1
|
Zhong S, Xu Z, Li Y, Li C, Yu Y, Wang C, Du D. What modulates the impacts of acid rain on the allelopathy of the two Asteraceae invasives? ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:114-126. [PMID: 36652123 DOI: 10.1007/s10646-023-02623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Most of the allelopathic studies have focused on the independent allelopathy of one invasive plant, but have ignored the co-allelopathy of the two invasives. The variations in the type of acid rain can modulate the invasiveness of invasives via the changes in the allelopathy. Thus, it is vital to elucidate the allelopathy of invasives, particularly the co-allelopathy of the two invasives, under acid rain with different types, to illuminate the mechanisms driving the co-invasion of two invasives under diversified acid rain. However, little progress has been finished in this aspect presently. This study aimed to evaluate the co-allelopathy of two Asteraceae invasives Solidago canadensis L. and Erigeron annuus L. treated with acid rain with different nitrogen-to-sulfur ratios on seed germination and seedling growth of the horticultural Asteraceae species Lactuca sativa L. via a hydroponic experiment. Aqueous extracts of the two Asteraceae invasives generated obvious allelopathy on L. sativa. S. canadensis aqueous extracts caused stronger allelopathy. There may be an antagonistic effect for the co-allelopathy of the two Asteraceae invasives. Nitric acid at pH 5.6 weakened the allelopathy of the two Asteraceae invasives, but the other types of acid rain strengthened the allelopathy of the two Asteraceae invasives. The allelopathy of the two Asteraceae invasives increases with the increasing acidity of acid rain, but the allelopathy of the two Asteraceae invasives decreases with the increasing nitrogen-to-sulfur ratio of acid rain. Accordingly, the species number of invasives, and the acidity and type of acid rain modulated the impacts of acid rain on the allelopathy of the two Asteraceae invasives.
Collapse
Affiliation(s)
- Shanshan Zhong
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhelun Xu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yue Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuang Li
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Youli Yu
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Congyan Wang
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Daolin Du
- School of Emergency Management, Jiangsu University, Zhenjiang, 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Oduor AMO. Native plant species show evolutionary responses to invasion by Parthenium hysterophorus in an African savanna. THE NEW PHYTOLOGIST 2022; 233:983-994. [PMID: 34170513 DOI: 10.1111/nph.17574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Invasive plant species often competitively displace native plant species but some populations of native plant species can evolve adaptation to competition from invasive plants and persist in invaded habitats. However, studies are lacking that examine how variation in abiotic conditions in invaded landscapes may affect fitness of native plants that have adapted to compete with invasive plants. I tested whether invasion by Parthenium hysterophorus in Nairobi National Park - Kenya may have selected for native plant individuals with greater competitive ability than conspecific naïve natives in nutrient-rich and mesic soil conditions. I compared vegetative growth and seed yields of invader-experienced and conspecific naïve individuals of seven native species. Invader-experienced natives grew shorter than naïve natives regardless of growth conditions. Nevertheless, the two groups of native plants also exhibited treatment-specific differences in competitive ability against P. hysterophorus. Invader-experienced natives displayed plasticity in seed yield under drought treatment, while naïve natives did not. Moreover, drought treatment enhanced competitive effects of invader-experienced natives on P. hysterophorus, while nutrient enrichment relaxed competitive effects of invader-experienced natives on the invader. The results suggest that P. hysterophorus may have selected for shorter native plant genotypes that also exhibit plasticity in competitive ability under drought conditions.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, PO Box 52428 - 00200, Nairobi, Kenya
| |
Collapse
|
3
|
Mitchell N, Chamberlain SA, Whitney KD. Proximity to crop relatives determines some patterns of natural selection in a wild sunflower. Evol Appl 2021; 14:1328-1342. [PMID: 34025771 PMCID: PMC8127714 DOI: 10.1111/eva.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/27/2022] Open
Abstract
Abiotic and biotic heterogeneity result in divergent patterns of natural selection in nature, with important consequences for fundamental evolutionary processes including local adaptation, speciation, and diversification. However, increasing amounts of the global terrestrial surface are homogenized by agriculture (which covers nearly 50% of terrestrial vegetated land surface) and other anthropogenic activities. Agricultural intensification leads to highly simplified biotic communities for many taxa, which may alter natural selection through biotic selective agents. In particular, the presence of crops may alter selection on traits of closely related wild relatives via shared mutualists and antagonists such as pollinators and herbivores. We asked how the presence of crop sunflowers (Helianthus annuus) alters natural selection on reproductive traits of wild sunflowers (Helianthus annuus texanus). Across two years and multiple sites, we planted replicated paired populations of wild H. a. texanus bordering sunflower crop fields versus approximately 2.5 km away. We measured fitness, floral traits, and interactions of the plants with insect pollinators and seed predators. We found limited evidence that proximity to crop sunflowers altered selection on individual traits, as total or direct selection differed by proximity for only three of eleven traits: ray length (a marginally significant effect), Isophrictis (Gelechiidae, moth) attack, and Neolasioptera (Cecidomyiidae, midge) attack. Direct (but not total) selection was significantly more heterogenous far from crop sunflowers relative to near crop sunflowers. Both mutualist pollinators and antagonist seed predators mediated differences in selection in some population-pairs near versus far from crop sunflowers. Here, we demonstrate that agriculture can influence the evolution of wild species via altered selection arising from shared biotic interactions, complementing previously demonstrated evolutionary effects via hybridization.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of Wisconsin – Eau ClaireEau ClaireWIUSA
| | - Scott A. Chamberlain
- Department of Ecology & Evolutionary BiologyRice UniversityHoustonTXUSA
- Present address:
rOpenSciDepartment of Environmental Science, Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | | |
Collapse
|
4
|
Petipas RH, Geber MA, Lau JA. Microbe-mediated adaptation in plants. Ecol Lett 2021; 24:1302-1317. [PMID: 33913572 DOI: 10.1111/ele.13755] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022]
Abstract
Interactions with microbial symbionts have yielded great macroevolutionary innovations across the tree of life, like the origins of chloroplasts and the mitochondrial powerhouses of eukaryotic cells. There is also increasing evidence that host-associated microbiomes influence patterns of microevolutionary adaptation in plants and animals. Here we describe how microbes can facilitate adaptation in plants and how to test for and differentiate between the two main mechanisms by which microbes can produce adaptive responses in higher organisms: microbe-mediated local adaptation and microbe-mediated adaptive plasticity. Microbe-mediated local adaptation is when local plant genotypes have higher fitness than foreign genotypes because of a genotype-specific affiliation with locally beneficial microbes. Microbe-mediated adaptive plasticity occurs when local plant phenotypes, elicited by either the microbial community or the non-microbial environment, have higher fitness than foreign phenotypes as a result of interactions with locally beneficial microbes. These microbial effects on adaptation can be difficult to differentiate from traditional modes of adaptation but may be prevalent. Ignoring microbial effects may lead to erroneous conclusions about the traits and mechanisms underlying adaptation, hindering management decisions in conservation, restoration, and agriculture.
