1
|
Obare LM, Bonami RH, Doran A, Wanjalla CN. B cells and atherosclerosis: A HIV perspective. J Cell Physiol 2024; 239:e31270. [PMID: 38651687 PMCID: PMC11209796 DOI: 10.1002/jcp.31270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Doran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
2
|
Rastogi I, Jeon D, Moseman JE, Muralidhar A, Potluri HK, McNeel DG. Role of B cells as antigen presenting cells. Front Immunol 2022; 13:954936. [PMID: 36159874 PMCID: PMC9493130 DOI: 10.3389/fimmu.2022.954936] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023] Open
Abstract
B cells have been long studied for their role and function in the humoral immune system. Apart from generating antibodies and an antibody-mediated memory response against pathogens, B cells are also capable of generating cell-mediated immunity. It has been demonstrated by several groups that B cells can activate antigen-specific CD4 and CD8 T cells, and can have regulatory and cytotoxic effects. The function of B cells as professional antigen presenting cells (APCs) to activate T cells has been largely understudied. This, however, requires attention as several recent reports have demonstrated the importance of B cells within the tumor microenvironment, and B cells are increasingly being evaluated as cellular therapies. Antigen presentation through B cells can be through antigen-specific (B cell receptor (BCR) dependent) or antigen non-specific (BCR independent) mechanisms and can be modulated by a variety of intrinsic and external factors. This review will discuss the pathways and mechanisms by which B cells present antigens, and how B cells differ from other professional APCs.
Collapse
|
3
|
Jaufmann J, Franke FC, Sperlich A, Blumendeller C, Kloos I, Schneider B, Sasaki D, Janssen KP, Beer-Hammer S. The emerging and diverse roles of the SLy/SASH1-protein family in health and disease-Overview of three multifunctional proteins. FASEB J 2021; 35:e21470. [PMID: 33710696 DOI: 10.1096/fj.202002495r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022]
Abstract
Intracellular adaptor proteins are indispensable for the transduction of receptor-derived signals, as they recruit and connect essential downstream effectors. The SLy/SASH1-adaptor family comprises three highly homologous proteins, all of them sharing conserved structural motifs. The initial characterization of the first member SLy1/SASH3 (SH3 protein expressed in lymphocytes 1) in 2001 was rapidly followed by identification of SLy2/HACS1 (hematopoietic adaptor containing SH3 and SAM domains 1) and SASH1/SLy3 (SAM and SH3 domain containing 1). Based on their pronounced sequence similarity, they were subsequently classified as one family of intracellular scaffold proteins. Despite their obvious homology, the three SLy/SASH1-members fundamentally differ with regard to their expression and function in intracellular signaling. On the contrary, growing evidence clearly demonstrates an important role of all three proteins in human health and disease. In this review, we systematically summarize what is known about the SLy/SASH1-adaptors in the field of molecular cell biology and immunology. To this end, we recapitulate current research about SLy1/SASH3, SLy2/HACS1, and SASH1/SLy3, with an emphasis on their similarities and differences.
Collapse
Affiliation(s)
- Jennifer Jaufmann
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Fabian Christoph Franke
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Sperlich
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Carolin Blumendeller
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Isabel Kloos
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Barbara Schneider
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| | - Daisuke Sasaki
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,Medical SC New Technology Strategy Office, General Research Institute, Nitto Boseki, Co., Ltd, Tokyo, Japan
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomik and ICePhA, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Abstract
The spleen is the second major reservoir of B cells in the adult. In the spleen, cells, generated in the bone marrow, are selected, mature, and become part of the peripheral B-cell pool. Murine spleen comprises several B-cell subsets representing various maturation stages and/or cell functions. The spleen is a complex lymphoid organ organized into two main structures with different functions: the red and white pulp. The red pulp is flowed with blood while the white pulp is organized in primary follicles, with a B-cell area composed of follicular B cells and a T-cell area surrounding a periarterial lymphatic sheath. The frontier between the red and white pulp is defined as the marginal zone (MZ) and contains the MZ B cells. Because B cells, localized in different areas, are characterized by distinct expression levels of B-cell receptor (BCR) and of other surface markers, splenic B-cell subsets can be easily identified and purified by flow cytometry analyses and fluorescence-activated cell sorting (FACS).Here, we will focus on MZ B cells and on their precursors, giving some experimental hints to identify, generate, and isolate these cells. We will combine the use of FACS analysis and confocal microscopy to visualize MZ B cells in cell suspensions and in tissue sections, respectively. We will also give some clues to analyze B-cell repertoire on isolated MZ-B cells.
