, the prevalence of directly transmitted pathogens increases in larger groups and at higher population densities. Such patterns are predicted by models of Mycobacterium bovis infection in European badgers (Meles meles). 2. We investigated the relationship between badger abundance and M. bovis prevalence, using data on 2696 adult badgers in 10 populations sampled at the start of the Randomized Badger Culling Trial. 3. M. bovis prevalence was consistently higher at low badger densities and in small social groups. M. bovis prevalence was also higher among badgers whose genetic profiles suggested that they had immigrated into their assigned social groups. 4. The association between high M. bovis prevalence and small badger group size appeared not to have been caused by previous small-scale culling in study areas, which had been suspended, on average, 5 years before the start of the current study. 5. The observed pattern of prevalence might occur through badgers in smaller groups interacting more frequently with members of neighbouring groups; detailed behavioural data are needed to test this hypothesis. Likewise, longitudinal data are needed to determine whether the size of infected groups might be suppressed by disease-related mortality. 6. Although M. bovis prevalence was lower at high population densities, the absolute number of infected badgers was higher. However, this does not necessarily mean that the risk of M. bovis transmission to cattle is highest at high badger densities, since transmission risk depends on badger behaviour as well as on badger density.
Collapse
|
26
|
Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol 2007. [DOI: 10.1007/s00265-007-0428-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Bonds MH. Host Life‐History Strategy Explains Pathogen‐Induced Sterility. Am Nat 2006; 168:281-93. [PMID: 16947104 DOI: 10.1086/506922] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 05/22/2006] [Indexed: 11/03/2022]
Abstract
Virulence is often equated with pathogen-induced mortality, even though loss of fecundity is also common. But while the former may be understood as a simple consequence of lost host resources for the purposes of pathogen transmission, pathogen-induced sterility is often not associated with changes in host mortality. As a result, a separate literature has emerged to explain fecundity effects of parasitism that has not been integrated into general theories of the evolution of virulence. Here, I present a model of pathogen-induced sterility that is based on the assumption that hosts and pathogens vie for the same host resources for both reproduction and maintenance. Loss of host fecundity can then be explained by the host compensating for its future loss of resources, before infection. Such preinfection ;;fecundity compensation" may often cause preinfection investment in maintenance to be as low as postinfection levels, despite a loss of total host resources after infection. Thus, sterility is simply explained as a host life-history strategy in a system where the pathogen necessarily steals host resources for its own transmission. In certain circumstances, the pathogen may even be able to manipulate the host to redirect resources away from reproduction and toward maintenance through castration, causing gigantism.
Collapse
Affiliation(s)
- Matthew H Bonds
- Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA.
| |
Collapse
|