Collapse
Affiliation(s)
- Renee H Petipas
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA.,Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jennifer A Lau
- Department of Biology, Indiana University, Bloomington, IN, USA.,The Environmental Resilience Institute, Indiana University, Bloomington, IN, USA
| |
Collapse
|
5
|
Wei M, Wang S, Wu B, Cheng H, Wang C. Combined allelopathy of Canada goldenrod and horseweed on the seed germination and seedling growth performance of lettuce. LANDSCAPE AND ECOLOGICAL ENGINEERING 2020. [DOI: 10.1007/s11355-020-00421-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Evolution of an inferior competitor increases resistance to biological invasion. Nat Ecol Evol 2020; 4:419-425. [PMID: 32066886 DOI: 10.1038/s41559-020-1105-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/02/2020] [Indexed: 01/24/2023]
Abstract
Biodiversity is imperilled by the spatial homogenization of life on Earth. As new species invade ecological communities, there is urgent need to understand when native species might resist or succumb to interactions with new species. In the California Floristic Province, a global biodiversity hotspot, we show that populations of a native grass (Vulpia microstachys) have evolved to resist the competitive impacts of a dominant European invader (Bromus hordeaceus). Contrary to classic theory, which predicts that competing species co-evolve to differentiate their niches, our evidence is instead most consistent with the native species having evolved to better compete for those resources used by the invader, curtailing the invader's spread. Evolution to resist an invader was achieved despite populations interacting within a diverse background community (22 species 0.5 m-2 on average), refuting the oft-cited hypothesis that high diversity precludes the evolution of pairwise species interactions. Lastly, unlike studies that have explored the demographic consequences of evolution under competition, ours does so with naturally evolved populations. Our study highlights evolution as an underappreciated coexistence mechanism, acting to buffer species from extinction in the face of biological invasion.
Collapse
|
7
|
Alba C, Fahey C, Flory SL. Global change stressors alter resources and shift plant interactions from facilitation to competition over time. Ecology 2019; 100:e02859. [DOI: 10.1002/ecy.2859] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/22/2019] [Accepted: 07/08/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Christina Alba
- Agronomy Department University of Florida McCarty Hall B Gainesville Florida 32611 USA
- Research and Conservation Department Denver Botanic Gardens 909 York Street Denver Colorado 80206 USA
| | - Catherine Fahey
- School of Natural Resources and Environment University of Florida 103 Black Hall Gainesville Florida 32611 USA
- Biology Department Algoma University 1520 Queen Street East Sault Ste. Marie Ontario P6A 2G4 Canada
| | - S. Luke Flory
- Agronomy Department University of Florida McCarty Hall B Gainesville Florida 32611 USA
| |
Collapse
|
8
|
Lau JA, terHorst CP. Evolutionary responses to global change in species‐rich communities. Ann N Y Acad Sci 2019; 1476:43-58. [DOI: 10.1111/nyas.14221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/10/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Jennifer A. Lau
- Department of Biology, Environmental Resilience Institute Indiana University Bloomington Indiana
| | - Casey P. terHorst
- Biology Department California State University Northridge California
| |
Collapse
|
9
|
Lyytinen A, Lindström L. Responses of a native plant species from invaded and uninvaded areas to allelopathic effects of an invader. Ecol Evol 2019; 9:6116-6123. [PMID: 31161023 PMCID: PMC6540692 DOI: 10.1002/ece3.5195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/12/2022] Open
Abstract
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co-occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co-occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.