Collapse
|
5
|
González-Tajuelo R, González-Sánchez E, Silván J, Muñoz-Callejas A, Vicente-Rabaneda E, García-Pérez J, Castañeda S, Urzainqui A. Relevance of PSGL-1 Expression in B Cell Development and Activation. Front Immunol 2020; 11:588212. [PMID: 33281818 PMCID: PMC7689347 DOI: 10.3389/fimmu.2020.588212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/14/2020] [Indexed: 12/03/2022] Open
Abstract
PSGL-1 is expressed in all plasma cells, but only in a small percentage of circulating B cells. Patients with systemic sclerosis (SSc) show reduced expression of PSGL-1 in B cells and increased prevalence of pulmonary arterial hypertension. PSGL-1 deficiency leads to a SSc-like syndrome and SSc-associated pulmonary hypertension in female mice. In this work, the expression of PSGL-1 was assessed during murine B cell development in the bone marrow and in several peripheral and spleen B cell subsets. The impact of PSGL-1 absence on B cell biology was also evaluated. Interestingly, the percentage of PSGL-1 expressing cells and PSGL-1 expression levels decreased in the transition from common lymphoid progenitors to immature B cells. PSGL-1−/− mice showed reduced frequencies of peripheral B cells and reduced B cell lineage-committed precursors in the bone marrow. In the spleen of WT mice, the highest percentages of PSGL-1+ populations were shown by Breg (90%), B1a (34.7%), and B1b (19.1%), while only 2.5–8% of B2 cells expressed PSGL-1; however, within B2 cells, the class-switched subsets showed the highest percentages of PSGL-1+ cells. Interestingly, PSGL-1−/− mice had increased IgG+ and IgD+ subsets and decreased IgA+ population. Of note, the percentage of PSGL-1+ cells was increased in all the B cell subclasses studied in peritoneal fluid. Furthermore, PSGL-1 engagement during in vitro activation with anti-IgM and anti-CD40 antibodies of human peripheral B cells, blocked IL-10 expression by activated human B cells. Remarkably, PSGL-1 expression in circulating plasma cells was reduced in pulmonary arterial hypertension patients. In summary, although the expression of PSGL-1 in mature B cells is low, the lack of PSGL-1 compromises normal B cell development and it may also play a role in the maturation and activation of peripheral naïve B cells.
Collapse
Affiliation(s)
- Rafael González-Tajuelo
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Elena González-Sánchez
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Javier Silván
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Antonio Muñoz-Callejas
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Esther Vicente-Rabaneda
- Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Javier García-Pérez
- Pulmunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| | - Santos Castañeda
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain.,Rheumatology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain.,Cátedra UAM-Roche, EPID-Future, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Urzainqui
- Immunology Department, Fundación de Investigación Biomédica (FIB), Instituto de Investigación Sanitaria-Princesa (IIS-Princesa), Hospital de la Princesa, Madrid, Spain
| |
Collapse
|
6
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019. [PMID: 30619343 DOI: 10.3389/fimmu.2018.02988.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Maity PC, Datta M, Nicolò A, Jumaa H. Isotype Specific Assembly of B Cell Antigen Receptors and Synergism With Chemokine Receptor CXCR4. Front Immunol 2019; 9:2988. [PMID: 30619343 PMCID: PMC6305424 DOI: 10.3389/fimmu.2018.02988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
Expression of the membrane-bound form of the immunoglobulin (Ig) as part of the antigen receptor is indispensable for both the development and the effector function of B cells. Among five known isotypes, IgM and IgD are the common B cell antigen receptors (BCRs) that are co-expressed in naïve B cells. Despite having identical antigen specificity and being associated with the same signaling heterodimer Igα/Igβ (CD79a/CD79b), IgM and IgD-BCR isotypes functionally differ from each other in the manner of antigen binding, the formation of isolated nanoclusters and in their interaction with co-receptors such as CD19 and CXCR4 on the plasma membrane. With recent developments in experimental techniques, it is now possible to investigate the nanoscale organization of the BCR and better understand early events of BCR engagement. Interestingly, the cytoskeleton network beneath the membrane controls the BCR isotype-specific organization and its interaction with co-receptors. BCR triggering results in reorganization of the cytoskeleton network, which is further modulated by isotype-specific signals from co-receptors. For instance, IgD-BCR is closely associated with CXCR4 on mature B cells and this close proximity allows CXCR4 to employ the BCR machinery as signaling hub. In this review, we discuss the functional specificity and nanocluster assembly of BCR isotypes and the consequences of cross-talk between CXCR4 and IgD-BCR. Furthermore, given the role of BCR and CXCR4 signaling in the development and survival of leukemic B cells, we discuss the consequences of the cross-talk between CXCR4 and the BCR for controlling the growth of transformed B cells.
