1
|
Yim C, Bellis ES, DeLeo VL, Gamba D, Muscarella R, Lasky JR. Climate biogeography of Arabidopsis thaliana: linking distribution models and individual variation. JOURNAL OF BIOGEOGRAPHY 2024; 51:560-574. [PMID: 38596256 PMCID: PMC11000247 DOI: 10.1111/jbi.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/19/2023] [Indexed: 04/11/2024]
Abstract
AIM Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range-wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity. LOCATION Global. TAXON Arabidopsis thaliana ("Arabidopsis"). METHODS We fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current, and future climates. We confronted model predictions with individual performance measured on 2,194 herbarium specimens, and we asked whether predicted suitability was associated with life-history and genomic variation measured on ~900 natural accessions. RESULTS The most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate-associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late-flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the center of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well-predicted by our native-range model applied to certain regions but not others, suggesting it has colonized novel climates. MAIN CONCLUSIONS Integration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.
Collapse
Affiliation(s)
- Christina Yim
- Department of Biology, Pennsylvania State University, University Park, USA
| | - Emily S. Bellis
- Department of Biology, Pennsylvania State University, University Park, USA
- Department of Computer Science, Arkansas State University, Jonesboro, USA
| | - Victoria L. DeLeo
- Department of Biology, Pennsylvania State University, University Park, USA
| | - Diana Gamba
- Department of Biology, Pennsylvania State University, University Park, USA
| | - Robert Muscarella
- Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, USA
| |
Collapse
|
2
|
Komoto H, Nagahama A, Miyawaki-Kuwakado A, Hata Y, Kyozuka J, Kajita Y, Toyama H, Satake A. The transcriptional changes underlying the flowering phenology shift of Arabidopsis halleri in response to climate warming. PLANT, CELL & ENVIRONMENT 2024; 47:174-186. [PMID: 37691326 DOI: 10.1111/pce.14716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Climate warming is causing shifts in key life-history events, including flowering time. To assess the impacts of increasing temperature on flowering phenology, it is crucial to understand the transcriptional changes of genes underlying the phenological shifts. Here, we conducted a comprehensive investigation of genes contributing to the flowering phenology shifts in response to increasing temperature by monitoring the seasonal expression dynamics of 293 flowering-time genes along latitudinal gradients in the perennial herb, Arabidopsis halleri. Through transplant experiments at northern, southern and subtropical study sites in Japan, we demonstrated that the flowering period was shortened as latitude decreased, ultimately resulting in the loss of flowering opportunity in subtropical climates. The key transcriptional changes underlying the shortening of the flowering period and the loss of flowering opportunity were the diminished expression of floral pathway integrator genes and genes in the gibberellin synthesis and aging pathways, all of which are suppressed by increased expression of FLOWERING LOCUS C, a central repressor of flowering. These results suggest that the upper-temperature limit of reproduction is governed by a relatively small number of genes that suppress reproduction in the absence of winter cold.