Collapse
Affiliation(s)
- Anne Lyytinen
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions ResearchUniversity of JyväskyläJyväskyläFinland
| | - Leena Lindström
- Department of Biological and Environmental Science, Centre of Excellence in Biological Interactions ResearchUniversity of JyväskyläJyväskyläFinland
| |
Collapse
|
10
|
van Kleunen M, Bossdorf O, Dawson W. The Ecology and Evolution of Alien Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062654] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the state of the art of alien plant research with emphasis on conceptual advances and knowledge gains on general patterns and drivers, biotic interactions, and evolution. Major advances include the identification of different invasion stages and invasiveness dimensions (geographic range, habitat specificity, local abundance) and the identification of appropriate comparators while accounting for propagule pressure and year of introduction. Developments in phylogenetic and functional trait research bear great promise for better understanding of the underlying mechanisms. Global patterns are emerging with propagule pressure, disturbance, increased resource availability, and climate matching as major invasion drivers, but species characteristics also play a role. Biotic interactions with resident communities shape invasion outcomes, with major roles for species diversity, enemies, novel weapons, and mutualists. Mounting evidence has been found for rapid evolution of invasive aliens and evolutionary responses of natives, but a mechanistic understanding requires tighter integration of molecular and phenotypic approaches. We hope the open questions identified in this review will stimulate further research on the ecology and evolution of alien plants.
Collapse
Affiliation(s)
- Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Ecology Group, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Group, Institute of Evolution and Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
11
|
An invasive population of Solidago canadensis is less sensitive to warming and nitrogen-addition than its native population in an invaded range. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1812-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Huang F, Lankau R, Peng S. Coexistence via coevolution driven by reduced allelochemical effects and increased tolerance to competition between invasive and native plants. THE NEW PHYTOLOGIST 2018; 218:357-369. [PMID: 29205373 DOI: 10.1111/nph.14937] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Coevolution can promote long-term coexistence of two competing species if selection acts to reduce the fitness inequality between competitors and/or strengthen negative frequency dependence within each population. However, clear coevolution between plant competitors has been rarely documented. Plant invasions offer opportunities to capture the process of coevolution. Here we investigated how the developing relationship between an invasive forb, Alliaria petiolata, and a native competitor, Pilea pumila, may affect their long-term coexistence, by testing the competitive effects of populations of varying lengths of co-occurrence on each other across a chronosequence of invasion history. Alliaria petiolata and P. pumila tended to develop greater tolerance to competition over invasion history. Their coexistence was promoted more by increases in stabilizing relative to equalizing processes. These changes likely stem in part from reductions in allelopathic traits in the invader and evolution of tolerance in the native. These results suggested that some native species can evolve tolerance against the competitive effects of strong invaders, which likely promoted their persistence in invaded communities. However, the potential for coevolutionary rescue of competing populations is likely to vary across native species, and evolutionary processes should not be expected to compensate for the ecological consequences of exotic invasions.
Collapse
Affiliation(s)
- Fangfang Huang
- State Key Lab of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Richard Lankau
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Shaolin Peng
- State Key Lab of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
13
|
Gibson A, Nelson CR, Atwater DZ. Response of bluebunch wheatgrass to invasion: Differences in competitive ability among invader‐experienced and invader‐naïve populations. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexis Gibson
- Department of Ecosystem and Conservation Sciences W.A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Cara R. Nelson
- Department of Ecosystem and Conservation Sciences W.A. Franke College of Forestry and Conservation University of Montana Missoula MT USA
| | - Daniel Z. Atwater
- Department of Plant Pathology, Physiology, and Weed Science Virginia Polytechnic Institute and State University Blacksburg VA USA
| |
Collapse
|
14
|
Golivets M, Wallin KF. Neighbour tolerance, not suppression, provides competitive advantage to non‐native plants. Ecol Lett 2018. [DOI: 10.1111/ele.12934] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Golivets
- The Rubenstein School of Environment and Natural Resources The University of Vermont Burlington VT USA
| | - Kimberly F. Wallin
- The Rubenstein School of Environment and Natural Resources The University of Vermont Burlington VT USA
- USDA Forest Service Northern Research Station Burlington VT USA
| |
Collapse
|
15
|
Gillis MK, Walsh MR. Rapid evolution mitigates the ecological consequences of an invasive species ( Bythotrephes longimanus) in lakes in Wisconsin. Proc Biol Sci 2018; 284:rspb.2017.0814. [PMID: 28679729 PMCID: PMC5524501 DOI: 10.1098/rspb.2017.0814] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/31/2017] [Indexed: 11/26/2022] Open
Abstract
Invasive species have extensive negative consequences for biodiversity and ecosystem health. Novel species also drive contemporary evolution in many native populations, which could mitigate or amplify their impacts on ecosystems. The predatory zooplankton Bythotrephes longimanus invaded lakes in Wisconsin, USA, in 2009. This invasion caused precipitous declines in zooplankton prey (Daphnia pulicaria), with cascading impacts on ecosystem services (water clarity). Here, we tested the link between Bythotrephes invasion, evolution in Daphnia and post-invasion ecological dynamics using 15 years of long-term data in conjunction with comparative experiments. Invasion by Bythotrephes is associated with rapid increases in the body size of Daphnia. Laboratory experiments revealed that such shifts have a genetic component; third-generation laboratory-reared Daphnia from ‘invaded’ lakes are significantly larger and exhibit greater reproductive effort than individuals from ‘uninvaded’ lakes. This trajectory of evolution should accelerate Daphnia population growth and enhance population persistence. We tested this prediction by comparing analyses of long-term data with laboratory-based simulations, and show that rapid evolution in Daphnia is associated with increased population growth in invaded lakes.
