1
|
Li B, Zhang J, He T, Yuan H, Wu H, Wang P, Wu C. PRR adjuvants restrain high stability peptides presentation on APCs. eLife 2024; 13:RP99173. [PMID: 39475096 PMCID: PMC11524579 DOI: 10.7554/elife.99173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Adjuvants can affect APCs function and boost adaptive immune responses post-vaccination. However, whether they modulate the specificity of immune responses, particularly immunodominant epitope responses, and the mechanisms of regulating antigen processing and presentation remain poorly defined. Here, using overlapping synthetic peptides, we screened the dominant epitopes of Th1 responses in mice post-vaccination with different adjuvants and found that the adjuvants altered the antigen-specific CD4+ T-cell immunodominant epitope hierarchy. MHC-II immunopeptidomes demonstrated that the peptide repertoires presented by APCs were significantly altered by the adjuvants. Unexpectedly, no novel peptide presentation was detected after adjuvant treatment, whereas peptides with high binding stability for MHC-II presented in the control group were missing after adjuvant stimulation, particularly in the MPLA- and CpG-stimulated groups. The low-stability peptide present in the adjuvant groups effectively elicited robust T-cell responses and formed immune memory. Collectively, our results suggest that adjuvants (MPLA and CpG) inhibit high-stability peptide presentation instead of revealing cryptic epitopes, which may alter the specificity of CD4+ T-cell-dominant epitope responses. The capacity of adjuvants to modify peptide-MHC (pMHC) stability and antigen-specific T-cell immunodominant epitope responses has fundamental implications for the selection of suitable adjuvants in the vaccine design process and epitope vaccine development.
Collapse
Affiliation(s)
- Bin Li
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Jin Zhang
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Taojun He
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Hanmei Yuan
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Hui Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| | - Chao Wu
- Department of Laboratory Medicine, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhenChina
| |
Collapse
|
2
|
Cao LM, Yu YF, Li ZZ, Zhong NN, Wang GR, Xiao Y, Liu B, Wu QJ, Feng C, Bu LL. Adjuvants for cancer mRNA vaccines in the era of nanotechnology: strategies, applications, and future directions. J Nanobiotechnology 2024; 22:308. [PMID: 38825711 PMCID: PMC11145938 DOI: 10.1186/s12951-024-02590-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024] Open
Abstract
Research into mRNA vaccines is advancing rapidly, with proven efficacy against coronavirus disease 2019 and promising therapeutic potential against a variety of solid tumors. Adjuvants, critical components of mRNA vaccines, significantly enhance vaccine effectiveness and are integral to numerous mRNA vaccine formulations. However, the development and selection of adjuvant platforms are still in their nascent stages, and the mechanisms of many adjuvants remain poorly understood. Additionally, the immunostimulatory capabilities of certain novel drug delivery systems (DDS) challenge the traditional definition of adjuvants, suggesting that a revision of this concept is necessary. This review offers a comprehensive exploration of the mechanisms and applications of adjuvants and self-adjuvant DDS. It thoroughly addresses existing issues mentioned above and details three main challenges of immune-related adverse event, unclear mechanisms, and unsatisfactory outcomes in old age group in the design and practical application of cancer mRNA vaccine adjuvants. Ultimately, this review proposes three optimization strategies which consists of exploring the mechanisms of adjuvant, optimizing DDS, and improving route of administration to improve effectiveness and application of adjuvants and self-adjuvant DDS.
Collapse
Affiliation(s)
- Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yi-Fu Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qiu-Ji Wu
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behavior, Hubei Provincial Clinical Research Center for Cancer, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| | - Chun Feng
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Tongii Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
D'Oro U, O'Hagan DT. The scientific journey of a novel adjuvant (AS37) from bench to bedside. NPJ Vaccines 2024; 9:26. [PMID: 38332005 PMCID: PMC10853242 DOI: 10.1038/s41541-024-00810-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024] Open
Abstract
A decade ago, we described a new approach to discover next generation adjuvants, identifying small-molecule immune potentiators (SMIPs) as Toll-like receptor (TLR)7 agonists. We also optimally formulated these drugs through adsorption to aluminum salts (alum), allowing them to be evaluated with a range of established and early-stage vaccines. Early proof-of-concept studies showed that a TLR7 agonist (TLR7a)-based SMIP, when adsorbed to alum, could perform as an effective adjuvant for a variety of different antigens, in both small and large animals. Studies in rodents demonstrated that the adjuvant enhanced immunogenicity of a recombinant protein-based vaccine against Staphylococcus aureus, and also showed potential to improve existing vaccines against pertussis or meningococcal infection. Extensive evaluations showed that the adjuvant was effective in non-human primates (NHPs), exploiting a mechanism of action that was consistent across the different animal models. The adjuvant formulation (named AS37) has now been advanced into clinical evaluation. A systems biology-based evaluation of the phase I clinical data with a meningococcal C conjugate vaccine showed that the AS37-adjuvanted formulation had an acceptable safety profile, was potent, and activated the expected immune pathways in humans, which was consistent with observations from the NHP studies. In the intervening decade, several alternative TLR7 agonists have also emerged and advanced into clinical development, such as the alum adsorbed TLR7/8 SMIP present in a widely distributed COVID-19 vaccine. This review summarizes the research and early development of the new adjuvant AS37, with an emphasis on the steps taken to allow its progression into clinical evaluations.
Collapse
|
4
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Corripio-Miyar Y, MacLeod CL, Mair I, Mellanby RJ, Moore BD, McNeilly TN. Self-Adjuvanting Calcium-Phosphate-Coated Microcrystal-Based Vaccines Induce Pyroptosis in Human and Livestock Immune Cells. Vaccines (Basel) 2023; 11:1229. [PMID: 37515044 PMCID: PMC10385459 DOI: 10.3390/vaccines11071229] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Successful vaccines require adjuvants able to activate the innate immune system, eliciting antigen-specific immune responses and B-cell-mediated antibody production. However, unwanted secondary effects and the lack of effectiveness of traditional adjuvants has prompted investigation into novel adjuvants in recent years. Protein-coated microcrystals modified with calcium phosphate (CaP-PCMCs) in which vaccine antigens are co-immobilised within amino acid crystals represent one of these promising self-adjuvanting vaccine delivery systems. CaP-PCMCs has been shown to enhance antigen-specific IgG responses in mouse models; however, the exact mechanism of action of these microcrystals is currently unclear. Here, we set out to investigate this mechanism by studying the interaction between CaP-PCMCs and mammalian immune cells in an in vitro system. Incubation of cells with CaP-PCMCs induced rapid pyroptosis of peripheral blood mononuclear cells and monocyte-derived dendritic cells from cattle, sheep and humans, which was accompanied by the release of interleukin-1β and the activation of Caspase-1. We show that this pyroptotic event was cell-CaP-PCMCs contact dependent, and neither soluble calcium nor microcrystals without CaP (soluble PCMCs) induced pyroptosis. Our results corroborate CaP-PCMCs as a promising delivery system for vaccine antigens, showing great potential for subunit vaccines where the enhancement or find tuning of adaptive immunity is required.
Collapse
Affiliation(s)
| | - Clair Lyle MacLeod
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Iris Mair
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Richard J Mellanby
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian EH25 9RG, UK
| | - Barry D Moore
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Penicuik EH26 0PZ, UK
| |
Collapse
|
6
|
Cao W, Liu J, Jiang Z, Tao Y, Wang H, Li J, Ni J, Wu X. Tumor Suppressor Adenomatous Polyposis Coli Sustains Dendritic Cell Tolerance through IL-10 in a β-Catenin-Dependent Manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1589-1597. [PMID: 37000474 DOI: 10.4049/jimmunol.2300046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/08/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cells (DC) play important roles in balancing immunity and tolerance, in which β-catenin signaling plays an important role, yet the underlying mechanisms remain elusive. In this study, we investigated the functions of the tumor suppressor adenomatous polyposis coli (APC), also a key component of the β-catenin upstream destruction complex in DC. APC depletion in DC does not alter DC and T cell homeostasis under resting conditions. However, APC deficiency in DC leads to attenuated antitumor immunity in mice, which exhibit fewer CD8+ T cells and more Foxp3+ regulatory T cells in tumor and draining lymph nodes. Loss of APC in DC does not affect the expression levels of costimulatory molecules. However, APC-deficient DC produce more IL-10 and exhibit a higher ability of inducing regulatory T cells but a lower ability of priming CD8+ T cells, both of which can be reversed by IL-10 inhibition. Lastly, β-catenin depletion in APC-deficient DC rescues their antitumor immunity and reverses elevated IL-10 production. Taken together, our results identify that APC drives DC tolerance via the β-catenin/IL-10 axis.
Collapse
Affiliation(s)
- Wei Cao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiamin Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyan Jiang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuexiao Tao
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizi Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ni
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; and Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Fulop T, Larbi A, Pawelec G, Cohen AA, Provost G, Khalil A, Lacombe G, Rodrigues S, Desroches M, Hirokawa K, Franceschi C, Witkowski JM. Immunosenescence and Altered Vaccine Efficiency in Older Subjects: A Myth Difficult to Change. Vaccines (Basel) 2022; 10:vaccines10040607. [PMID: 35455356 PMCID: PMC9030923 DOI: 10.3390/vaccines10040607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Organismal ageing is associated with many physiological changes, including differences in the immune system of most animals. These differences are often considered to be a key cause of age-associated diseases as well as decreased vaccine responses in humans. The most often cited vaccine failure is seasonal influenza, but, while it is usually the case that the efficiency of this vaccine is lower in older than younger adults, this is not always true, and the reasons for the differential responses are manifold. Undoubtedly, changes in the innate and adaptive immune response with ageing are associated with failure to respond to the influenza vaccine, but the cause is unclear. Moreover, recent advances in vaccine formulations and adjuvants, as well as in our understanding of immune changes with ageing, have contributed to the development of vaccines, such as those against herpes zoster and SARS-CoV-2, that can protect against serious disease in older adults just as well as in younger people. In the present article, we discuss the reasons why it is a myth that vaccines inevitably protect less well in older individuals, and that vaccines represent one of the most powerful means to protect the health and ensure the quality of life of older adults.