Collapse
Affiliation(s)
| | - Moumita Datta
- Institute of Immunology, Ulm University, Ulm, Germany
| | | | - Hassan Jumaa
- Institute of Immunology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Hobeika E, Dautzenberg M, Levit-Zerdoun E, Pelanda R, Reth M. Conditional Selection of B Cells in Mice With an Inducible B Cell Development. Front Immunol 2018; 9:1806. [PMID: 30127788 PMCID: PMC6087743 DOI: 10.3389/fimmu.2018.01806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
Developing B cells undergo defined maturation steps in the bone marrow and in the spleen. The timing and the factors that control these differentiation steps are not fully understood. By targeting the B cell-restricted mb-1 locus to generate an mb-1 allele that expresses a tamoxifen inducible Cre and another allele in which mb-1 expression can be controlled by Cre, we have established a mouse model with an inducible B cell compartment. With these mice, we studied in detail the kinetics of B cell development and the consequence of BCR activation at a defined B cell maturation stage. Contrary to expectations, transitional 1-B cells exposed to anti-IgM reagents in vivo did not die but instead developed into transitional 2 (T2)-B cells with upregulated Bcl-2 expression. We show, however, that these T2-B cells had an increased dependency on the B cell survival factor B cell activating factor when compared to non-stimulated B cells. Overall, our findings indicate that the inducible mb-1 mouse strain represents a useful model, which allows studying the signals that control the selection of B cells in greater detail.
Collapse
Affiliation(s)
- Elias Hobeika
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Marcel Dautzenberg
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Freiburg, Germany
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Michael Reth
- Centre for Biological Signaling Studies (BIOSS), Biology III, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
9
|
de Oliveira FL, Dos Santos SN, Ricon L, da Costa TP, Pereira JX, Brand C, Fermino ML, Chammas R, Bernardes ES, El-Cheikh MC. Lack of galectin-3 modifies differentially Notch ligands in bone marrow and spleen stromal cells interfering with B cell differentiation. Sci Rep 2018; 8:3495. [PMID: 29472568 PMCID: PMC5823902 DOI: 10.1038/s41598-018-21409-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactoside binding protein that controls cell-cell and cell-extracellular matrix interactions. In lymphoid organs, gal-3 inhibits B cell differentiation by mechanisms poorly understood. The B cell development is dependent on tissue organization and stromal cell signaling, including IL-7 and Notch pathways. Here, we investigate possible mechanisms that gal-3 interferes during B lymphocyte differentiation in the bone marrow (BM) and spleen. The BM of gal-3-deficient mice (Lgals3-/- mice) was evidenced by elevated numbers of B220+CD19+c-Kit+IL-7R+ progenitor B cells. In parallel, CD45- bone marrow stromal cells expressed high levels of mRNA IL-7, Notch ligands (Jagged-1 and Delta-like 4), and transcription factors (Hes-1, Hey-1, Hey-2 and Hey-L). The spleen of Lgals3-/- mice was hallmarked by marginal zone disorganization, high number of IgM+IgD+ B cells and CD138+ plasma cells, overexpression of Notch ligands (Jagged-1, Delta-like 1 and Delta-like 4) by stromal cells and Hey-1. Morever, IgM+IgD+ B cells and B220+CD138+ CXCR4+ plasmablasts were significantly increased in the BM and blood of Lgals3-/- mice. For the first time, we demonstrated that gal-3 inhibits Notch signaling activation in lymphoid organs regulating earlier and terminal events of B cell differentiation.
Collapse
Affiliation(s)
- Felipe Leite de Oliveira
- Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Lauremilia Ricon
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Thayse Pinheiro da Costa
- Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jonathas Xavier Pereira
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila Brand
- Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marise Lopes Fermino
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Roger Chammas
- Laboratório de Oncologia Experimental e Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, São Paulo, Brazil
| | - Emerson Soares Bernardes
- Centro de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares (IPEN), São Paulo, SP, Brazil
| | - Márcia Cury El-Cheikh
- Laboratório de Proliferação e Diferenciação Celular, Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Generation of an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. Exp Mol Med 2017; 49:e400. [PMID: 29170473 PMCID: PMC5704192 DOI: 10.1038/emm.2017.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/27/2017] [Accepted: 05/28/2017] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are produced from hematopoietic stem cells (HSCs) through the highly ordered process of B lymphopoiesis, which is regulated by a complex network of cytokines, chemokines and cell adhesion molecules derived from the hematopoietic niche. Primary osteoblasts function as an osteoblastic niche (OBN) that supports in vitro B lymphopoiesis. However, there are significant limitations to the use of primary osteoblasts, including their relative scarcity and the consistency and efficiency of the limited purification and proliferation of these cells. Thus, development of a stable osteoblast cell line that can function as a biomimetic or artificial OBN is necessary. In this study, we developed a stable osteoblastic cell line, designated OBN4, which functions as an osteoblast-based artificial niche that supports in vitro B lymphopoiesis. We demonstrated that the production of a B220+ cell population from Lineage− (Lin−) Sca-1+ c-Kit+ hematopoietic stem and progenitor cells (HSPCs) was increased ~1.7-fold by OBN4 cells relative to production by primary osteoblasts and OP9 cells in coculture experiments. Consistently, OBN4 cells exhibited the highest production of B220+ IgM+ cell populations (6.7±0.6–13.6±0.6%) in an IL-7- and stromal cell-derived factor 1-dependent manner, with higher production than primary osteoblasts (3.7±0.5–6.4±0.6%) and OP9 cells (1.8±0.6–3.9±0.5%). In addition, the production of B220+ IgM+ IgD+ cell populations was significantly enhanced by OBN4 cells (15.4±1.1–18.9±3.2%) relative to production by primary osteoblasts (9.5±0.6–14.6±1.6%) and OP9 cells (9.1±0.5–10.3±1.8%). We conclude that OBN4 cells support in vitro B lymphopoiesis of Lin− Sca-1+ c-Kit+ HSPCs more efficiently than primary osteoblasts or OP9 stromal cells.