Collapse
Affiliation(s)
- Michael K Gillis
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
16
|
Charlebois JA, Sargent RD. No consistent pollinator-mediated impacts of alien plants on natives. Ecol Lett 2017; 20:1479-1490. [PMID: 28901037 DOI: 10.1111/ele.12831] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/08/2017] [Accepted: 07/31/2017] [Indexed: 11/28/2022]
Abstract
The introduction of an alien plant is widely assumed to have negative consequences for the pollinator-mediated fitness of nearby natives. Indeed, a number of studies, including a highly cited meta-analysis, have concluded that the trend for such interactions is competitive. Here we provide evidence that publication bias and study design have obscured our ability to assess the pollinator-mediated impacts of alien plants. In a meta-analysis of 76 studies, we demonstrate that alien/native status does not predict the outcome of pollinator-mediated interactions among plants. Moreover, we found no evidence that similarity in floral traits or phylogenetic distance between species pairs influences the outcome of pollinator-mediated interactions. Instead, we report that aspects of study design, such as distance between the control and nearest neighbour, and/or the arrangement of study plants better predict the impact of a neighbour than does alien/native status. Our study sheds new light on the role that publication bias and experimental design play in the evaluation of key patterns in ecology. We conclude that, due to the absence of clear, generalisable pollinator-mediated impacts of alien species, management schemes should base decisions on community-wide assessments of the impacts of individual alien plant species, and not solely on alien/native status itself.
Collapse
Affiliation(s)
| | - Risa D Sargent
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Rodríguez-Verdugo A, Buckley J, Stapley J. The genomic basis of eco-evolutionary dynamics. Mol Ecol 2017; 26:1456-1464. [PMID: 28160333 DOI: 10.1111/mec.14045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 12/30/2022]
Abstract
Recent recognition that ecological and evolutionary processes can operate on similar timescales has led to a rapid increase in theoretical and empirical studies on eco-evolutionary dynamics. Progress in the fields of evolutionary biology, genomics and ecology is greatly enhancing our understanding of rapid adaptive processes, the predictability of adaptation and the genetics of ecologically important traits. However, progress in these fields has proceeded largely independently of one another. In an attempt to better integrate these fields, the centre for 'Adaptation to a Changing Environment' organized a conference entitled 'The genomic basis of eco-evolutionary change' and brought together experts in ecological genomics and eco-evolutionary dynamics. In this review, we use the work of the invited speakers to summarize eco-evolutionary dynamics and discuss how they are relevant for understanding and predicting responses to contemporary environmental change. Then, we show how recent advances in genomics are contributing to our understanding of eco-evolutionary dynamics. Finally, we highlight the gaps in our understanding of eco-evolutionary dynamics and recommend future avenues of research in eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Alejandra Rodríguez-Verdugo
- Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland.,Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
| | - James Buckley
- Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland
| | - Jessica Stapley
- Adaptation to a Changing Environment, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
18
|
|
19
|
Bassar RD, Simon T, Roberts W, Travis J, Reznick DN. The evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple community. Evolution 2016; 71:373-385. [DOI: 10.1111/evo.13086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Ronald D. Bassar
- Department of Zoology University of Oxford Oxford United Kingdom
| | - Troy Simon
- Odum School of Ecology University of Georgia Athens Georgia
- Warnell School of Forestry and Natural Resources University of Georgia Athens Georgia
| | - William Roberts
- Department of Biology University of California Riverside California
| | - Joseph Travis
- Department of Biological Science Florida State University Tallahassee Florida
| | - David N. Reznick
- Department of Biology University of California Riverside California
| |
Collapse
|
20
|
Gibson AL, Espeland EK, Wagner V, Nelson CR. Can local adaptation research in plants inform selection of native plant materials? An analysis of experimental methodologies. Evol Appl 2016; 9:1219-1228. [PMID: 27877201 PMCID: PMC5108214 DOI: 10.1111/eva.12379] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/27/2016] [Indexed: 12/03/2022] Open
Abstract
Local adaptation is used as a criterion to select plant materials that will display high fitness in new environments. A large body of research has explored local adaptation in plants, however, to what extent findings can inform management decisions has not been formally evaluated. We assessed local adaptation literature for six key experimental methodologies that have the greatest effect on the application of research to selecting plant materials for natural resource management: experimental environment, response variables, maternal effects, intraspecific variation, selective agents, and spatial and temporal variability. We found that less than half of experiments used reciprocal transplants or natural field conditions, which are both informative for revegetation and restoration. Population growth rate was rarely (5%) assessed, and most studies measured only single generations (96%) and ran for less than a year. Emergence and establishment are limiting factors in successful revegetation and restoration, but the majority of studies measured later life‐history stages (66%). Additionally, most studies included limited replication at the population and habitat levels and tested response to single abiotic selective factors (66%). Local adaptation research should be cautiously applied to management; future research could use alternative methodologies to allow managers to directly apply findings.
Collapse
Affiliation(s)
- Alexis L Gibson
- College of Forestry and Conservation University of Montana Missoula MT USA
| | | | - Viktoria Wagner
- College of Forestry and Conservation University of Montana Missoula MT USA; Present address: Department of Botany and Zoology Masaryk University Kotlářská 2CZ-611 37 Brno Czech Republic
| | - Cara R Nelson
- College of Forestry and Conservation University of Montana Missoula MT USA
| |
Collapse
|
21
|
Weathers KC, Groffman PM, Van Dolah E, Bernhardt E, Grimm NB, McMahon K, Schimel J, Paolisso M, Maranger R, Baer S, Brauman K, Hinckley E. Frontiers in Ecosystem Ecology from a Community Perspective: The Future is Boundless and Bright. Ecosystems 2016. [DOI: 10.1007/s10021-016-9967-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Fletcher RA, Callaway RM, Atwater DZ. An exotic invasive plant selects for increased competitive tolerance, but not competitive suppression, in a native grass. Oecologia 2016; 181:499-505. [PMID: 26897605 DOI: 10.1007/s00442-016-3584-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/06/2016] [Indexed: 11/25/2022]
Abstract
Exotic invasive plants can exert strong selective pressure for increased competitive ability in native plants. There are two fundamental components of competitive ability: suppression and tolerance, and the current paradigm that these components have equal influences on a species' overall competitive ability has been recently questioned. If these components do not have equal influences on overall ability, then selection on competitive tolerance and suppression may be disproportionate. We used naturally invaded communities to study the effects of selection caused by an invasive forb, Centaurea stoebe, on a native grass, Pseudoroegneria spicata. P. spicata plants were harvested from within dense C. stoebe patches and from nearby uninvaded areas, divided clonally into replicates, then transplanted into a common garden where they grew alone or competed with C. stoebe. We found that P. spicata plants collected from within C. stoebe patches were significantly more tolerant of competition with C. stoebe than P. spicata plants collected from uninvaded areas, but plants from inside invaded patches were not superior at suppressing C. stoebe. These results are consistent with the hypothesis that strong competitors may select for tolerance to competition more than for the ability to suppress neighbors. This has important implications for how native plant communities may respond to invasion over time, and how invasive and native species may ultimately coexist.