Collapse
Affiliation(s)
- Hideyuki Komoto
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Ai Nagahama
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | | | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yui Kajita
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hironori Toyama
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- College of Arts and Sciences, J. F. Oberlin University, Machida, Tokyo, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Paape T, Akiyama R, Cereghetti T, Onda Y, Hirao AS, Kenta T, Shimizu KK. Experimental and Field Data Support Range Expansion in an Allopolyploid Arabidopsis Owing to Parental Legacy of Heavy Metal Hyperaccumulation. Front Genet 2020; 11:565854. [PMID: 33193650 PMCID: PMC7554548 DOI: 10.3389/fgene.2020.565854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/04/2020] [Indexed: 01/31/2023] Open
Abstract
Empirical evidence is limited on whether allopolyploid species combine or merge parental adaptations to broaden habitats. The allopolyploid Arabidopsis kamchatica is a hybrid of the two diploid parents Arabidopsis halleri and Arabidopsis lyrata. A. halleri is a facultative heavy metal hyperaccumulator, and may be found in cadmium (Cd) and zinc (Zn) contaminated environments, as well as non-contaminated environments. A. lyrata is considered non-tolerant to these metals, but can be found in serpentine habitats. Therefore, the parents have adaptation to different environments. Here, we measured heavy metals in soils from native populations of A. kamchatica. We found that soil Zn concentration of nearly half of the sampled 40 sites was higher than the critical toxicity level. Many of the sites were near human construction, suggesting adaptation of A. kamchatica to artificially contaminated soils. Over half of the A. kamchatica populations had >1,000 μg g–1 Zn in leaf tissues. Using hydroponic treatments, most genotypes accumulated >3,000 μg g–1 Zn, with high variability among them, indicating substantial genetic variation in heavy metal accumulation. Genes involved in heavy metal hyperaccumulation showed an expression bias in the A. halleri-derived homeolog in widely distributed plant genotypes. We also found that two populations were found growing on serpentine soils. These data suggest that A. kamchatica can inhabit a range of both natural and artificial soil environments with high levels of ions that either of the parents specializes and that it can accumulate varying amount of heavy metals. Our field and experimental data provide a compelling example of combining genetic toolkits for soil adaptations to expand the habitat of an allopolyploid species.
Collapse
Affiliation(s)
- Timothy Paape
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Reiko Akiyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Teo Cereghetti
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Yoshihiko Onda
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Akira S Hirao
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan.,Faculty of Symbiotic Systems Science, Fukushima University, Fukushima, Japan
| | - Tanaka Kenta
- Sugadaira Montane Research Center, University of Tsukuba, Tsukuba, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| |
Collapse
|
4
|
Armstrong JJ, Takebayashi N, Wolf DE. Cold tolerance in the genus Arabidopsis. AMERICAN JOURNAL OF BOTANY 2020; 107:489-497. [PMID: 32096224 PMCID: PMC7137905 DOI: 10.1002/ajb2.1442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 01/02/2020] [Indexed: 05/11/2023]
Abstract
PREMISE Cold tolerance is an important factor limiting the geographic distribution and growing season for many plant species, yet few studies have examined variation in cold tolerance extensively within and among closely related species and compared that to their geographic distribution. METHODS This study examines cold tolerance within and among species in the genus Arabidopsis. We assessed cold tolerance by measuring electrolyte leakage from detached leaves in multiple populations of five Arabidopsis taxa. The temperature at which 50% of cells were lysed was considered the lethal temperature (LT50 ). RESULTS We found variability within and among taxa in cold tolerance. There was no significant within-species relationship between latitude and cold tolerance. However, the northern taxa, A. kamchatica, A. lyrata subsp. petraea, and A. lyrata subsp. lyrata, were more cold tolerant than A. thaliana and A. halleri subsp. gemmifera both before and after cold acclimation. Cold tolerance increased after cold acclimation (exposure to low, but nonfreezing temperatures) for all taxa, although the difference was not significant for A. halleri subsp. gemmifera. For all taxa except A. lyrata subsp. lyrata, the LT50 values for cold-acclimated plants were higher than the January mean daily minimum temperature (Tmin ), indicating that if plants were not insulated by snow cover, they would not likely survive winter at the northern edge of their range. CONCLUSIONS Arabidopsis lyrata and A. kamchatica were far more cold tolerant than A. thaliana. These extremely cold-tolerant taxa are excellent candidates for studying both the molecular and ecological aspects of cold tolerance.