Collapse
Affiliation(s)
- Tamas Fulop
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
- Correspondence: (T.F.); (S.R.)
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Singapore 138648, Singapore;
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, 72072 Tübingen, Germany;
- Health Sciences North Research Institute, Sudbury, ON P3E 2H2, Canada
| | - Alan A. Cohen
- Groupe de Recherche PRIMUS, Department of Family Medicine, University of Sherbrooke, 3001 12e Ave N, Sherbrooke, QC J1H 5N4, Canada;
| | | | - Abedelouahed Khalil
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Guy Lacombe
- Research Center on Aging, Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.K.); (G.L.)
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, 48009 Bilbao, Spain;
- BCAM—The Basque Center for Applied Mathematics, 48009 Bilbao, Spain
- Correspondence: (T.F.); (S.R.)
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, CEDEX, 06902 Sophia Antipolis, France;
- The Jean Alexandre Dieudonné Laboratory, Université Côte d’Azur, CEDEX 2, 06108 Nice, France
| | - Katsuiku Hirokawa
- Institute of Health and Life Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan;
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences of Bologna, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- Department of Applied Mathematics and Laboratory of Systems Biology of Healthy Aging, Lobachevsky State University, 603000 Nizhny Novgorod, Russia
| | - Jacek M. Witkowski
- Department of Pathophysiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
8
|
Lu Y, Liu ZH, Li YX, Xu HL, Fang WH, He F. Targeted Delivery of Nanovaccine to Dendritic Cells via DC-Binding Peptides Induces Potent Antiviral Immunity in vivo. Int J Nanomedicine 2022; 17:1593-1608. [PMID: 35411142 PMCID: PMC8994610 DOI: 10.2147/ijn.s357462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Ying Lu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Ze-Hui Liu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Ying-Xiang Li
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Hui-Ling Xu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Wei-Huan Fang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
| | - Fang He
- Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People’s Republic of China
- Correspondence: Fang He, Department of Veterinary Medicine, Institute of Preventive Veterinary Medicine & Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, People’s Republic of China, Email
| |
Collapse
|
9
|
Lee A, Scott MKD, Wimmers F, Arunachalam PS, Luo W, Fox CB, Tomai M, Khatri P, Pulendran B. A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nat Commun 2022; 13:549. [PMID: 35087093 PMCID: PMC8795432 DOI: 10.1038/s41467-022-28197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/08/2022] [Indexed: 12/27/2022] Open
Abstract
Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Madeleine K D Scott
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Florian Wimmers
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Wei Luo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Mark Tomai
- 3M Corporate Research and Materials Lab, St. Paul, MN, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Center for Biomedical Informatics, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Abstract
The SARS-CoV-2 infection spread rapidly throughout the world and appears to involve in both humoral and cell-mediated immunity. SARS-CoV-2 is attached to host cells via binding to the viral spike (S) proteins and its cellular receptors angiotensin-converting enzyme 2 (ACE2). Consequently, the S protein is primed with serine proteases TMPRSS2 and TMPRSS4, which facilitate the fusion of viral and cellular membranes result in the entry of viral RNA into the host cell. Vaccines are urgently required to combat the coronavirus disease 2019 (COVID-19) outbreak and aid in the recovery to pre-pandemic levels of normality. The long-term protective immunity is provided by the vaccine antigen (or pathogen)-specific immune effectors and the activation of immune memory cells that can be efficiently and rapidly reactivated upon pathogen exposure. Research efforts aimed towards the design and development of vaccines for SARS-CoV-2 are increasing. Numerous coronavirus disease 2019 (COVID-19) vaccines have passed late-stage clinical investigations with promising outcomes. This review focuses on the present state and future prospects of COVID-19 vaccines research and development, with a particular emphasis on immunological mechanisms of various COVID-19vaccines such as adenoviral vector-based vaccines, mRNA vaccines, and DNA vaccines that elicits immunological responses against SARS-CoV-2 infections in humans.
Collapse
|
11
|
Cibulski S, Varela APM, Teixeira TF, Cancela MP, Sesterheim P, Souza DO, Roehe PM, Silveira F. Zika Virus Envelope Domain III Recombinant Protein Delivered With Saponin-Based Nanoadjuvant From Quillaja brasiliensis Enhances Anti-Zika Immune Responses, Including Neutralizing Antibodies and Splenocyte Proliferation. Front Immunol 2021; 12:632714. [PMID: 33746970 PMCID: PMC7969523 DOI: 10.3389/fimmu.2021.632714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/09/2021] [Indexed: 11/26/2022] Open
Abstract
Nanoadjuvants that combine immunostimulatory properties and delivery systems reportedly bestow major improvements on the efficacy of recombinant, protein-based vaccines. Among these, self-assembled micellar formulations named ISCOMs (immune stimulating complexes) show a great ability to trigger powerful immunological responses against infectious pathogens. Here, a nanoadjuvant preparation, based on saponins from Quillaja brasiliensis, was evaluated together with an experimental Zika virus (ZIKV) vaccine (IQB80-zEDIII) and compared to an equivalent vaccine with alum as the standard adjuvant. The preparations were administered to mice in two doses (on days zero and 14) and immune responses were evaluated on day 28 post-priming. Serum levels of anti-Zika virus IgG, IgG1, IgG2b, IgG2c, IgG3 were significantly increased by the nanoadjuvant vaccine, compared to the mice that received the alum-adjuvanted vaccine or the unadjuvanted vaccine. In addition, a robust production of neutralizing antibodies and in vitro splenocyte proliferative responses were observed in mice immunized with IQB80-zEDIII nanoformulated vaccine. Therefore, the IQB80-zEDIII recombinant preparation seems to be a suitable candidate vaccine for ZIKV. Overall, this study identified saponin-based delivery systems as an adequate adjuvant for recombinant ZIKV vaccines and has important implications for recombinant protein-based vaccine formulations against other flaviviruses and possibly enveloped viruses.
Collapse
Affiliation(s)
- Samuel Cibulski
- Laboratório de Biotecnologia Celular e Molecular, Centro de Biotecnologia-CBiotec, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Fumaco Teixeira
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Martín Pablo Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Centro de Cardiologia Experimental, Instituto de Cardiologia/Fundação Universitária de Cardiologia, Porto Alegre, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
12
|
Haseeb M, Lakho SA, Huang J, Hasan MW, Ali-Ul-Husnain Naqvi M, Zhou Z, Yan R, Xu L, Song X, Li X. In vitro effects of 5 recombinant antigens of Eimeria maxima on maturation, differentiation, and immunogenic functions of dendritic cells derived from chicken spleen. Poult Sci 2020; 99:5331-5343. [PMID: 33142449 PMCID: PMC7647736 DOI: 10.1016/j.psj.2020.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/05/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022] Open
Abstract
Eimeria maxima possesses integral families of immunogenic constituents that promote differentiation of immune cells during host-parasite interactions. Dendritic cells (DCs) have an irreplaceable role in the modulation of the host immunity. However, the selection of superlative antigen with immune stimulatory efficacies on host DCs is lacking. In this study, 5 recombinant proteins of E. maxima (Em), including Em14-3-3, rhomboid family domain containing proteins (ROM) EmROM1 and EmROM2, microneme protein 2 (EmMIC2), and Em8 were identified to stimulate chicken splenic derived DCs in vitro. The cultured populations were incubated with recombinant proteins, and typical morphologies of stimulated DCs were obtained. DC-associated markers major histocompatibility complex class II, CD86, CD11c, and CD1.1, showed upregulatory expressions by flow cytometry assay. Immunofluorescence assay revealed that recombinant proteins could bind with the surface of chicken splenic derived DCs. Moreover, quantitative real-time PCR results showed that distinct gene expressions of Toll-like receptors and Wnt signaling pathway were upregulated after the coincubation of recombinant proteins with DCs. The ELISA results indicated that the DCs produced a significant higher level of interleukin (IL)-12 and interferon-γ secretions after incubation with recombinant proteins. While transforming growth factor-β was significantly increased with rEmROM1, rEmROM2, and rEmMIC2 as compared to control groups, and IL-10 did not show significant alteration. Taken together, these results concluded that among 5 potential recombinant antigens, rEm14-3-3 could promote immunogenic functions of chicken splenic derived DCs more efficiently, which might represent an effective molecule for inducing the host Th1-mediated immune response against Eimeria infection.
Collapse
Affiliation(s)
- Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Zhouyang Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
13
|
Li K, Xu Y, Yue W. Anti-viral activity of jatrophone against RSV-induced respiratory infection via increase in interferon-γ generating dendritic cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:888-894. [PMID: 32267089 DOI: 10.1002/tox.22925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Respiratory syncytial virus (RSV), a member of Paramyxoviridae family is responsible for bronchiolitis and pneumonia. The present study investigated anti-viral and anti-inflammatory activities of jatrophone against RSV-infection in pulmonary epithelial cells in vitro and in mice model in vivo. The changes in viabilities of RSV infected cells by jatrophone treatment were determined by MTT assay. The fluorescence associated with production of ROS was evaluated by fluorescence microscopy using H2DCFDA dye. The IFN-γ secreting cells were detected in mice BALF by stimulation with phorbol myristate acetate and ionomycin. The reduction of BEAS-2B cell viability by RSV was alleviated on treatment with jatrophone in dose based manner. The cytopathogenic changes by RSV infection were prevented and viral growth inhibited by jatrophone in BEAS-2B cells. Jatrophone treatment significantly alleviated RSV mediated overproduction of IL-6/-8 and suppressed ROS generation in the cells. The pulmonary viral titers were found to be markedly lower in mice treated with jatrophone relative to untreated group. The jatrophone treated mice also showed reduced IL-4/-5/-13 levels and elevated IFN-γ level in BALF relative to untreated RSV infected mice. Flow cytometry revealed elevated count of IFN-γ generating cells in RSV infected mice on treatment with jatrophone. Thus jatrophone inhibits viral growth and oxidative damage by RSV in pulmonary epithelial cells. In RSV infected mice jatrophone increased immunity for viral infection by modulating cell phenotype for promotion of anti-viral IFN-γ. Thus jatrophone acts as potential anti-viral compound and may be developed for treatment of respiratory treat infection.