Collapse
Affiliation(s)
- Rebecca A Fletcher
- Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA.
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24060, USA.
| | - Ragan M Callaway
- Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
| | - Daniel Z Atwater
- Division of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
23
|
Li YP, Feng YL, Chen YJ, Tian YH. Soil microbes alleviate allelopathy of invasive plants. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0819-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Berthon K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol Invasions 2015. [DOI: 10.1007/s10530-015-0874-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Lau JA, terHorst CP. Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints. Mol Ecol 2015; 24:1987-98. [PMID: 25677573 DOI: 10.1111/mec.13084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/29/2014] [Accepted: 01/02/2015] [Indexed: 01/17/2023]
Abstract
Biological invasions are a major challenge to native communities and have the potential to exert strong selection on native populations. As a result, native taxa may adapt to the presence of invaders through increased competitive ability, increased antipredator defences or altered morphologies that may limit encounters with toxic prey. Yet, in some cases, species may fail to adapt to biological invasions. Many challenges to adaptation arise because biological invasions occur in complex species-rich communities in spatially and temporally variable environments. Here, we review these 'ecological' constraints on adaptation, focusing on the complications that arise from the need to simultaneously adapt to multiple biotic agents and from temporal and spatial variation in both selection and demography. Throughout, we illustrate cases where these constraints might be especially important in native populations faced with biological invasions. Our goal was to highlight additional complexities empiricists should consider when studying adaptation to biological invasions and to begin to identify conditions when adaptation may fail to be an effective response to invasion.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | | |
Collapse
|
26
|
Soliveres S, Smit C, Maestre FT. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities. Biol Rev Camb Philos Soc 2015; 90:297-313. [PMID: 24774563 PMCID: PMC4407973 DOI: 10.1111/brv.12110] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 12/22/2022]
Abstract
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant-plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant-plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant-plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant-plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity-ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.
Collapse
Affiliation(s)
- Santiago Soliveres
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| | - Christian Smit
- Community and Conservation Ecology group, Centre for Evolutionary and Ecological Studies, University of Groningen, P.O. Box 11103, Nijenborg 7, 9700 CC Groningen, the Netherland
| | - Fernando T. Maestre
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
27
|
Beans CM, Roach DA. An invasive plant alters phenotypic selection on the vegetative growth of a native congener. AMERICAN JOURNAL OF BOTANY 2015; 102:217-224. [PMID: 25667074 DOI: 10.3732/ajb.1400355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PREMISE OF THE STUDY The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? METHODS We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. KEY RESULTS We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. CONCLUSIONS This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence.
Collapse
Affiliation(s)
- Carolyn M Beans
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, Virginia 22904-4328 USA
| | - Deborah A Roach
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, Virginia 22904-4328 USA
| |
Collapse
|
28
|
Lankau RA, Strauss SY. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol Appl 2015; 4:338-53. [PMID: 25567977 PMCID: PMC3352561 DOI: 10.1111/j.1752-4571.2010.00173.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Accepted: 11/18/2010] [Indexed: 11/26/2022] Open
Abstract
Environmental management typically seeks to increase or maintain the population sizes of desirable species and to decrease population sizes of undesirable pests, pathogens, or invaders. With changes in population size come long-recognized changes in ecological processes that act in a density-dependent fashion. While the ecological effects of density dependence have been well studied, the evolutionary effects of changes in population size, via changes in ecological interactions with community members, are underappreciated. Here, we provide examples of changing selective pressures on, or evolution in, species as a result of changes in either density of conspecifics or changes in the frequency of heterospecific versus conspecific interactions. We also discuss the management implications of such evolutionary responses in species that have experienced rapid increases or decreases in density caused by human actions.
Collapse
Affiliation(s)
- Richard A Lankau
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, IL, USA ; Department of Evolution and Ecology UC Davis, Davis, CA, USA
| | - Sharon Y Strauss
- Illinois Natural History Survey, University of Illinois Urbana-Champaign, IL, USA ; Department of Evolution and Ecology UC Davis, Davis, CA, USA
| |
Collapse
|
29
|
Leger EA, Espeland EK. Coevolution between native and invasive plant competitors: implications for invasive species management. Evol Appl 2015; 3:169-78. [PMID: 25567917 PMCID: PMC3352482 DOI: 10.1111/j.1752-4571.2009.00105.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/22/2009] [Indexed: 11/30/2022] Open
Abstract
Invasive species may establish in communities because they are better competitors than natives, but in order to remain community dominants, the competitive advantage of invasive species must be persistent. Native species that are not extirpated when highly invasive species are introduced are likely to compete with invaders. When population sizes and genetic diversity of native species are large enough, natives may be able to evolve traits that allow them to co-occur with invasive species. Native species may also evolve to become significant competitors with invasive species, and thus affect the fitness of invaders. Invasive species may respond in turn, creating either transient or continuing coevolution between competing species. In addition to demographic factors such as population size and growth rates, a number of factors including gene flow, genetic drift, the number of selection agents, encounter rates, and genetic diversity may affect the ability of native and invasive species to evolve competitive ability against one another. We discuss how these factors may differ between populations of native and invasive plants, and how this might affect their ability to respond to selection. Management actions that maintain genetic diversity in native species while reducing population sizes and genetic diversity in invasive species could promote the ability of natives to evolve improved competitive ability.