Collapse
|
11
|
Hobeika E, Maity PC, Jumaa H. Control of B Cell Responsiveness by Isotype and Structural Elements of the Antigen Receptor. Trends Immunol 2016; 37:310-320. [PMID: 27052149 DOI: 10.1016/j.it.2016.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 01/08/2023]
Abstract
Expression of a functional B cell antigen receptor (BCR) plays a central role in regulating B cell development, maturation, and effector functions. Although IgM is solely expressed in immature B cell stages, the presence of both IgM- and IgD-BCR isotypes on mature naïve B cells raises the question of whether IgD has a unique role in B cell activation and function. While earlier studies suggested a broad functional redundancy between IgM and IgD, recent data point to an important immune regulatory role of IgD. Herein, we review these findings and discuss how the structural flexibility, mode of antigen binding, and co-receptor interactions, enable the IgD-BCR to act as a 'rheostat', regulating the activation and function of mature naïve B cells.
Collapse
Affiliation(s)
- Elias Hobeika
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| | - Palash Chandra Maity
- Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany; Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Hassan Jumaa
- Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany; Department of Molecular Immunology, Faculty of Biology, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
12
|
Levit-Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity PC, Rajewsky K, Reth M, Hobeika E. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. THE JOURNAL OF IMMUNOLOGY 2016; 196:2348-60. [PMID: 26843325 DOI: 10.4049/jimmunol.1501707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022]
Abstract
Expression of a functional BCR is essential for the development of mature B cells and has been invoked in the control of their maintenance. To test this maintenance function in a new experimental setting, we used the tamoxifen-inducible mb1-CreER(T2) mouse strain to delete or truncate either the mb-1 gene encoding the BCR signaling subunit Igα or the VDJ segment of the IgH (H chain [HC]). In this system, Cre-mediated deletion of the mb-1 gene is accompanied by expression of a GFP reporter. We found that, although the Igα-deficient mature B cells survive for >20 d in vivo, the HC-deficient or Igα tail-truncated B cell population is short-lived, with the HC-deficient cells displaying signs of an unfolded protein response. We also show that Igα-deficient B cells still respond to the prosurvival factor BAFF in culture and require BAFF-R signaling for their in vivo maintenance. These results suggest that, under certain conditions, the loss of the BCR can be tolerated by mature B cells for some time, whereas HC-deficient B cells, potentially generated by aberrant somatic mutations in the germinal center, are rapidly eliminated.
Collapse
Affiliation(s)
- Ella Levit-Zerdoun
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Martin Becker
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, 79108 Freiburg, Germany
| | - Roland Pohlmeyer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Isabel Wilhelm
- Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Palash Chandra Maity
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany; and
| | - Michael Reth
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Department of Molecular Immunology, Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany;
| | - Elias Hobeika
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany; Institute of Immunology, University Hospital Ulm, 89081 Ulm, Germany
| |
Collapse
|
13
|
Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunol Rev 2014; 261:102-15. [PMID: 25123279 PMCID: PMC4312928 DOI: 10.1111/imr.12206] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to 'prime' cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| |
Collapse
|
14
|
Vanoaica L, Richman L, Jaworski M, Darshan D, Luther SA, Kühn LC. Conditional deletion of ferritin h in mice reduces B and T lymphocyte populations. PLoS One 2014; 9:e89270. [PMID: 24586648 PMCID: PMC3931725 DOI: 10.1371/journal.pone.0089270] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 01/18/2014] [Indexed: 11/19/2022] Open
Abstract
The immune system and iron availability are intimately linked as appropriate iron supply is needed for cell proliferation, while excess iron, as observed in hemochromatosis, may reduce subsets of lymphocytes. We have tested the effects of a ferritin H gene deletion on lymphocytes. Mx-Cre mediated conditional deletion of ferritin H in bone marrow reduced the number of mature B cells and peripheral T cells in all lymphoid organs. FACS analysis showed an increase in the labile iron pool, enhanced reactive oxygen species formation and mitochondrial depolarization. The findings were confirmed by a B-cell specific deletion using Fthlox/lox; CD19-Cre mice. Mature B cells were strongly under-represented in bone marrow and spleen of the deleted mice, whereas pre-B and immature B cells were not affected. Bone marrow B cells showed increased proliferation as judged by the number of cells in S and G2/M phase as well as BrdU incorporation. Upon in vitro culture with B-cell activating factor of the tumor necrosis factor family (BAFF), ferritin H-deleted spleen B cells showed lower survival rates than wild type cells. This was partially reversed with iron-chelator deferiprone. The loss of T cells was also confirmed by a T cell-specific deletion in Fthlox/lox;CD4-Cre mice. Our data show that ferritin H is required for B and T cell survival by actively reducing the labile iron pool. They further suggest that natural B and T cell maturation is influenced by intracellular iron levels and possibly deregulated in iron excess or deprivation.