Collapse
Affiliation(s)
- Kai Li
- Department of Respiratory Medicine, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Yuan Xu
- Department of Hematopathology, Jining No.1 People's Hospital, Jining, Shandong, China
| | - Wei Yue
- Department of Respiratory Medicine, Jining No.1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
14
|
Takahama S, Yamamoto T. Pattern Recognition Receptor Ligands as an Emerging Therapeutic Agent for Latent HIV-1 Infection. Front Cell Infect Microbiol 2020; 10:216. [PMID: 32457851 PMCID: PMC7225283 DOI: 10.3389/fcimb.2020.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Toll-like receptors (TLRs) were first identified as molecular sensors that transduce signals from specific structural patterns derived from pathogens; their underlying molecular mechanisms of recognition and signal transduction are well-understood. To date, more than 20 pattern-recognition receptors (PRRs) have been reported in humans, some of which are membrane-bound, similar to TLRs, whereas others are cytosolic, including retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), and stimulator of interferon genes (STING). Clinically, PRR ligands have been developed as vaccine adjuvants to activate innate immunity and enhance subsequent antigen-specific immune responses. Recently, PRR ligands have been used as direct immunostimulators to enhance immune responses against infectious diseases and cancers. HIV-1 remains one of the world's most significant public health challenges. Without the elimination of HIV-1 latently infected cells, patients require lifelong combination antiretroviral therapy (cART), while research aimed at a functional cure for HIV-1 infection continues. Based on the concept of "shock and kill," a latency-reversing agent (LRA) has been developed to reactivate latently infected cells and induce cell death. However, previous research has shown that LRAs have limited efficacy in the eradication of these reservoirs in vivo. Besides, PRR ligands with anti-retroviral drugs have been developed for use in HIV treatment for these years. This mini-review summarizes the current understanding of the role of PRR ligands in AIDS research, suggests directions for future research, and proposes potential clinical applications.
Collapse
Affiliation(s)
- Shokichi Takahama
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Takuya Yamamoto
- Laboratory of Immunosenescence, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Laboratory of Aging and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
15
|
Abstract
Introduction: The development of more efficacious vaccines, especially subunit vaccines administered via non-invasive routes, is a priority in vaccinology. Nanogels are materials that can meet the requirements to serve as efficient vaccine delivery vehicles (in terms of thermo-sensitivity, biocompatibility, and pH-responsiveness; among others); thus there is a growing interest in exploring the potential of nanogels for vaccine development. Areas covered: Herein, a critical analysis of nanogel synthesis methodologies is presented and nanogel-based vaccines under development are summarized and placed in perspective. Promising vaccine candidates based on nanogels have been reported for cancer, obesity, and infectious diseases (mainly respiratory diseases). Some of the candidates were administered by mucosal routes which are highly attractive in terms of simple administration and induction of protective responses at both mucosal and systemic levels. Expert opinion: The most advanced models of nanogel-based vaccines comprise candidates against cancer, based on cholesteryl pullulan nanogels evaluated in clinical trials with promising findings; as well as some vaccines against respiratory pathogens tested in mice thus far. Nonetheless, the challenge for this field is advancing in clinical trials and proving the protective potential in test animals for many other candidates. Implementing green synthesis approaches for nanogels is also required.
Collapse
|
16
|
Alagón Fernández Del Campo P, De Orta Pando A, Straface JI, López Vega JR, Toledo Plata D, Niezen Lugo SF, Alvarez Hernández D, Barrientos Fortes T, Gutiérrez-Kobeh L, Solano-Gálvez SG, Vázquez-López R. The Use of Probiotic Therapy to Modulate the Gut Microbiota and Dendritic Cell Responses in Inflammatory Bowel Diseases. ACTA ACUST UNITED AC 2019; 7:medsci7020033. [PMID: 30813381 PMCID: PMC6410300 DOI: 10.3390/medsci7020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/28/2019] [Accepted: 02/13/2019] [Indexed: 12/23/2022]
Abstract
Recent investigations have shown that different conditions such as diet, the overuse of antibiotics or the colonization of pathogenic microorganisms can alter the population status of the intestinal microbiota. This modification can produce a change from homeostasis to a condition known as imbalance or dysbiosis; however, the role-played by dysbiosis and the development of inflammatory bowel diseases (IBD) has been poorly understood. It was actually not until a few years ago that studies started to develop regarding the role that dendritic cells (DC) of intestinal mucosa play in the sensing of the gut microbiota population. The latest studies have focused on describing the DC modulation, specifically on tolerance response involving T regulatory cells or on the inflammatory response involving reactive oxygen species and tissue damage. Furthermore, the latest studies have also focused on the protective and restorative effect of the population of the gut microbiota given by probiotic therapy, targeting IBD and other intestinal pathologies. In the present work, the authors propose and summarize a recently studied complex axis of interaction between the population of the gut microbiota, the sensing of the DC and its modulation towards tolerance and inflammation, the development of IBD and the protective and restorative effect of probiotics on other intestinal pathologies.
Collapse
Affiliation(s)
- Pablo Alagón Fernández Del Campo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Alejandro De Orta Pando
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Juan Ignacio Straface
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - José Ricardo López Vega
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Toledo Plata
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Sebastian Felipe Niezen Lugo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Diego Alvarez Hernández
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| | - Tomás Barrientos Fortes
- Director Facultad de Ciencias de la Salud, Universidad Anáhuac México, 52786 Cuidad de México, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez," Mexico City 14080, Mexico.
| | - Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, 52786 Cuidad de México, Mexico.
| |
Collapse
|
17
|
AlMatar M, Makky EA, AlMandeal H, Eker E, Kayar B, Var I, Köksal F. Does the Development of Vaccines Advance Solutions for Tuberculosis? Curr Mol Pharmacol 2018; 12:83-104. [PMID: 30474542 DOI: 10.2174/1874467212666181126151948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is considered as one of the most efficacious human pathogens. The global mortality rate of TB stands at approximately 2 million, while about 8 to 10 million active new cases are documented yearly. It is, therefore, a priority to develop vaccines that will prevent active TB. The vaccines currently used for the management of TB can only proffer a certain level of protection against meningitis, TB, and other forms of disseminated TB in children; however, their effectiveness against pulmonary TB varies and cannot provide life-long protective immunity. Based on these reasons, more efforts are channeled towards the development of new TB vaccines. During the development of TB vaccines, a major challenge has always been the lack of diversity in both the antigens contained in TB vaccines and the immune responses of the TB sufferers. Current efforts are channeled on widening both the range of antigens selection and the range of immune response elicited by the vaccines. The past two decades witnessed a significant progress in the development of TB vaccines; some of the discovered TB vaccines have recently even completed the third phase (phase III) of a clinical trial. OBJECTIVE The objectives of this article are to discuss the recent progress in the development of new vaccines against TB; to provide an insight on the mechanism of vaccine-mediated specific immune response stimulation, and to debate on the interaction between vaccines and global interventions to end TB.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Department of Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), Kuantan, Malaysia
| | - Husam AlMandeal
- Freiburg Universität, Moltkestraße 90, 76133 karlsruhe Augenklinik, Germany
| | - Emel Eker
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
18
|
Singha S, Shao K, Ellestad KK, Yang Y, Santamaria P. Nanoparticles for Immune Stimulation Against Infection, Cancer, and Autoimmunity. ACS NANO 2018; 12:10621-10635. [PMID: 30481968 DOI: 10.1021/acsnano.8b05950] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Vaccination using nanocarrier-based delivery systems has recently emerged as a promising approach for meeting the continued challenge posed by infectious diseases and cancer. A diverse portfolio of nanocarriers of various sizes, compositions, and physical parameters have now been developed, and this diversity provides an opportunity for the rational design of vaccines that can mediate targeted delivery of various antigens and adjuvants or immune regulatory agents in ways unachievable with classical vaccination approaches. This flexibility allows control over the characteristics of vaccine-elicited immune responses such that they can be tailored to be effective in circumstances where classical vaccines have failed. Furthermore, the utility of nanocarrier-based immune modulation extends to the treatment of autoimmune disease where precisely targeted inhibition of immune responses is desirable. Clearly, the selection of appropriate nanocarriers, antigens, adjuvants, and other components underpins the efficacy of these nanoimmune interventions. Herein, we provide an overview of currently available nanocarriers of various types and their physical and pharmacological properties with the goal of providing a resource for researchers exploring nanomaterial-based approaches for immune modulation and identify some information gaps and unexplored questions to help guide future investigation.