Collapse
Affiliation(s)
- Elizabeth A Leger
- Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, USA
| | | |
Collapse
|
30
|
Morton TAL, Thorn A, Reed JM, Van Driesche RG, Casagrande RA, Chew FS. Modeling the decline and potential recovery of a native butterfly following serial invasions by exotic species. Biol Invasions 2014. [DOI: 10.1007/s10530-014-0826-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Oduor AMO. Evolutionary responses of native plant species to invasive plants: a review. THE NEW PHYTOLOGIST 2013; 200:986-92. [PMID: 24712050 DOI: 10.1111/nph.12429] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.
Collapse
|
32
|
Deck A, Muir A, Strauss S. Transgenerational soil-mediated differences between plants experienced or naïve to a grass invasion. Ecol Evol 2013; 3:3663-71. [PMID: 24198931 PMCID: PMC3810866 DOI: 10.1002/ece3.716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 12/02/2022] Open
Abstract
Invasive species may undergo rapid change as they invade. Native species persisting in invaded areas may also experience rapid change over this short timescale relative to native populations in uninvaded areas. We investigated the response of the native Achillea millefolium to soil from Holcus lanatus-invaded and uninvaded areas, and we sought to determine whether differential responses between A. millefolium from invaded (invader experienced) and uninvaded (invader naïve) areas were mediated by soil community changes. Plants grown from seed from experienced and naïve areas responded differently to invaded and uninvaded soil with respect to germination time, biomass, and height. Overall, experienced plants grew faster and taller than their naïve counterparts. Naïve native plants showed negative feedbacks with their home soil and positive feedbacks with invaded soil; experienced plants were less responsive to soil differences. Our results suggest that native plants naïve to invasion may be more sensitive to soil communities than experienced plants, consistent with recent studies. While differences between naïve and experienced plants are transgenerational, our design cannot differentiate between differences that are genetically based, plastic, or both. Regardless, our results highlight the importance of seed source and population history in restoration, emphasizing the restoration potential of experienced seed sources.
Collapse
Affiliation(s)
- Anna Deck
- Department of Evolution and Ecology, University of California Davis, California
| | | | | |
Collapse
|
33
|
Porter SS. Adaptive divergence in seed color camouflage in contrasting soil environments. THE NEW PHYTOLOGIST 2013; 197:1311-1320. [PMID: 23312014 DOI: 10.1111/nph.12110] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
Although adaptive plant population divergence across contrasting soil conditions is often driven by abiotic soil factors, natural enemies may also contribute. Cryptic matching to the native soil color is a form of defensive camouflage that seeds can use to avoid detection by seed predators. The legume Acmispon wrangelianus occurs across a variety of gray-green serpentine soils and brown nonserpentine soils. Quantitative digital image analysis of seed and soil colors was used to test whether genetically based seed color is a closer match to the color of the native soil than to the color of other nearby soils. Lineages bear seeds that more closely match the color of their native serpentine or nonserpentine soil type than the opposing soil type. Further, even within a soil type, lineages bear seeds with a closer color match to the soil at their native site than to other sites. The striking concordance between seed and native soil color suggests that natural selection for locally camouflaged seed color morphs, probably driven by seed predators, may maintain adaptive divergence in pigmentation, despite the opportunity for migration between soil environments.
Collapse
Affiliation(s)
- Stephanie S Porter
- The Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
34
|
Van der Putten WH. Climate Change, Aboveground-Belowground Interactions, and Species' Range Shifts. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160423] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in climate, land use, fire incidence, and ecological connections all may contribute to current species' range shifts. Species shift range individually, and not all species shift range at the same time and rate. This variation causes community reorganization in both the old and new ranges. In terrestrial ecosystems, range shifts alter aboveground-belowground interactions, influencing species abundance, community composition, ecosystem processes and services, and feedbacks within communities and ecosystems. Thus, range shifts may result in no-analog communities where foundation species and community genetics play unprecedented roles, possibly leading to novel ecosystems. Long-distance dispersal can enhance the disruption of aboveground-belowground interactions of plants, herbivores, pathogens, symbiotic mutualists, and decomposer organisms. These effects are most likely stronger for latitudinal than for altitudinal range shifts. Disrupted aboveground-belowground interactions may have influenced historical postglacial range shifts as well. Assisted migration without considering aboveground-belowground interactions could enhance risks of such range shift–induced invasions.