Collapse
Affiliation(s)
- Liviu Vanoaica
- Swiss Institute for Experimental Cancer Research (ISREC), Sciences de la Vie (SV), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Larry Richman
- Swiss Institute for Experimental Cancer Research (ISREC), Sciences de la Vie (SV), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Maike Jaworski
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Deepak Darshan
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - Sanjiv A. Luther
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Lukas C. Kühn
- Swiss Institute for Experimental Cancer Research (ISREC), Sciences de la Vie (SV), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Rosado MM, Scarsella M, Cascioli S, Giorda E, Carsetti R. Purification and immunophenotypic characterization of murine MZ and T2-MZP cells. Methods Mol Biol 2014; 1190:3-16. [PMID: 25015269 DOI: 10.1007/978-1-4939-1161-5_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
B cells are generated every day in the bone marrow, but only a small fraction integrates the peripheral B-cell pool. In the murine spleen, we can find several B-cell subsets representing various maturation stages and/or cell functions. The spleen is a complex lymphoid organ organized in two main structures with different functions: the red and white pulp. The red pulp is flowed with blood while the white pulp is organized in primary follicles, with a B-cell area composed of follicular B cells and a T-cell area surrounding a periarterial lymphatic sheath. The frontier between the red and white pulp is defined as the marginal zone and contains the marginal zone B cells. Because B cells, localized in different areas, are characterized by distinct expression levels of B-cell receptor (BCR) and other surface markers, splenic B-cell subsets can be easily identified and purified by flow cytometry analyses and cell sorting (FACS).Here, we will focus on marginal zone B cells and their precursors giving some experimental hints to identify, generate, and isolate these cells. We will combine the use of FACS analysis and confocal microscopy to visualize marginal zone B cells in cell suspension and tissue sections, respectively.
Collapse
Affiliation(s)
- M Manuela Rosado
- Immunology Unit, Research Center Ospedale Pediatrico Bambino Gesù, IRCSS, Piazza S. Onofrio 4, 00165, Rome, Italy,
| | | | | | | | | |
Collapse
|
16
|
Sobol-Milejska G, Mizia-Malarz A, Wos H. Expression of myeloid antigens on lymphoblast surface in childhood acute lymphoblastic leukemia at diagnosis and its effect on early response to treatment: a preliminary report. Int J Hematol 2013; 98:331-6. [PMID: 23881645 DOI: 10.1007/s12185-013-1397-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/07/2013] [Accepted: 07/09/2013] [Indexed: 01/18/2023]
Abstract
Immunodiagnosis of acute lymphoblastic leukemia (ALL) is based on the assessment of surface antigens. There are also cases in which both lymphoid and myeloid antigens can be found on the surface of lymphoblasts. The purpose of our research was to assess the expression of myeloid and lymphoblastic antigens in children with ALL, and to determine the impact of surface antigens on early response to treatment. 58 children [33 girls (56.9 %), 25 boys (43.2 %)] with ALL were studied. Response to treatment was assessed on days 8, 15, and 33. Univariate logistic regression analysis of the effect of myeloid antigens (MyAg) on response to treatment on days 8 and 33 revealed expression of any MyAg on lymphoblast surface as a factor associated with poor response to treatment. The multivariate logistic regression analysis of treatment response on day 33, showed that the expression of CD13 antigen on lymphoblast surface is a key factor affecting delayed remission (p = 0.03; odds ratio 0.12; 95 % CI 0.01-0.81). The expression of MyAg in childhood ALL adversely affects early response to treatment. The expression of CD13 antigen on day 33 is a key factor affecting complete remission in ALL patients.