Collapse
Affiliation(s)
- Jessica J. Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- University of Alaska Fairbanks, eCampus, P. O. Box 756700,
Fairbanks, AK 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
| | - Diana E. Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology
and Department of Biology and Wildlife, 2140 Koyukuk Drive, P. O. Box 757000,
Fairbanks, AK 99775 USA
- Author for correspondence
()
| |
Collapse
|
5
|
Armstrong JJ, Takebayashi N, Sformo T, Wolf DE. Cold tolerance in Arabidopsis kamchatica. AMERICAN JOURNAL OF BOTANY 2015; 102:439-448. [PMID: 25784477 DOI: 10.3732/ajb.1400373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED • PREMISE OF THE STUDY Cold tolerance is a critically important factor determining how plants will be influenced by climate change, including changes in snowcover and extreme weather events. Although a great deal is known about cold tolerance in Arabidopsis thaliana, it is not highly cold tolerant. This study examined cold tolerance and its genetic diversity in an herbaceous subarctic relative, Arabidopsis kamchatica, which generally occurs in much colder climates.• METHODS Thermal analysis and electrolyte leakage were used to estimate supercooling points and lethal temperatures (LT50) in cold-acclimated and nonacclimated families from three populations of A. kamchatica.• KEY RESULTS Arabidopsis kamchatica was highly cold tolerant, with a mean LT50 of -10.8°C when actively growing, and -21.8°C when cold acclimated. It also was able to supercool to very low temperatures. Surprisingly, actively growing plants supercooled more than acclimated plants (-14.7 vs. -12.7°C). There was significant genetic variation for cold tolerance both within and among populations. However, both cold tolerance and genetic diversity were highest in the midlatitude population rather than in the far north, indicating that adaptations to climate change are most likely to arise in the center of the species range rather than at the edges.• CONCLUSIONS Arabidopsis kamchatica is highly cold tolerant throughout its range. It is far more freeze tolerant than A. thaliana, and supercooled to lower temperatures, suggesting that A. kamchatica provides a valuable complement to A. thaliana for cold tolerance research.
Collapse
Affiliation(s)
- Jessica J Armstrong
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA University of Alaska Fairbanks, College of Natural Sciences and Mathematics, 900 Yukon Drive, Room 358, Fairbanks, Alaska 99775 USA
| | - Naoki Takebayashi
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA
| | - Todd Sformo
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA Department of Wildlife Management/ North Slope Borough, Barrow, Alaska 99723 USA
| | - Diana E Wolf
- University of Alaska Fairbanks, Institute of Arctic Biology and Department of Biology and Wildlife, 311 Irving I, Fairbanks, Alaska 99775 USA
| |
Collapse
|
6
|
Wolfe MD, Tonsor SJ. Adaptation to spring heat and drought in northeastern Spanish Arabidopsis thaliana. THE NEW PHYTOLOGIST 2014; 201:323-334. [PMID: 24117851 DOI: 10.1111/nph.12485] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/02/2013] [Indexed: 05/23/2023]
Abstract
The extent to which a species' environmental range reflects adaptive differentiation remains an open question. Environmental gradients can lead to adaptive divergence when differences in stressors among sites along the gradient place conflicting demands on the balance of stress responses. The extent to which this is accomplished through stress tolerance vs stress avoidance is also an open question. We present results from a controlled environment study of 48 lineages of Arabidopsis thaliana collected along a gradient in northeastern Spain across which temperatures increase and precipitation decreases with decreasing elevation. We tested the extent to which clinal adaptive divergence in heat and drought is explained through tolerance and avoidance traits by subjecting plants to a dynamic growth chamber cycle of increasing heat and drought stress analogous to low elevation spring in northeastern Spain. Lineages collected at low elevation were the most fit and fitness scaled with elevation of origin. Higher fitness was associated with earlier bolting, greater early allocation to increased numbers of inflorescences, reduction in rosette leaf photosynthesis and earlier fruit ripening. We propose that this is a syndrome of avoidance through early flowering accompanied by restructuring of the organism that adapts A. thaliana to low-elevation Mediterranean climates.