Collapse
Affiliation(s)
- Wim H. Van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW)/Laboratory of Nematology, Wageningen University, 6700 ES, Wageningen, The Netherlands
| |
Collapse
|
35
|
Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci U S A 2012; 109:14058-62. [PMID: 22891306 DOI: 10.1073/pnas.1202319109] [Citation(s) in RCA: 337] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Global change is challenging plant and animal populations with novel environmental conditions, including increased atmospheric CO(2) concentrations, warmer temperatures, and altered precipitation regimes. In some cases, contemporary or "rapid" evolution can ameliorate the effects of global change. However, the direction and magnitude of evolutionary responses may be contingent upon interactions with other community members that also are experiencing novel environmental conditions. Here, we examine plant adaptation to drought stress in a multigeneration experiment that manipulated aboveground-belowground feedbacks between plants and soil microbial communities. Although drought stress reduced plant growth and accelerated plant phenologies, surprisingly, plant evolutionary responses to drought were relatively weak. In contrast, plant fitness in both drought and nondrought environments was linked strongly to the rapid responses of soil microbial community structure to moisture manipulations. Specifically, plants were most fit when their contemporary environmental conditions (wet vs. dry soil) matched the historical environmental conditions (wet vs. dry soil) of their associated microbial community. Together, our findings suggest that, when faced with environmental change, plants may not be limited to "adapt or migrate" strategies; instead, they also may benefit from association with interacting species, especially diverse soil microbial communities, that respond rapidly to environmental change.
Collapse
|
36
|
Dostál P, Weiser M, Koubek T. Native jewelweed, but not other native species, displays post-invasion trait divergence. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2011.20333.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Rowe CLJ, Leger EA. Competitive seedlings and inherited traits: a test of rapid evolution of Elymus multisetus (big squirreltail) in response to cheatgrass invasion. Evol Appl 2011; 4:485-98. [PMID: 25567997 PMCID: PMC3352529 DOI: 10.1111/j.1752-4571.2010.00162.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 09/02/2010] [Indexed: 11/30/2022] Open
Abstract
Widespread invasion by Bromus tectorum (cheatgrass) in the Intermountain West has drastically altered native plant communities. We investigated whether Elymus multisetus (big squirreltail) is evolving in response to invasion and what traits contribute to increased performance. Seedlings from invaded areas exhibited significantly greater tolerance to B. tectorum competition and a greater ability to suppress B. tectorum biomass than seedlings from adjacent uninvaded areas. To identify potentially adaptive traits, we examined which phenological and phenotypic traits were correlated with seedling performance within the uninvaded area, determined their genetic variation by measuring sibling resemblance, and asked whether trait distribution had shifted in invaded areas. Increased tolerance to competition was correlated with early seedling root to shoot ratio, root fork number, and fine root length. Root forks differed among families, but none of these traits differed significantly across invasion status. Additionally, we surveyed more broadly for traits that varied between invaded and uninvaded areas. Elymus multisetus plants collected from invaded areas were smaller, allocated more biomass to roots, and produced a higher percentage of fine roots than plants from uninvaded areas. The ability of native populations to evolve in response to invasion has significant implications for the management and restoration of B. tectorum-invaded communities.
Collapse
Affiliation(s)
| | - Elizabeth A Leger
- Department of Natural Resources and Environmental Science, University of Nevada Reno, NV, USA
| |
Collapse
|
38
|
Heath KD, Lau JA. Herbivores alter the fitness benefits of a plant–rhizobium mutualism. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2010.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Lankau RA. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. THE NEW PHYTOLOGIST 2011; 189:536-48. [PMID: 20958303 DOI: 10.1111/j.1469-8137.2010.03481.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Invaders can gain ecological advantages because of their evolutionary novelty, but little is known about how these novel advantages will change over time as the invader and invaded community evolve in response to each other. Invasive plants often gain such an advantage through alteration of soil microbial communities. In soil communities sampled from sites along a gradient of invasion history with Alliaria petiolata, microbial richness tended to decline, but the community's resistance to A. petiolata's effects generally increased with increasing history of invasion. However, sensitive microbial taxa appeared to recover in the two oldest sites, leading to an increase in richness, but consequent decrease in resistance. This may be because of evolutionary changes in the A. petiolata populations, which tend to reduce their investment to allelopathic compounds over time. These results show that, over time, microbial communities can develop resistance to an invasive plant but at the cost of lower richness. However, over longer time-scales evolution in the invasive species may allow for the recovery of soil microbial communities.
Collapse
Affiliation(s)
- Richard A Lankau
- Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, IL, USA.
| |
Collapse
|
40
|
Mercer KL, Perales HR. Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 2010; 3:480-93. [PMID: 25567941 PMCID: PMC3352508 DOI: 10.1111/j.1752-4571.2010.00137.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 12/01/2022] Open
Abstract
Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.
Collapse
Affiliation(s)
- Kristin L Mercer
- Department of Horticulture and Crop Science, The Ohio State University Columbus, OH, USA
| | - Hugo R Perales
- Departamento de Agroecologia, El Colegio de la Frontera Sur, San Cristobal, Chiapas, Mexico and Diversity for Livelihoods Programme, Bioversity International Rome, Italy
| |
Collapse
|
41
|
Abstract
Studying how the fitness benefits of mutualism differ among a wide range of partner genotypes, and at multiple spatial scales, can shed light on the processes that maintain mutualism and structure coevolutionary interactions. Using legumes and rhizobia from three natural populations, I studied the symbiotic fitness benefits for both partners in 108 plant maternal family by rhizobium strain combinations. Genotype-by-genotype (G x G) interactions among local genotypes and among partner populations determined, in part, the benefits of mutualism for both partners; for example, the fitness effects of particular rhizobium strains ranged from uncooperative to mutualistic depending on the plant family. Correlations between plant and rhizobium fitness benefits suggest a trade off, and therefore a potential conflict, between the interests of the two partners. These results suggest that legume-rhizobium mutualisms are dynamic at multiple spatial scales, and that strictly additive models of mutualism benefits may ignore dynamics potentially important to both the maintenance of genetic variation and the generation of geographic patterns in coevolutionary interactions.