Collapse
Affiliation(s)
- Santiswarup Singha
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Kun Shao
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Kristofor K Ellestad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Yang Yang
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine , University of Calgary , Calgary , Alberta T2N 4N1 , Canada
- Institut D'Investigacions Biomèdiques August Pi i Sunyer , Barcelona 08036 , Spain
| |
Collapse
|
19
|
Xu A, Zhang L, Yuan J, Babikr F, Freywald A, Chibbar R, Moser M, Zhang W, Zhang B, Fu Z, Xiang J. TLR9 agonist enhances radiofrequency ablation-induced CTL responses, leading to the potent inhibition of primary tumor growth and lung metastasis. Cell Mol Immunol 2018; 16:820-832. [PMID: 30467420 DOI: 10.1038/s41423-018-0184-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/25/2018] [Indexed: 12/11/2022] Open
Abstract
Radiofrequency ablation (RFA) is the most common approach to thermal ablation for cancer therapy. Unfortunately, its efficacy is limited by incomplete ablation, and further optimization of RFA is required. Here, we demonstrate that incubation at 65 °C triggers more EG7 tumor cell death by necrosis than treatment at 45 °C, and the 65 °C-treated cells are more effective at inducing antigen-specific CD8+ cytotoxic T lymphocyte (CTL) responses after injection in mice than the 45 °C-treated ones. Dendritic cells (DCs) that phagocytose 65 °C-treated EG7 cells become mature with upregulated MHCII and CD80 expression and are capable of efficiently inducing effector CTLs in mouse tumor models. RFA (65 °C) therapy of EG7 tumors induces large areas of tumor necrosis and stimulates CTL responses. This leads to complete regression of small (~100 mm3) tumors but fails to suppress the growth of larger (~350 mm3) tumors. The administration of the Toll-like receptor-9 (TLR9) agonist unmethylated cytosine-phosphorothioate-guanine oligonucleotide (CpG) to DCs phagocytosing 65 °C-treated EG7 cells enhances the expression of MHCII and CD40 on DCs as well as DC-induced stimulation of CTL responses. Importantly, the intratumoral administration of CpG following RFA also increases the frequencies of tumor-associated immunogenic CD11b-CD11c+CD103+ DC2 and CD11b+F4/80+MHCII+ M1 macrophages and increases CD4+ and CD8+ T-cell tumor infiltration, leading to enhanced CD4+ T cell-dependent CTL responses and potent inhibition of primary RFA-treated or distant untreated tumor growth as well as tumor lung metastasis in mice bearing larger tumors. Overall, our data indicate that CpG administration, which enhances RFA-induced CTL responses and ultimately potentiates the inhibition of primary tumor growth and lung metastasis, is a promising strategy for improving RFA treatment, which may assist in optimizing this important cancer therapy.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lifeng Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingying Yuan
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Fatma Babikr
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada.,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Rajni Chibbar
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael Moser
- Department of Surgery, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wenjun Zhang
- Department of Bioengineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bing Zhang
- Biomedical Science and Technology Research Center, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China
| | - Zhaoying Fu
- Department of Immunology, College of Medicine, Yian-An University, Yian-An, China
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, University of Saskatchewan, Saskatoon, SK, Canada. .,Department of Oncology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
20
|
Umeki Y, Saito M, Kusamori K, Tsujimura M, Nishimura M, Takahashi Y, Takakura Y, Nishikawa M. Combined encapsulation of a tumor antigen and immune cells using a self-assembling immunostimulatory DNA hydrogel to enhance antigen-specific tumor immunity. J Control Release 2018; 288:189-198. [PMID: 30219278 DOI: 10.1016/j.jconrel.2018.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/25/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
Our previous study demonstrated that the incorporation of a tumor antigen into a self-assembling DNA hydrogel, comprised of a DNA containing un-methylated cytosine-phosphate-guanine (CpG) dinucleotides (CpG DNA), efficiently induced antigen-specific tumor immunity after intra-tumoral injection into tumor-bearing mice. We hypothesized that the additional incorporation of immune cells, the target for the antigen and immunostimulatory CpG DNA, would increase the antitumor response. To prove this, immune cells were also encapsulated into the CpG DNA hydrogel and delivered along with the antigen. Mouse dendritic DC2.4 cells maintained their form even after incorporation into the DNA hydrogel. The incorporation of mouse macrophage-like J774.1 cells and RAW264.7 cells into CpG DNA hydrogel did not significantly affect their viability. J774.1, RAW264.7, DC2.4, and mouse bone marrow-derived dendritic cells (BMDCs) were efficiently activated when incorporated into the CpG DNA hydrogel. The CpG DNA hydrogel incorporated with both the tumor antigen and BMDCs effectively induced antigen-specific immune responses, and retarded tumor growth following intradermal administration before and after tumor inoculation without severe local and systemic adverse events. These data indicate that the combined delivery of a tumor antigen and immune cells using an immunostimulatory CpG DNA hydrogel is effective in inducing antigen-specific antitumor immunity.
Collapse
Affiliation(s)
- Yuka Umeki
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masaaki Saito
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kosuke Kusamori
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Mari Tsujimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Moeka Nishimura
- Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Yuki Takahashi
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Makiya Nishikawa
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Laboratory of Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan.
| |
Collapse
|
21
|
Guerriero JL. Macrophages: Their Untold Story in T Cell Activation and Function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 342:73-93. [PMID: 30635094 DOI: 10.1016/bs.ircmb.2018.07.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complexity of T cell activation to maintain homeostasis and provide host defense is highlighted by the intricate step-wise process which is coordinated by multiple cell types. Crucial to T cell activation is the requirement of antigen-presenting cells (APCs) such as macrophages at each step of the activation and effector stages. Macrophages are central regulators in T cell activation and are involved in each step including initiating the series of events leading to T cell activation. Macrophages identify and present foreign antigens in classes I and II major histocompatibility complexes (MHC) to T cells, which recognize the MHC-antigen complex through their T cell receptor. This initial step is all in vain if additional costimulatory and cytokine signaling does not occur concurrently. Macrophages can mediate and provide the required costimulatory signaling and cytokine secretion required for effective T cell activation. While other cell types, especially other APCs, may be capable of playing a role during different stages of T cell activation, this review will focus on how macrophages can modulate T cell activation and effector function. This is in no way an attempt to minimize the role of other APCs but instead to bring to light to the role macrophages can play during this process. Here, the role macrophages play in cancer to either activate or inhibit T cells based on macrophage phenotype, costimulatory molecules, and cytokine secretion is highlighted as an example of how macrophages can significantly alter T cell activation and effector function in human disease.
Collapse
|
22
|
Che CY, Yuan KL, Zhao GQ, Li C, Lin J, Zhu GQ, Liu M. Regulation of lipoxygenase-1 and Dectin-1 on interleukin-10 in mouse Aspergillus fumigatus keratitis. Int J Ophthalmol 2018; 11:905-909. [PMID: 29977799 DOI: 10.18240/ijo.2018.06.02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/28/2018] [Indexed: 01/24/2023] Open
Abstract
AIM To investigate the regulation of lipoxygenase (LOX)-1 and Dectin-1 on interleukin-10 (IL-10) production in mice with Aspergillus fumigatus (A. fumigatus) keratitis. METHODS The corneas of C57BL/6 mice were pretreated with LOX-1 inhibitor Poly(I) or Dectin-1 siRNA separately before the infection of A. fumigatus. Polymerase chain reaction (PCR) and Western blot were used to detect the expression of IL-10. RESULTS The mRNA and protein expressions of IL-10 were significantly increased in mice with A. fumigatus keratitis. Compared with the group pretreated with sterile water before infection, Poly(I) pretreatment suppressed IL-10 expression significantly. Compared with the group pretreated with scrambled siRNA before infection, Dectin-1 siRNA pretreatment significantly reduced IL-10 expression in response to A. fumigatus infection. CONCLUSION LOX-1 and Dectin-1 regulate IL-10 production in mouse A. fumigatus keratitis.
Collapse
Affiliation(s)
- Cheng-Ye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Ke-Lan Yuan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Guo-Qiang Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Min Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
23
|
Abhyankar MM, Orr MT, Lin S, Suraju MO, Simpson A, Blust M, Pham T, Guderian JA, Tomai MA, Elvecrog J, Pedersen K, Petri WA, Fox CB. Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. NPJ Vaccines 2018; 3:22. [PMID: 29900011 PMCID: PMC5988657 DOI: 10.1038/s41541-018-0060-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022] Open
Abstract
Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1β, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.
Collapse
Affiliation(s)
- Mayuresh M. Abhyankar
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Mark T. Orr
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| | - Susan Lin
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | - Mohammed O. Suraju
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | | | | | - Tiep Pham
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
| | | | - Mark A. Tomai
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | - James Elvecrog
- 3M Drug Delivery Systems, 3M Center, 275-3E-10, St. Paul, MN USA
| | | | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA USA
| | - Christopher B. Fox
- IDRI, 1616 Eastlake Ave E, Seattle, WA USA
- Department of Global Health, University of Washington, Seattle, WA USA
| |
Collapse
|
24
|
Masuta Y, Yamamoto T, Natsume-Kitatani Y, Kanuma T, Moriishi E, Kobiyama K, Mizuguchi K, Yasutomi Y, Ishii KJ. An Antigen-Free, Plasmacytoid Dendritic Cell-Targeting Immunotherapy To Bolster Memory CD8 + T Cells in Nonhuman Primates. THE JOURNAL OF IMMUNOLOGY 2018; 200:2067-2075. [PMID: 29431693 DOI: 10.4049/jimmunol.1701183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/07/2018] [Indexed: 01/10/2023]
Abstract
The priming, boosting, and restoration of memory cytotoxic CD8+ T lymphocytes by vaccination or immunotherapy in vivo is an area of active research. Particularly, nucleic acid-based compounds have attracted attention due to their ability to elicit strong Ag-specific CTL responses as a vaccine adjuvant. Nucleic acid-based compounds have been shown to act as anticancer monotherapeutic agents even without coadministration of cancer Ag(s); however, so far they have lacked efficacy in clinical trials. We recently developed a second-generation TLR9 agonist, a humanized CpG DNA (K3) complexed with schizophyllan (SPG), K3-SPG, a nonagonistic Dectin-1 ligand. K3-SPG was previously shown to act as a potent monoimmunotherapeutic agent against established tumors in mice in vivo. In this study we extend the monoimmunotherapeutic potential of K3-SPG to a nonhuman primate model. K3-SPG activated monkey plasmacytoid dendritic cells to produce both IFN-α and IL-12/23 p40 in vitro and in vivo. A single injection s.c. or i.v. with K3-SPG significantly increased the frequencies of activated memory CD8+ T cells in circulation, including Ag-specific memory CTLs, in cynomolgus macaques. This increase did not occur in macaques injected with free CpG K3 or polyinosinic-polycytidylic acid. Injection of 2 mg K3-SPG induced mild systemic inflammation, however, levels of proinflammatory serum cytokines and circulating neutrophil influx were lower than those induced by the same dose of polyinosinic-polycytidylic acid. Therefore, even in the absence of specific Ags, we show that K3-SPG has potent Ag-specific memory CTL response-boosting capabilities, highlighting its potential as a monoimmunotherapeutic agent for chronic infectious diseases and cancer.