Collapse
Affiliation(s)
- Grazyna Sobol-Milejska
- Department of Pediatric Oncology, Hematology and Chemotherapy, Upper Silesia Children's Care Health Centre, Medical University of Silesia, 16 Medykow Str., 40-752, Katowice, Poland
| | | | | |
Collapse
|
17
|
Emtiazy M, Choopani R, Khodadoost M, Tansaz M, Nazem E. Atheroprotector role of the spleen based on the teaching of Avicenna (Ibn Sina). Int J Cardiol 2013; 167:26-8. [PMID: 22726399 DOI: 10.1016/j.ijcard.2012.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/31/2012] [Accepted: 06/08/2012] [Indexed: 11/16/2022]
Affiliation(s)
- Majid Emtiazy
- The School of Iranian Traditional Medicine, Shahid Sadoughi University of Medical Sciences, Ardakan, Yazd, Iran.
| | | | | | | | | |
Collapse
|
18
|
Rosado MM, Scarsella M, Cascioli S, Giorda E, Carsetti R. Evaluating B-cells: from bone marrow precursors to antibody-producing cells. Methods Mol Biol 2013; 1032:45-57. [PMID: 23943443 DOI: 10.1007/978-1-62703-496-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lymphocyte characterization is primarily based on the differential expression of surface markers. In this context, flow-cytometry analysis (FACS) is an exceptional technique that not only allows the identification of B-cell subsets, but can also be used to evaluate cell function, activation, and division. Here, we will combine the use of FACS analysis and ELISA techniques to identify murine bone marrow and peripheral B-cell subsets. The main function of B cells, derived through a multistage differentiation process from precursor cells, is to produce antibodies. This task is performed by terminally differentiated B cells called antibody-secreting cells (ASC) present at mucosal sites, in the bone marrow and in the spleen. The number and specificity of ASC can be measured by Enzyme-linked immunosorbent spot (ELISPOT) assay, a variation of the enzyme-linked immunosorbent assay (ELISA) used to quantify serum immunoglobulins.
Collapse
Affiliation(s)
- M Manuela Rosado
- Research Center Ospedale Pediatrico Bambino Gesù (IRCCS), Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Zhang H, Zhu Z, Meadows GG. Chronic alcohol consumption impairs distribution and compromises circulation of B cells in B16BL6 melanoma-bearing mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:1340-8. [PMID: 22753935 DOI: 10.4049/jimmunol.1200442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Accumulating research indicates that B cells are involved in anti-tumor immunity. Chronic alcohol consumption is associated with decreased survival of cancer patients. The effect of alcohol consumption on B cells in tumor-bearing hosts is unknown. Results in melanoma-bearing mice showed that chronic alcohol consumption did not alter the percentage and number of B cells in bone marrow, spleen, and lymph nodes but dramatically decreased B cells in the peripheral blood. Alcohol consumption did not alter the development of B cells in the bone marrow and did not affect follicular B cells in the spleen; however, it increased T1 B cells and decreased marginal zone B cells in the spleen. Alcohol consumption also decreased mature B cells in the blood. It did not alter the chemotactic capacity of plasma to facilitate migration of splenocytes or the chemotactic response of splenocytes to CXCL13 and CCL21. However, the response of splenocytes to sphingosine-1-phosphate was impaired in alcohol-consuming, melanoma-bearing mice. The expression of sphingosine-1-phosphate receptor-1 (S1PR1) and sphingosine-1-phosphate lyase-1 (SPL1) in splenocytes was downregulated. Taken together, these results indicate that chronic alcohol consumption decreases peripheral blood B cells by compromising B cell egress from the spleen. The downregulation of S1PR1 and SPL1 expression in alcohol-consuming, melanoma-bearing mice could be associated with compromised egress of B cells from the spleen.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
20
|
Nishino T, Sasaki N, Nagasaki KI, Ichii O, Kon Y, Agui T. The 129 genetic background affects susceptibility to glomerulosclerosis in tensin2-deficient mice. ACTA ACUST UNITED AC 2012; 33:53-6. [PMID: 22361887 DOI: 10.2220/biomedres.33.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ICGN mouse strain is a glomerulosclerosis (GS) model that shows significant proteinuria, podocyte morphological abnormalities and increased extracellular matrix accumulation in the glomeruli, which represent the final common pathology associated with a variety of kidney diseases leading to end-stage renal failure. Previously, we demonstrated that GS in ICGN mice can be attributed to the deletion mutation of the tensin2 (Tns2) gene (Tns2(nep)). Further, the C57BL/6J (B6) mouse is resistant to GS caused by this mutation. 129/Sv is also a popular strain; however, its susceptibility to GS has not been defined. Thus, to determine whether 129/Sv is resistant or susceptible to GS, we produced a congenic strain carrying Tns2(nep) on the 129(+Ter)/Sv (129T) background. 129T congenic mice (129T-Tns2(nep)) did not exhibit albuminuria, renal anemia, increases in BUN, or any severe pathological changes until at least 16 weeks of age. These results indicate that 129T is resistant to GS. Although their usage in biomedical studies is already widespread, 129/Sv mice may afford a late-onset and unique strain applicable to kidney disease research.