Collapse
Affiliation(s)
- Katy D Heath
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA.
| |
Collapse
|
42
|
Native plant/herbivore interactions as determinants of the ecological and evolutionary effects of invasive mammalian herbivores: the case of the common brushtail possum. Biol Invasions 2009. [DOI: 10.1007/s10530-009-9629-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Crémieux L, Bischoff A, Šmilauerová M, Lawson CS, Mortimer SR, Doležal J, Lanta V, Edwards AR, Brook AJ, Tscheulin T, Macel M, Lepš J, Müller-Schärer H, Steinger T. Potential contribution of natural enemies to patterns of local adaptation in plants. THE NEW PHYTOLOGIST 2008; 180:524-533. [PMID: 18627495 DOI: 10.1111/j.1469-8137.2008.02545.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Genetic differentiation among plant populations and adaptation to local environmental conditions are well documented. However, few studies have examined the potential contribution of plant antagonists, such as insect herbivores and pathogens, to the pattern of local adaptation. Here, a reciprocal transplant experiment was set up at three sites across Europe using two common plant species, Holcus lanatus and Plantago lanceolata. The amount of damage by the main above-ground plant antagonists was measured: a rust fungus infecting Holcus and a specialist beetle feeding on Plantago, both in low-density monoculture plots and in competition with interspecific neighbours. Strong genetic differentiation among provenances in the amount of damage by antagonists in both species was found. Local provenances of Holcus had significantly higher amounts of rust infection than foreign provenances, whereas local provenances of Plantago were significantly less damaged by the specialist beetle than the foreign provenances. The presence of surrounding vegetation affected the amount of damage but had little influence on the ranking of plant provenances. The opposite pattern of population differentiation in resistance to local antagonists in the two species suggests that it will be difficult to predict the consequences of plant translocations for interactions with organisms of higher trophic levels.
Collapse
Affiliation(s)
- Lisèle Crémieux
- University of Fribourg, Department of Biology, Unit of Ecology and Evolution, Chemin du musée 10, CH-1700 Fribourg, Switzerland
| | - Armin Bischoff
- University of Fribourg, Department of Biology, Unit of Ecology and Evolution, Chemin du musée 10, CH-1700 Fribourg, Switzerland
| | - Majka Šmilauerová
- University of South Bohemia, Faculty of Science, Department of Botany, Branišovská 31 CZ-37005 České Budějovice, Czech Republic
| | - Clare S Lawson
- University of Reading, Centre for Agri-Environmental Research, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - Simon R Mortimer
- University of Reading, Centre for Agri-Environmental Research, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - Jiří Doležal
- University of South Bohemia, Faculty of Science, Department of Botany, Branišovská 31 CZ-37005 České Budějovice, Czech Republic
| | - Vojtěch Lanta
- Institute of Botany CAS CZ, Dukelská 135, 379 01 Třeboň, Czech Republic
| | - Andrew R Edwards
- University of Reading, Centre for Agri-Environmental Research, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - Alex J Brook
- University of Reading, Centre for Agri-Environmental Research, Earley Gate, PO Box 237, Reading RG6 6AR, UK
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, University of the Aegean, Department of Geography, University Hill, GR-81100 Mytilene, Greece
| | - Mirka Macel
- Netherlands Institute of Ecology (NIOO-KNAW), PO Box 40, 6666 ZG Heteren, the Netherlands
| | - Jan Lepš
- University of South Bohemia, Faculty of Science, Department of Botany, Branišovská 31 CZ-37005 České Budějovice, Czech Republic
| | - Heinz Müller-Schärer
- University of Fribourg, Department of Biology, Unit of Ecology and Evolution, Chemin du musée 10, CH-1700 Fribourg, Switzerland
| | - Thomas Steinger
- University of Fribourg, Department of Biology, Unit of Ecology and Evolution, Chemin du musée 10, CH-1700 Fribourg, Switzerland
| |
Collapse
|
44
|
Haloin JR, Strauss SY. Interplay between Ecological Communities and Evolution. Ann N Y Acad Sci 2008; 1133:87-125. [DOI: 10.1196/annals.1438.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
van Kleunen M, Fischer M. Adaptive rather than non-adaptive evolution of Mimulus guttatus in its invasive range. Basic Appl Ecol 2008. [DOI: 10.1016/j.baae.2007.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Whitney KD, Gabler CA. Rapid evolution in introduced species, ‘invasive traits’ and recipient communities: challenges for predicting invasive potential. DIVERS DISTRIB 2008. [DOI: 10.1111/j.1472-4642.2008.00473.x] [Citation(s) in RCA: 318] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Bossdorf O, Lipowsky A, Prati D. Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe. DIVERS DISTRIB 2008. [DOI: 10.1111/j.1472-4642.2008.00471.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
48
|
Strauss SY, Lau JA, Schoener TW, Tiffin P. Evolution in ecological field experiments: implications for effect size. Ecol Lett 2008; 11:199-207. [DOI: 10.1111/j.1461-0248.2007.01128.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Stenberg JA, Hambäck PA, Ericson L. HERBIVORE-INDUCED “RENT RISE” IN THE HOST PLANT MAY DRIVE A DIET BREADTH ENLARGEMENT IN THE TENANT. Ecology 2008; 89:126-33. [DOI: 10.1890/07-0252.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
A. Mealor B, L. Hild A. Post-invasion evolution of native plant populations: a test of biological resilience. OIKOS 2007. [DOI: 10.1111/j.2007.0030-1299.15781.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|