Collapse
Affiliation(s)
- Yuji Masuta
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Laboratories of Discovery Research, Nippon Shinyaku Co., Ltd., Kyoto 601-8550, Japan
| | - Takuya Yamamoto
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Yayoi Natsume-Kitatani
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Tomohiro Kanuma
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Eiko Moriishi
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Kouji Kobiyama
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan.,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; and
| | - Kenji Mizuguchi
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Ken J Ishii
- Laboratory of Adjuvant Innovation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan; .,Laboratory of Vaccine Science, World Premier International Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Ebrahimian M, Hashemi M, Maleki M, Hashemitabar G, Abnous K, Ramezani M, Haghparast A. Co-delivery of Dual Toll-Like Receptor Agonists and Antigen in Poly(Lactic-Co-Glycolic) Acid/Polyethylenimine Cationic Hybrid Nanoparticles Promote Efficient In Vivo Immune Responses. Front Immunol 2017; 8:1077. [PMID: 28955328 PMCID: PMC5601407 DOI: 10.3389/fimmu.2017.01077] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/18/2017] [Indexed: 11/16/2022] Open
Abstract
Strategies to design delivery vehicles are critical in modern vaccine-adjuvant development. Nanoparticles (NPs) encapsulating antigen(s) and adjuvant(s) are promising vehicles to deliver antigen(s) and adjuvant(s) to antigen-presenting cells (APCs), allowing optimal immune responses against a specific pathogen. In this study, we developed a novel adjuvant delivery approach for induction of efficient in vivo immune responses. Polyethylenimine (PEI) was physically conjugated to poly(lactic-co-glycolic) acid (PLGA) to form PLGA/PEI NPs. This complex was encapsulated with resiquimod (R848) as toll-like receptor (TLR) 7/8 agonist, or monophosphoryl lipid A (MPLA) as TLR4 agonist and co-assembled with cytosine-phosphorothioate-guanine oligodeoxynucleotide (CpG ODN) as TLR9 agonist to form a tripartite formulation [two TLR agonists (inside and outside NPs) and PLGA/PEI NPs as delivery system]. The physicochemical characteristics, cytotoxicity and cellular uptake of these synthesized delivery vehicles were investigated. Cellular viability test revealed no pronounced cytotoxicity as well as increased cellular uptake compared to control groups in murine macrophage cells (J774 cell line). In the next step, PLGA (MPLA or R848)/PEI (CpG ODN) were co-delivered with ovalbumin (OVA) encapsulated into PLGA NPs to enhance the induction of immune responses. The immunogenicity properties of these co-delivery formulations were examined in vivo by evaluating the cytokine (IFN-γ, IL-4, and IL-1β) secretion and antibody (IgG1, IgG2a) production. Robust and efficient immune responses were achieved after in vivo administration of PLGA (MPLA or R848)/PEI (CpG ODN) co-delivered with OVA encapsulated in PLGA NPs in BALB/c mice. Our results demonstrate a rational design of using dual TLR agonists in a context-dependent manner for efficient nanoparticulate adjuvant-vaccine development.
Collapse
Affiliation(s)
- Mahboubeh Ebrahimian
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Immunology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Maleki
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemitabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Haghparast
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Immunology Section, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
26
|
Xu A, Freywald A, Xie Y, Li Z, Xiang J. CD8 + memory T-cell inflation renders compromised CD4 + T-cell-dependent CD8 + T-cell immunity via naïve T-cell anergy. Immunotargets Ther 2017; 6:39-49. [PMID: 28670575 PMCID: PMC5479263 DOI: 10.2147/itt.s131662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Whether inflation of CD8+ memory T (mT) cells, which is often derived from repeated prime-boost vaccinations or chronic viral infections in the elderly, would affect late CD8+ T-cell immunity is a long-standing paradox. We have previously established an animal model with mT-cell inflation by transferring ConA-stimulated monoclonal CD8+ T cells derived from Ova-specific T-cell-receptor transgenic OTI mice into irradiation-induced lymphopenic B6 mice. In this study, we also established another two animal models with mT-cell inflation by transferring, 1) ConA-stimulated monoclonal CD8+ T cells derived from lymphocytic choriomeningitis virus glycoprotein-specific T-cell-receptor transgenic P14 mice, and 2) ConA-stimulated polyclonal CD8+ T cells derived from B6.1 mice into B6 mice with irradiation-induced lymphopenia. We vaccinated these mice with recombinant Ova-expressing Listeria monocytogenes and Ova-pulsed dendritic cells, which stimulated CD4+ T cell-independent and CD4+ T-cell-dependent CD8+ T-cell responses, respectively, and assessed Ova-specific CD8+ T-cell responses by flow cytometry. We found that Ova-specific CD8+ T-cell responses derived from the latter but not the former vaccination were significantly reduced in mice with CD8+ mT-cell inflation compared to wild-type B6 mice. We determined that naïve CD8+ T cells purified from splenocytes of mice with mT-cell inflation had defects in cell proliferation upon stimulation in vitro and in vivo and upregulated T-cell anergy-associated Itch and GRAIL molecules. Taken together, our data reveal that CD8+ mT-cell inflation renders compromised CD4+ T-cell-dependent CD8+ T-cell immunity via naïve T-cell anergy, and thus show promise for the design of efficient vaccines for elderly patients with CD8+ mT-cell inflation.
Collapse
Affiliation(s)
- Aizhang Xu
- Cancer Research Cluster, Saskatchewan Cancer Agency.,Department of Oncology
| | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yufeng Xie
- Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou
| | - Zejun Li
- Shanghai Veterinary Research Institute, Shanghai, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency.,Department of Oncology
| |
Collapse
|
27
|
Madan-Lala R, Pradhan P, Roy K. Combinatorial Delivery of Dual and Triple TLR Agonists via Polymeric Pathogen-like Particles Synergistically Enhances Innate and Adaptive Immune Responses. Sci Rep 2017; 7:2530. [PMID: 28566683 PMCID: PMC5451393 DOI: 10.1038/s41598-017-02804-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/19/2017] [Indexed: 02/08/2023] Open
Abstract
Despite decades of research very few vaccine-adjuvants have received FDA approval. Two fundamental challenges plague clinical translation of vaccine-adjuvants: reducing acute toxicities that result from systemic diffusion of many soluble adjuvants, and delivering multiple adjuvants at the same time to mimic the synergistic immune-stimulation of pathogens, while being safe. In order to address these barriers, we evaluated combinations of four clinically relevant immune-agonists, specifically Toll-like receptor (TLR) ligands, using biodegradable, polymer microparticles. We tested them alone and in combinations of 2 or 3, for a total of 10 unique conditions. We evaluated primary bone-marrow-derived Dendritic Cell phenotypes and functionality, and identified several synergistic combinations. We picked a dual and a triple adjuvant combination, TLR4/TLR9 and TLR4/TLR7/TLR9, for further evaluation and found that both combinations promoted antigen cross-presentation in vitro. Studies in mice using the model antigen Ovalbumin, showed that both combinations enhanced lymph node germinal center and T follicular helper cell responses. The triple adjuvant combination showed increased antigen-specific antibody titer with an overall balanced Th1/Th2 response, while the dual combination promoted Th1-polarized IgG responses. Our results show how polymeric particulate-carriers can be adopted to safely deliver combinatorial adjuvants and selectively synergize specific types of immune responses for vaccine applications.
Collapse
Affiliation(s)
- Ranjna Madan-Lala
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Pallab Pradhan
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA.
| |
Collapse
|
28
|
Leifer CA. Dendritic cells in host response to biologic scaffolds. Semin Immunol 2017; 29:41-48. [PMID: 28214177 DOI: 10.1016/j.smim.2017.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/23/2017] [Accepted: 01/31/2017] [Indexed: 02/03/2023]
Abstract
Tissue regeneration and repair require a highly complex and orchestrated series of events that require inflammation, but can be compromised when inflammation is excessive or becomes chronic. Macrophages are one of the first cells to contact and respond to implanted materials, and mediate the inflammatory response. The series of events following macrophage association with biomaterials has been well-studied. Dendritic cells (DCs) also directly interact with biomaterials, are critical for specific immune responses, and can be activated in response to interactions with biomaterials. Yet, much less is known about the responses by DCs. This review discusses what we know about DC response to biomaterials, the underlying mechanisms involved, and how DCs can be influenced by the macrophage response to biomaterials. Lastly, I will discuss how biomaterials can be manipulated to enhance or suppress DC function to promote a specific desirable immune response - a major goal for implantable biologically active therapeutics.
Collapse
Affiliation(s)
- Cynthia A Leifer
- Department of Microbiology and Immunology College of Veterinary Medicine, C5-153 Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Ko EJ, Lee YT, Kim KH, Lee Y, Jung YJ, Kim MC, Lee YN, Kang T, Kang SM. Roles of Aluminum Hydroxide and Monophosphoryl Lipid A Adjuvants in Overcoming CD4+ T Cell Deficiency To Induce Isotype-Switched IgG Antibody Responses and Protection by T-Dependent Influenza Vaccine. THE JOURNAL OF IMMUNOLOGY 2016; 198:279-291. [PMID: 27881702 DOI: 10.4049/jimmunol.1600173] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
Vaccine adjuvant effects in the CD4-deficient condition largely remain unknown. We investigated the roles of combined monophosphoryl lipid A (MPL) and aluminum hydroxide (Alum) adjuvant (MPL+Alum) in inducing immunity after immunization of CD4 knockout (CD4KO) and wild-type (WT) mice with T-dependent influenza vaccine. MPL+Alum adjuvant mediated IgG isotype-switched Abs, IgG-secreting cell responses, and protection in CD4KO mice, which were comparable to those in WT mice. In contrast, Alum adjuvant effects were dependent on CD4+ T cells. MPL+Alum adjuvant was effective in recruiting monocytes and neutrophils as well as in protecting macrophages from Alum-mediated cell loss at the injection site in CD4KO mice. MPL+Alum appeared to attenuate MPL-induced inflammatory responses in WT mice, likely improving the safety. Additional studies in CD4-depleted WT mice and MHC class II KO mice suggest that MHC class II+ APCs contribute to providing alternative B cell help in the CD4-deficient condition in the context of MPL+Alum-adjuvanted vaccination.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Young-Tae Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Ki-Hye Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Youri Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Yu-Jin Jung
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.,Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and.,Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Taeuk Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303; and
| |
Collapse
|
30
|
Kamble N, Jawale C, Lee J. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate. Poult Sci 2016; 95:2274-80. [DOI: 10.3382/ps/pew158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/13/2016] [Indexed: 01/17/2023] Open
|
31
|
Batool M, Anwar MA, Choi S. Toll-like receptors targeting technology for the treatment of lymphoma. Expert Opin Drug Discov 2016; 11:1047-1059. [PMID: 27602749 DOI: 10.1080/17460441.2016.1233964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The crucial role of Toll-like Receptors (TLRs) in innate and adaptive immune systems is well discussed in the literature. In cancer, TLRs act as a double-edged sword that can promote or suppress tumor growth. Areas covered: In this article, the authors uncover the potential role of TLRs in lymphomas, which are cancers related to the lymphatic system and blood cells. TLRs are de facto inflammation-inducing receptors that can either worsen disease or ameliorate lymphoma treatment. From this perspective, the usage of TLRs to modulate the immune system toward lymphoma regression is desirable. Various strategies have been used so far, and novel ways are being sought out to cure lymphoma. Expert opinion: TLR ligands have successfully been used to improve patient health; however, these receptors must be finely tuned to further optimize therapy. For a better outcome, novel specific ligands, improved pharmacodynamics, and unique targets should be discerned. Ligands with conjugated molecules, nanoparticles, and targeted drug delivery can highly optimize the therapy for lymphoma with various etiologies.