Collapse
Affiliation(s)
- Tomohiro Nishino
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818
| | | | | | | | | | | |
Collapse
|
21
|
Ceredig R, Rolink AG. The key role of IL-7 in lymphopoiesis. Semin Immunol 2012; 24:159-64. [DOI: 10.1016/j.smim.2012.02.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/15/2012] [Indexed: 02/03/2023]
|
22
|
Hansson J, Bosco N, Favre L, Raymond F, Oliveira M, Metairon S, Mansourian R, Blum S, Kussmann M, Benyacoub J. Influence of gut microbiota on mouse B2 B cell ontogeny and function. Mol Immunol 2011; 48:1091-101. [DOI: 10.1016/j.molimm.2011.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/02/2011] [Accepted: 02/06/2011] [Indexed: 12/21/2022]
|
23
|
Hosoda Y, Sasaki N, Agui T. Hypothyroid phenotype of the Tpst2 mutant mouse is dependent upon genetic background. ACTA ACUST UNITED AC 2010; 31:207-11. [PMID: 20622471 DOI: 10.2220/biomedres.31.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
DW/J-grt is a congenital hypothyroid mouse model that is characterized by growth retardation, significantly lowered T3 and T4 levels, and severe thyroid hypoplasia related to TSH hyporesponsiveness. Previously, we identified the point mutation of the Tpst2 gene in DW/J-grt mice that causes a decrease in the enzymatic activity, and demonstrated that the Tpst2 transgene rescues the mutant phenotypes both in vitro and in vivo. The severity of hypothyroidism is highly variable indicating the influence of modifier genes in humans. In this study, to identify the modifier/resistant gene(s) to hypothyroidism, we produced congenic strains carrying this Tpst2(grt) mutation on the C57BL/6J and 129/SvJcl (129) genetic backgrounds and analyzed growth rate and thyroid function. Interestingly, the 129 congenic mice exhibited normal growth and thyroid function. The result suggests that 129 strain has the modifier(s) of attenuation of hypothyroidism. Therefore, the identification of the modifier loci of 129 mice will provide important new information about the gene(s) related to congenital hypothyroidism.
Collapse
Affiliation(s)
- Yayoi Hosoda
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Nishi 9, Sapporo, Hokkaido 060-0818, Japan
| | | | | |
Collapse
|
24
|
Induction of immune tolerance to a therapeutic protein by intrathymic gene delivery. Mol Ther 2010; 18:2146-54. [PMID: 20664526 DOI: 10.1038/mt.2010.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The efficacy of recombinant enzyme therapy for genetic diseases is limited in some patients by the generation of a humoral immune response to the therapeutic protein. Inducing immune tolerance to the protein prior to treatment has the potential to increase therapeutic efficacy. Using an AAV8 vector encoding human acid α-glucosidase (hGAA), we have evaluated direct intrathymic injection for inducing tolerance. We have also compared the final tolerogenic states achieved by intrathymic and intravenous injection. Intrathymic vector delivery induced tolerance equivalent to that generated by intravenous delivery, but at a 25-fold lower dose, the thymic hGAA expression level was 10,000-fold lower than the liver expression necessary for systemic tolerance induction. Splenic regulatory T cells (Tregs) were apparent after delivery by both routes, but with different phenotypes. Intrathymic delivery resulted in Tregs with higher FoxP3, TGFβ, and IL-10 mRNA levels. These differences may account for the differences noted in splenic T cells, where only intravenous delivery appeared to inhibit their activation. Our results imply that different mechanisms may be operating to generate immune tolerance by intrathymic and intravenous delivery of an AAV vector, and suggest that the intrathymic route may hold promise for decreasing the humoral immune response to therapeutic proteins in genetic disease indications.
Collapse
|
25
|
Lampropoulou V, Calderon-Gomez E, Roch T, Neves P, Shen P, Stervbo U, Boudinot P, Anderton SM, Fillatreau S. Suppressive functions of activated B cells in autoimmune diseases reveal the dual roles of Toll-like receptors in immunity. Immunol Rev 2010; 233:146-61. [PMID: 20192998 DOI: 10.1111/j.0105-2896.2009.00855.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
B lymphocytes contribute to immunity through production of antibodies, antigen presentation to T cells, and secretion of cytokines. B cells are generally considered in autoimmune diseases as drivers of pathogenesis. This view is certainly justified, given the successful utilization of the B cell-depleting reagent rituximab in patients with rheumatoid arthritis or other autoimmune pathologies. In a number of cases, however, the depletion of B cells led to an exacerbation of symptoms in patients with autoimmune disorders. In a similar manner, mice lacking B cells can develop an aggravated course of disease in several autoimmune models. These paradoxical observations are now explained by the concept that activated B cells can suppress immune responses through the production of cytokines, especially interleukin-10. Here, we review the stimulatory signals that induce interleukin-10 secretion and suppressive functions in B cells and the phenotype of the B cells with such characteristics. Finally, we formulate a model explaining how this process of immune regulation by activated B cells can confer advantageous properties to the immune system in its combat with pathogens. Altogether, this review proposes that B-cell-mediated regulation is a fundamental property of the immune system, with features of great interest for the development of new cell-based therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Vicky Lampropoulou