Collapse
Affiliation(s)
- Marnin D Wolfe
- Department of Biological Sciences, University of Pittsburgh, 162 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Stephen J Tonsor
- Department of Biological Sciences, University of Pittsburgh, 162 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
7
|
Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saumitou-Laprade P. Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). THE NEW PHYTOLOGIST 2012; 193:916-928. [PMID: 22225532 DOI: 10.1111/j.1469-8137.2011.04003.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arabidopsis halleri is a pseudometallophyte involved in numerous molecular studies of the adaptation to anthropogenic metal stress. In order to test the representativeness of genetic accessions commonly used in these studies, we investigated the A. halleri population genetic structure in Europe. Microsatellite and nucleotide polymorphisms from the nuclear and chloroplast genomes, respectively, were used to genotype 65 populations scattered over Europe. The large-scale population structure was characterized by a significant phylogeographic signal between two major genetic units. The localization of the phylogeographic break was assumed to result from vicariance between large populations isolated in southern and central Europe, on either side of ice sheets covering the Alps during the Quaternary ice ages. Genetic isolation was shown to be maintained in western Europe by the high summits of the Alps, whereas admixture was detected in the Carpathians. Considering the phylogeographic literature, our results suggest a distinct phylogeographic pattern for European species occurring in both mountain and lowland habitats. Considering the evolution of metal adaptation in A. halleri, it appears that recent adaptations to anthropogenic metal stress that have occurred within either phylogeographic unit should be regarded as independent events that potentially have involved the evolution of a variety of genetic mechanisms.
Collapse
Affiliation(s)
- Maxime Pauwels
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université de Lille-Lille1, F-59655 Villeneuve d'Ascq, France
| | - Xavier Vekemans
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université de Lille-Lille1, F-59655 Villeneuve d'Ascq, France
| | - Cécile Godé
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université de Lille-Lille1, F-59655 Villeneuve d'Ascq, France
| | - Hélène Frérot
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université de Lille-Lille1, F-59655 Villeneuve d'Ascq, France
| | - Vincent Castric
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université de Lille-Lille1, F-59655 Villeneuve d'Ascq, France
| | - Pierre Saumitou-Laprade
- Laboratoire de Génétique et Evolution des Populations Végétales, FRE CNRS 3268, Université de Lille-Lille1, F-59655 Villeneuve d'Ascq, France
| |
Collapse
|
8
|
Davey MP, Burrell MM, Woodward FI, Quick WP. Population-specific metabolic phenotypes of Arabidopsis lyrata ssp. petraea. THE NEW PHYTOLOGIST 2008; 177:380-388. [PMID: 18028292 DOI: 10.1111/j.1469-8137.2007.02282.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant populations growing at the margin of their range may exhibit traits that indicate genetic differentiation and adaptation to their local abiotic environment. Here, it was investigated whether geographically separated marginal populations of Arabidopsis lyrata ssp. petraea have distinct metabolic phenotypes within the plant foliage. Seeds of A. petraea were obtained from populations along a latitudinal gradient (49-64 N), namely Germany, Wales, Sweden and Iceland and grown in a controlled cabinet environment. Targeted metabolic profiles and fingerprints were obtained at the same initial developmental stage. The free amino acid compositions were population specific, with fold differences in arginine, aspartic acid, asparagines, glycine, phenylalanine, alanine, threonine, histidine, serine and gamma-aminobutyric acid (GABA) concentrations. Sucrose, mannose and fructose concentrations were also different between populations but polyhydric alcohol concentrations were not. Principal component analysis (PCA) of metabolite fingerprints revealed metabolic phenotypes for each population. It is suggested that glucosinolates were responsible for discriminating populations within the PCA. Metabolite fingerprinting and profiling has proved to be sufficiently sensitive to identify metabolic differences between plant populations. These findings show that there is significant natural variation in metabolism among populations of A. petraea.
Collapse
Affiliation(s)
- Matthew P Davey
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - Mike M Burrell
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - F Ian Woodward
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| | - W Paul Quick
- Animal and Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK
| |
Collapse
|