Collapse
Affiliation(s)
- Maria Batool
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| | - Muhammad Ayaz Anwar
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| | - Sangdun Choi
- a Department of Molecular Science and Technology , Ajou University , Suwon , Korea
| |
Collapse
|
32
|
Combination of TLR1/2 and TLR3 ligands enhances CD4(+) T cell longevity and antibody responses by modulating type I IFN production. Sci Rep 2016; 6:32526. [PMID: 27580796 PMCID: PMC5007540 DOI: 10.1038/srep32526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/10/2016] [Indexed: 01/13/2023] Open
Abstract
Despite the possibility of combining Toll-like receptor (TLR) ligands as adjuvants to improve vaccine efficacy, it remains unclear which combinations of TLR ligands are effective or what their underlying mechanisms may be. Here, we investigated the mechanism of action of L-pampo, a proprietary adjuvant composed of TLR1/2 and TLR3 ligands. L-pampo dramatically increased humoral immune responses against the tested target antigens, which was correlated with an increase in follicular helper T cells and the maintenance of antigen-specific CD4+ T cells. During the initial priming phase, in contrast to the induction of type I interferon (IFN) and pro-inflammatory cytokines stimulated by polyI:C, L-pampo showed a greatly diminished induction of type I IFN, but not of other cytokines, and remarkably attenuated IRF3 signaling, which appeared to be critical to L-pampo-mediated adjuvanticity. Collectively, our results demonstrate that the adjuvant L-pampo contributes to the promotion of antigen-specific antibodies and CD4+ T cell responses via a fine regulation of the TLR1/2 and TLR3 signaling pathways, which may be helpful in the design of improved vaccines.
Collapse
|
33
|
Vo MC, Lee HJ, Kim JS, Hoang MD, Choi NR, Rhee JH, Lakshmanan VK, Shin SJ, Lee JJ. Dendritic cell vaccination with a toll-like receptor agonist derived from mycobacteria enhances anti-tumor immunity. Oncotarget 2016; 6:33781-90. [PMID: 26418952 PMCID: PMC4741802 DOI: 10.18632/oncotarget.5281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/04/2015] [Indexed: 11/30/2022] Open
Abstract
Dendritic cell (DC)-based vaccines are considered useful in cancer immunotherapy, and the interaction of DC and adjuvants is important in the design of the next generation vaccines. In this study, whether DC combined with Rv2299c derived from mycobacteria could improve anti-tumor immune responses in a colon cancer mouse model was evaluated. MC38 cell lines were injected subcutaneously to establish colon-cancer-bearing mice and the following four groups were evaluated: PBS control, tumor antigen (TA) loaded-DC, Rv2299c, and a combination of TA-loaded-DC and Rv2299c. The combination treatment with TA-loaded-DC and Rv2299c exhibited greater inhibition of tumor growth compared to other groups. These effects were associated with the reduction of suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, and the induction of effector cells, such as CD4+ T cells and CD8+ T cells, in spleen, and with the activation of cytotoxic T Lymphocytes and NK cells. These results suggest that TA-loaded-DC vaccination with Rv2299c derived from mycobacteria enhanced anti-tumor immunity in a mouse colon cancer model by inhibiting the generation of immune-suppressive cells and recovering numbers of effector cells, and demonstrated superior polarization of the Th1/Th2 balance in favor of the Th1 immune response.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea
| | - Jong-Seok Kim
- Department of Microbiology and Institute of Immunology and Immunological Diseases, Yonsei University, Seoul, Republic of Korea
| | - My-Dung Hoang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea
| | - Nu-Ri Choi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Vinoth-Kumar Lakshmanan
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sung-Jae Shin
- Department of Microbiology and Institute of Immunology and Immunological Diseases, Yonsei University, Seoul, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Jeollanamdo, Republic of Korea
| |
Collapse
|
34
|
CRACC-targeting Fc-fusion protein induces activation of NK cells and DCs and improves T cell immune responses to antigenic targets. Vaccine 2016; 34:3109-3118. [PMID: 27151882 DOI: 10.1016/j.vaccine.2016.04.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 04/13/2016] [Accepted: 04/23/2016] [Indexed: 11/20/2022]
Abstract
The CD2-like receptor activating cytotoxic cell (CRACC) receptor is a member of the SLAM family of receptors that are found on several types of immune cells. We previously demonstrated that increasing the abundance of the adaptor protein EAT-2 during vaccination enhanced innate and adaptive immune responses to vaccine antigens. Engagement of the CRACC receptor in the presence of the EAT-2 adaptor generally results in immune cell activation, while activating CRACC signaling in cells that lack EAT-2 adaptor inhibits their effector and regulatory functions. As EAT-2 is the only SAP adaptor that interacts with the CRACC receptor, we hypothesized that technologies that specifically modulate CRACC signaling during vaccination may also improve antigen specific adaptive immune responses. To test this hypothesis, we constructed a CRACC-targeting Fc fusion protein and included it in vaccination attempts. Indeed, mice co-vaccinated with the CRACC-Fc fusion protein and an adenovirus vaccine expressing the HIV-Gag protein had improved Gag-specific T cell responses, as compared to control mice. These responses are characterized by increased numbers of Gag-specific tetramer+ CD8+ T cells and increases in production of IFNγ, TNFα, and IL2, by Gag-specific CD8+ T cells. Moreover, our results revealed that use of the CRACC-Fc fusion protein enhances vaccine-elicited innate immune responses, as characterized by increased dendritic cells (DCs) maturation and IFNγ production from NK cells. This study highlights the importance of CRACC signaling during the induction of an immune response generally, and during vaccinations specifically, and also lends insight into the mechanisms underlying our prior results noting EAT-2-dependent improvements in vaccine efficacy.
Collapse
|
35
|
Gartlan KH, Krashias G, Wegmann F, Hillson WR, Scherer EM, Greenberg PD, Eisenbarth SC, Moghaddam AE, Sattentau QJ. Sterile inflammation induced by Carbopol elicits robust adaptive immune responses in the absence of pathogen-associated molecular patterns. Vaccine 2016; 34:2188-96. [PMID: 27005810 PMCID: PMC4850248 DOI: 10.1016/j.vaccine.2016.03.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/27/2022]
Abstract
Carbopol induces Th1/IgG2a responses without PRR activation. Carbopol polymer morphology is changed by APC phagocytosis leading to ROS induction. This study highlights a potentially novel mechanism for in vivo cellular activation.
Carbopol is a polyanionic carbomer used in man for topical application and drug delivery purposes. However parenteral administration of Carbopol in animal models results in systemic adjuvant activity including strong pro-inflammatory type-1 T-cell (Th1) polarization. Here we investigated potential pathways of immune activation by Carbopol by comparison with other well-characterized adjuvants. Carbopol administration triggered rapid and robust leukocyte recruitment, pro-inflammatory cytokine secretion and antigen capture largely by inflammatory monocytes. The induction of antigen specific Th1 cells by Carbopol was found to occur via a non-canonical pathway, independent of MyD88/TRIF signaling and in the absence of pattern-recognition-receptor (PRR) activation typically associated with Th1/Ig2a induction. Using multispectral fluorescence imaging (Imagestream) and electron microscopy we demonstrated that phagocytic uptake of Carbopol particles followed by entry into the phagosomal/lysosomal pathway elicited conformational changes to the polymer and reactive oxygen species (ROS) production. We therefore conclude that Carbopol may mediate its adjuvant activity via novel mechanisms of antigen presenting cell activation and Th1 induction, leading to enhanced IgG2a responses independent of microbial pattern recognition.
Collapse
Affiliation(s)
- Kate H Gartlan
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | - George Krashias
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Frank Wegmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - William R Hillson
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Erin M Scherer
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | - Amin E Moghaddam
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
36
|
Pennock ND, Kedl JD, Kedl RM. T Cell Vaccinology: Beyond the Reflection of Infectious Responses. Trends Immunol 2016; 37:170-180. [PMID: 26830540 PMCID: PMC4775298 DOI: 10.1016/j.it.2016.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/31/2015] [Accepted: 01/07/2016] [Indexed: 12/17/2022]
Abstract
Inducing sustained, robust CD8(+) T cell responses is necessary for therapeutic intervention in chronic infectious diseases and cancer. Unfortunately, most adjuvant formulations fail to induce substantial cellular immunity in humans. Attenuated acute infectious agents induce strong CD8(+) T cell immunity, and are thought to therefore represent a good road map for guiding the development of subunit vaccines capable of inducing the same. However, recent evidence suggests that this assumption may need reconsideration. Here we provide an overview of subunit vaccine history as it pertains to instigating T cell responses. We argue that in light of evidence demonstrating that T cell responses to vaccination differ from those induced by infectious challenge, research in pursuit of cellular immunity-inducing vaccine adjuvants should no longer follow only the infection paradigm.
Collapse
Affiliation(s)
- Nathan D Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Justin D Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver, Denver, CO, USA.
| |
Collapse
|
37
|
Salem ML, Attia ZI, Galal SM. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model. J Adv Res 2016; 7:243-53. [PMID: 26966565 PMCID: PMC4767798 DOI: 10.1016/j.jare.2015.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/13/2015] [Accepted: 06/04/2015] [Indexed: 02/07/2023] Open
Abstract
Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 10(5) cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund's adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund's Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b(+)Ly6G(+), CD11b(+)Ly6G(-), and CD11b(+)Ly6G(-). We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination.
Collapse
Affiliation(s)
- Mohamed L. Salem
- Immunology and Biotechnology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Center of Excellence in Cancer Research, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Corresponding author. Tel.: +20 1274272624.
| | - Zeinab I. Attia
- Physiology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sohaila M. Galal
- Physiology Unit, Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
38
|
A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine 2016; 34:1370-8. [PMID: 26845736 DOI: 10.1016/j.vaccine.2016.01.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/31/2015] [Accepted: 01/22/2016] [Indexed: 02/02/2023]
Abstract
Tuberculosis (TB) is a serious disease around the world, and protein based subunit vaccine is supposed to be a kind of promising novel vaccine against it. However, there is no effective adjuvant available in clinic to activate cell-mediated immune responses which is required for TB subunit vaccine. Therefore, it is imperative to develop new adjuvant. Here we reported an adjuvant composed of dimethyl dioctadecylammonium (DDA), Poly I:C and cholesterol (DPC for short). DDA can form a kind of cationic liposome with the ability to deliver and present antigen and can induce Th1 type cell-mediated immune response. Poly I:C, a ligand of TLR3 receptor, could attenuate the pathologic reaction induced by following Mycobacterium tuberculosis challenge. Cholesterol, which could enhance rigidity of lipid bilayer, is added to DDA and Poly I:C to improve the stability of the adjuvant. The particle size and Zeta-potential of DPC were analyzed in vitro. Furthermore, DPC was mixed with a TB fusion protein ESAT6-Ag85B-MPT64(190-198)-Mtb8.4-Rv2626c (LT70) to construct a subunit vaccine. The subunit vaccine-induced immune responses and protective efficacy against M. tuberculosis H37Rv infection in C57BL/6 mice were investigated. The results showed that the DPC adjuvant with particle size of 400 nm and zeta potential of 40 mV was in good stability. LT70 in the adjuvant of DPC generated strong antigen-specific humoral and cell-mediated immunity, and induced long-term higher protective efficacy against M. tuberculosis infection (5.41 ± 0.38log10CFU) than traditional vaccine Bacillus Calmette-Guerin (BCG) (6.01 ± 0.33log10CFU) and PBS control (6.53 ± 0.26log10CFU) at 30 weeks post-vaccination. In conclusion, DPC would be a promising vaccine adjuvant with the ability to stimulate Th1 type cell-mediated immunity, and could be used in TB subunit vaccine.
Collapse
|
39
|
Tom J, Dotsey EY, Wong HY, Stutts L, Moore T, Davies DH, Felgner P, Esser-Kahn AP. Modulation of Innate Immune Responses via Covalently Linked TLR Agonists. ACS CENTRAL SCIENCE 2015; 1:439-448. [PMID: 26640818 PMCID: PMC4665084 DOI: 10.1021/acscentsci.5b00274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Indexed: 05/17/2023]
Abstract
We present the synthesis of novel adjuvants for vaccine development using multivalent scaffolds and bioconjugation chemistry to spatially manipulate Toll-like receptor (TLR) agonists. TLRs are primary receptors for activation of the innate immune system during vaccination. Vaccines that contain a combination of small and macromolecule TLR agonists elicit more directed immune responses and prolong responses against foreign pathogens. In addition, immune activation is enhanced upon stimulation of two distinct TLRs. Here, we synthesized combinations of TLR agonists as spatially defined tri- and di-agonists to understand how specific TLR agonist combinations contribute to the overall immune response. We covalently conjugated three TLR agonists (TLR4, 7, and 9) to a small molecule core to probe the spatial arrangement of the agonists. Treating immune cells with the linked agonists increased activation of the transcription factor NF-κB and enhanced and directed immune related cytokine production and gene expression beyond cells treated with an unconjugated mixture of the same three agonists. The use of TLR signaling inhibitors and knockout studies confirmed that the tri-agonist molecule activated multiple signaling pathways leading to the observed higher activity. To validate that the TLR4, 7, and 9 agonist combination would activate the immune response to a greater extent, we performed in vivo studies using a vaccinia vaccination model. Mice vaccinated with the linked TLR agonists showed an increase in antibody depth and breadth compared to mice vaccinated with the unconjugated mixture. These studies demonstrate how activation of multiple TLRs through chemically and spatially defined organization assists in guiding immune responses, providing the potential to use chemical tools to design and develop more effective vaccines.
Collapse
Affiliation(s)
- Janine
K. Tom
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Emmanuel Y. Dotsey
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Hollie Y. Wong
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Lalisa Stutts
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Troy Moore
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - D. Huw Davies
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Philip
L. Felgner
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry and Department of Medicine, Division of Infectious
Diseases, University of California, Irvine, Irvine, California 92697, United States
- E-mail:
| |
Collapse
|
40
|
Virus-Like Particle Vaccine Containing the F Protein of Respiratory Syncytial Virus Confers Protection without Pulmonary Disease by Modulating Specific Subsets of Dendritic Cells and Effector T Cells. J Virol 2015; 89:11692-705. [PMID: 26355098 DOI: 10.1128/jvi.02018-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED There is no licensed vaccine against respiratory syncytial virus (RSV) since the failure of formalin-inactivated RSV (FI-RSV) due to its vaccine-enhanced disease. We investigated immune correlates conferring protection without causing disease after intranasal immunization with virus-like particle vaccine containing the RSV fusion protein (F VLP) in comparison to FI-RSV and live RSV. Upon RSV challenge, FI-RSV immune mice showed severe weight loss, eosinophilia, and histopathology, and RSV reinfection also caused substantial RSV disease despite their viral clearance. In contrast, F VLP immune mice showed least weight loss and no sign of histopathology and eosinophilia. High levels of interleukin-4-positive (IL-4(+)) and tumor necrosis factor alpha-positive (TNF-α(+)) CD4(+) T cells were found in FI-RSV immune mice, whereas gamma interferon-positive (IFN-γ(+)) and TNF-α(+) CD4(+) T cells were predominantly detected in live RSV-infected mice. More importantly, in contrast to FI-RSV and live RSV that induced higher levels of CD11b(+) dendritic cells, F VLP immunization induced CD8α(+) and CD103(+) dendritic cells, as well as F-specific IFN-γ(+) and TNF-α(+) CD8(+) T cells. These results suggest that F VLP can induce protection without causing pulmonary RSV disease by inducing RSV neutralizing antibodies, as well as modulating specific subsets of dendritic cells and CD8 T cell immunity. IMPORTANCE It has been a difficult challenge to develop an effective and safe vaccine against respiratory syncytial virus (RSV), a leading cause of respiratory disease. Immune correlates conferring protection but preventing vaccine-enhanced disease remain poorly understood. RSV F virus-like particle (VLP) would be an efficient vaccine platform conferring protection. Here, we investigated the protective immune correlates without causing disease after intranasal immunization with RSV F VLP in comparison to FI-RSV and live RSV. In addition to inducing RSV neutralizing antibodies responsible for clearing lung viral loads, we show that modulation of specific subsets of dendritic cells and CD8 T cells producing T helper type 1 cytokines are important immune correlates conferring protection but not causing vaccine-enhanced disease.
Collapse
|
41
|
Stoel M, Pool J, de Vries-Idema J, Zaaraoui-Boutahar F, Bijl M, Andeweg AC, Wilschut J, Huckriede A. Innate responses induced by whole inactivated virus or subunit influenza vaccines in cultured dendritic cells correlate with immune responses in vivo. PLoS One 2015; 10:e0125228. [PMID: 25933037 PMCID: PMC4416761 DOI: 10.1371/journal.pone.0125228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/22/2015] [Indexed: 01/14/2023] Open
Abstract
Vaccine development involves time-consuming and expensive evaluation of candidate vaccines in animal models. As mediators of both innate and adaptive immune responses dendritic cells (DCs) are considered to be highly important for vaccine performance. Here we evaluated how far the response of DCs to a vaccine in vitro is in line with the immune response the vaccine evokes in vivo. To this end, we investigated the response of murine bone marrow-derived DCs to whole inactivated virus (WIV) and subunit (SU) influenza vaccine preparations. These vaccine preparations were chosen because they differ in the immune response they evoke in mice with WIV being superior to SU vaccine through induction of higher virus-neutralizing antibody titers and a more favorable Th1-skewed response phenotype. Stimulation of DCs with WIV, but not SU vaccine, resulted in a cytokine response that was comparable to that of DCs stimulated with live virus. Similarly, the gene expression profiles of DCs treated with WIV or live virus were similar and differed from that of SU vaccine-treated DCs. More specifically, exposure of DCs to WIV resulted in differential expression of genes in known antiviral pathways, whereas SU vaccine did not. The stronger antiviral and more Th1-related response of DCs to WIV as compared to SU vaccine correlates well with the superior immune response found in mice. These results indicate that in vitro stimulation of DCs with novel vaccine candidates combined with the assessment of multiple parameters, including gene signatures, may be a valuable tool for the selection of vaccine candidates.
Collapse
Affiliation(s)
- Maaike Stoel
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Judith Pool
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Jacqueline de Vries-Idema
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Maarten Bijl
- Department of Viroscience, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Arno C. Andeweg
- Department of Viroscience, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Jan Wilschut
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anke Huckriede
- Department of Medical Microbiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Ramakrishnan S, Annamalai A, Sachan S, Kumar A, Sharma BK, Govindaraj E, Chellappa MM, Dey S, Krishnaswamy N. Synergy of lipopolysaccharide and resiquimod on type I interferon, pro-inflammatory cytokine, Th1 and Th2 response in chicken peripheral blood mononuclear cells. Mol Immunol 2015; 64:177-82. [DOI: 10.1016/j.molimm.2014.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/26/2022]
|
43
|
Abstract
In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.
Collapse
Affiliation(s)
- Bali Pulendran
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329;
| |
Collapse
|
44
|
Slc15a4 function is required for intact class switch recombination to IgG2c in response to TLR9 stimulation. Immunol Cell Biol 2014; 93:136-46. [PMID: 25310967 DOI: 10.1038/icb.2014.82] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 08/30/2014] [Accepted: 08/31/2014] [Indexed: 12/24/2022]
Abstract
Signalling through Toll-like receptors (TLRs) by endogenous components of viruses or bacteria can promote antibody (Ab) isotype switching to IgG2a/c. Multiple cell types are capable of responding to TLR stimulation in vivo and the processes underlying TLR-induced Ab isotype switching are not fully defined. Here, we used feeble mice, which are deficient in the peptide/histidine transporter solute carrier family 15 member 4 (Slc15a4), and fail to produce cytokines including interferon alpha (IFNα) in response to TLR9 stimulation, to study Ab isotype switching to IgG2c in response to vaccination. We demonstrate that the production of IgG2c in response to CpGA-adjuvanted vaccines was severely reduced in feeble mice, while a more subtle defect was observed for CpGB. The reduced IgG2c production in feeble could not be ascribed to defective plasmacytoid dendritic cell (pDC) responses alone as we found that splenic cDCs and B cells from feeble mice were also defective in response to TLR9 ligation ex vivo. We conclude that Slc15a4 is required for intact function of TLR9-expressing cells and for effective Ab isotype switching to IgG2c in response to CpG-adjuvanted vaccines.
Collapse
|
45
|
Manoharan I, Hong Y, Suryawanshi A, Angus-Hill ML, Sun Z, Mellor AL, Munn DH, Manicassamy S. TLR2-dependent activation of β-catenin pathway in dendritic cells induces regulatory responses and attenuates autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2014; 193:4203-13. [PMID: 25210120 DOI: 10.4049/jimmunol.1400614] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) sense microbes via multiple innate receptors. Signals from different innate receptors are coordinated and integrated by DCs to generate specific innate and adaptive immune responses against pathogens. Previously, we have shown that two pathogen recognition receptors, TLR2 and dectin-1, which recognize the same microbial stimulus (zymosan) on DCs, induce mutually antagonistic regulatory or inflammatory responses, respectively. How diametric signals from these two receptors are coordinated in DCs to regulate or incite immunity is not known. In this study, we show that TLR2 signaling via AKT activates the β-catenin/T cell factor 4 pathway in DCs and programs them to drive T regulatory cell differentiation. Activation of β-catenin/T cell factor 4 was critical to induce regulatory molecules IL-10 (Il-10) and vitamin A metabolizing enzyme retinaldehyde dehydrogenase 2 (Aldh1a2) and to suppress proinflammatory cytokines. Deletion of β-catenin in DCs programmed them to drive Th17/Th1 cell differentiation in response to zymosan. Consistent with these findings, activation of the β-catenin pathway in DCs suppressed chronic inflammation and protected mice from Th17/Th1-mediated autoimmune neuroinflammation. Thus, activation of β-catenin in DCs via the TLR2 receptor is a novel mechanism in DCs that regulates autoimmune inflammation.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Yuan Hong
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Amol Suryawanshi
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | | | - Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Andrew L Mellor
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| | - David H Munn
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Pediatrics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912; and
| |
Collapse
|
46
|
Abstract
Limited understanding of correlates of protection from HIV transmission hinders development of an efficacious vaccine. D. J. M. Lewis and colleagues (J. Virol. 88:11648-11657, 2014, doi:10.1128/JVI.01621-14) now report that vaginal immunization with an HIVgp140 vaccine linked to the 70-kDa heat shock protein downregulated the human immunodeficiency virus (HIV) coreceptor CCR5 (chemokine [C-C motif] receptor 5) and increased expression of the HIV resistance factor APOBEC3G (apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G), in women. These effects correlated with HIV suppression ex vivo. Thus, vaccine-induced innate responses not only facilitate adaptive immunity-they may prove to be critical for preventing HIV transmission.
Collapse
|
47
|
Targeting TLR2 for vaccine development. J Immunol Res 2014; 2014:619410. [PMID: 25057505 PMCID: PMC4098989 DOI: 10.1155/2014/619410] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Novel and more effective immunization strategies against many animal diseases may profit from the current knowledge on the modulation of specific immunity through stimulation of innate immune receptors. Toll-like receptor (TLR)2-targeting formulations, such as synthetic lipopeptides and antigens expressed in fusion with lipoproteins, have been shown to have built-in adjuvant properties and to be effective at inducing cellular and humoral immune mechanisms in different animal species. However, contradictory data has arisen concerning the profile of the immune response elicited. The benefits of targeting TLR2 for vaccine development are thus still debatable and more studies are needed to rationally explore its characteristics. Here, we resume the main features of TLR2 and TLR2-induced immune responses, focusing on what has been reported for veterinary animals.
Collapse
|
48
|
Riese P, Sakthivel P, Trittel S, Guzmán CA. Intranasal formulations: promising strategy to deliver vaccines. Expert Opin Drug Deliv 2014; 11:1619-34. [PMID: 24962722 DOI: 10.1517/17425247.2014.931936] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The emergence of new diseases and the lack of efficient vaccines against numerous non-treatable pathogens require the development of novel vaccination strategies. To date, only a few mucosal vaccines have been approved for humans. This was in part due to i) the use of live attenuated vaccines, which are not suitable for certain groups of individuals, ii) safety concerns derived from implementation in humans of some mucosal vaccines, iii) the poor stability, absorption and immunogenicity of antigens delivered by the mucosal route and iv) the limited number of available technologies to overcome the bottlenecks associated with mucosal antigen delivery. Recent advances make feasible the development of efficacious mucosal vaccines with adequate safety profile. Thus, currently intranasal vaccines represent an attractive and valid alternative to conventional vaccines. AREAS COVERED The present review is focused on the potentials and limitations of market-approved intranasal vaccines and promising candidates undergoing clinical investigations. Furthermore, emerging strategies to overcome main bottlenecks including efficient breaching of the mucosal barrier and safety concerns by implementation of new adjuvants and delivery systems are discussed. EXPERT OPINION The rational design of intranasal vaccines requires an in-depth understanding of the anatomic, physicochemical and barrier properties of the nasal mucosa, as well as the molecular mechanisms governing the activation of the local innate and adaptive immune system. This would provide the critical knowledge to establish effective approaches to deliver vaccine antigens across the mucosal barrier, supporting the stimulation of a long-lasting protective response at both mucosal and systemic levels. Current developments in the area of adjuvants, nanotechnologies and mucosal immunology, together with the identification of surface receptors that can be exploited for cell targeting and manipulating their physiological properties, will become instrumental for developing a new generation of more effective intranasal vaccines.
Collapse
Affiliation(s)
- Peggy Riese
- Helmholtz Centre for Infection Research, Department of Vaccinology and Applied Microbiology , Inhoffenstrasse 7, 38124 Braunschweig , Germany
| | | | | | | |
Collapse
|
49
|
Reba SM, Li Q, Onwuzulike S, Ding X, Karim AF, Hernandez Y, Fulton SA, Harding CV, Lancioni CL, Nagy N, Rodriguez ME, Wearsch PA, Rojas RE. TLR2 engagement on CD4(+) T cells enhances effector functions and protective responses to Mycobacterium tuberculosis. Eur J Immunol 2014; 44:1410-21. [PMID: 24497180 PMCID: PMC4112943 DOI: 10.1002/eji.201344100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/19/2013] [Accepted: 01/31/2014] [Indexed: 11/08/2022]
Abstract
We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4(+) T cells and upregulate TCR-triggered IFN-γ secretion and cell proliferation in vitro. Here we examined the role of CD4(+) T-cell-expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag-specific T-cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4(+) T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1-like response was observed in the context of both polyclonal and Ag-specific TCR stimulation. To evaluate the role of T-cell TLR2 in priming of CD4(+) T cells in vivo, naive MTB Ag85B-specific TCR transgenic CD4(+) T cells (P25 TCR-Tg) were adoptively transferred into Tlr2(-/-) recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3 Cys-SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN-γ-secreting P25 TCR-Tg T cells 1 week after immunization. P25 TCR-Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4(+) T cells increases MTB Ag-specific responses and may contribute to protection against MTB infection.
Collapse
Affiliation(s)
- Scott M Reba
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Qing Li
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Sophia Onwuzulike
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Xuedong Ding
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Ahmad F Karim
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Yeritza Hernandez
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Scott A Fulton
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Clifford V Harding
- Pathology Department, Case Western Reserve University, University
Hospitals, Cleveland, OH, USA
- Center for AIDS Research (CFAR), Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Christina L Lancioni
- Department of Pediatrics, Oregon Health and Science University,
Portland, OR, USA
| | - Nancy Nagy
- Pathology Department, Case Western Reserve University, University
Hospitals, Cleveland, OH, USA
| | - Myriam E Rodriguez
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
| | - Pamela A Wearsch
- Pathology Department, Case Western Reserve University, University
Hospitals, Cleveland, OH, USA
| | - Roxana E Rojas
- Department of Medicine, Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
- Center for AIDS Research (CFAR), Case Western Reserve University,
University Hospitals, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western
Reserve University, University Hospitals, Cleveland, OH, USA
| |
Collapse
|
50
|
Lee JS, Ko EJ, Hwang HS, Lee YN, Kwon YM, Kim MC, Kang SM. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int J Mol Med 2014; 34:183-90. [PMID: 24756136 PMCID: PMC4072342 DOI: 10.3892/ijmm.2014.1750] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/03/2014] [Indexed: 01/23/2023] Open
Abstract
Panax ginseng has been known to have a number of immuno-modulatory effects. In this study, we investigated whether Panax Korean red ginseng extract (KRGE) has in vitro and in vivo antiviral effects on respiratory syncytial virus (RSV) infection. KRGE improved the survival of human lung epithelial cells against RSV infection and inhibited RSV replication. In addition, KRGE treatment suppressed the expression of RSV-induced inflammatory cytokine genes (IL-6 and IL-8) and the formation of reactive oxygen species in epithelial cell cultures. Oral administration of mice with KRGE resulted in lowering lung viral loads after RSV infection. Additionally, the in vivo effects of KRGE showed an enhanced level of interferon-γ (IFN-γ) producing dendritic cells subsequent to RSV infection. Taken together, these results suggested that KRGE has antiviral activity against RSV infection.
Collapse
Affiliation(s)
- Jong Seok Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Eun-Ju Ko
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Hye Suk Hwang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yu-Na Lee
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|