- Laboratory of immune regulation, Deutsches Rheuma-Forschungszentrum, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Saxena A, Rai A, Raina V, Seth T, Mitra DK. Expression of CD13/aminopeptidase N in precursor B-cell leukemia: role in growth regulation of B cells. Cancer Immunol Immunother 2010; 59:125-35. [PMID: 19562339 PMCID: PMC11030730 DOI: 10.1007/s00262-009-0731-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2008] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Expression of cell surface CD13 in acute B-cell leukemia (ALL-B) is often viewed, as an aberrant expression of a myeloid lineage marker. Here, we attempted to study the stage specific expression of CD13 on ALL-B blasts and understand its role in leukemogenesis as pertaining to stage of B-cell ontogeny. A total of 355 cases of different hematological malignancies were diagnosed by immunophenotyping. Among 68 cases of early B-cell ALL, 22 cases with distinct immunophenotype was identified as immature B-cell ALL. Blasts from these ALL-B patients demonstrated prominent expression of CD10, CD19, CD22, but neither cytoplasmic nor surface IgM receptors. This strongly indicates leukemogenesis at an early stage of B-cell development. We also identified, the existence of a subpopulation of cells with remarkably similar phenotype in non-leukemic marrow from healthy subjects (expressing CD10, CD19, CD22, CD24, Tdt together with the co-expression of CD13). This sub-population of B cells concomitantly expressing CD13 appeared to be a highly proliferating group. By blocking their cell surface CD13 in leukemic blasts with monoclonal antibody we were able to inhibit their proliferation. We hypothesized that neoplastic transformation at this stage may be facilitated by CD13. CD13 may thus be an important target for novel molecular therapy of early stage acute B-cell leukemia.
Collapse
Affiliation(s)
- Ankit Saxena
- Cellular Immunology Division, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Room No.92, Ansari Nagar, New Delhi, 110029 India
| | - Ambak Rai
- Cellular Immunology Division, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Room No.92, Ansari Nagar, New Delhi, 110029 India
| | - Vinod Raina
- Department of Medical Oncology, BRAIRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Dipendra Kumar Mitra
- Cellular Immunology Division, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, Room No.92, Ansari Nagar, New Delhi, 110029 India
| |
Collapse
|
27
|
pERp1 is significantly up-regulated during plasma cell differentiation and contributes to the oxidative folding of immunoglobulin. Proc Natl Acad Sci U S A 2009; 106:17013-8. [PMID: 19805157 DOI: 10.1073/pnas.0811591106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma cells can synthesize and secrete thousands of Ig molecules per second, which are folded and assembled in the endoplasmic reticulum (ER) and are likely to place unusually high demands on the resident chaperones and folding enzymes. We have discovered a new resident ER protein (pERp1) that is a component of the BiP chaperone complex. PERp1 is substantially up-regulated during B to plasma cell differentiation and can be induced in B cell lines by some UPR activators, arguing that it represents a potentially new class of conditional UPR targets. In LPS-stimulated murine splenocytes, pERp1 interacted covalently via a disulfide bond with IgM monomers and noncovalently with other Ig assembly intermediates. Knockdown and overexpression experiments revealed that pERp1 promoted correct oxidative folding of Ig heavy chains and prevented off-pathway assembly intermediates. Although pERp1 has no homology with known chaperones or folding enzymes, it possesses a thioredoxin-like active site motif (CXXC), which is the signature of oxidoreductases. Mutation of this sequence did not affect its in vivo activity, suggesting that pERp1 is either a unique type of oxidoreductase or a previously unidentified class of molecular chaperone that is dedicated to enhancing the oxidative folding of Ig precursors.
Collapse
|
28
|
Murn J, Mlinaric-Rascan I, Vaigot P, Alibert O, Frouin V, Gidrol X. A Myc-regulated transcriptional network controls B-cell fate in response to BCR triggering. BMC Genomics 2009; 10:323. [PMID: 19607732 PMCID: PMC2722676 DOI: 10.1186/1471-2164-10-323] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 07/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background The B cell antigen receptor (BCR) is a signaling complex that mediates the differentiation of stage-specific cell fate decisions in B lymphocytes. While several studies have shown differences in signal transduction components as being key to contrasting phenotypic outcomes, little is known about the differential BCR-triggered gene transcription downstream of the signaling cascades. Results Here we define the transcriptional changes that underlie BCR-induced apoptosis and proliferation of immature and mature B cells, respectively. Comparative genome-wide expression profiling identified 24 genes that discriminated between the early responses of the two cell types to BCR stimulation. Using mice with a conditional Myc-deletion, we validated the microarray data by demonstrating that Myc is critical to promoting BCR-triggered B-cell proliferation. We further investigated the Myc-dependent molecular mechanisms and found that Myc promotes a BCR-dependent clonal expansion of mature B cells by inducing proliferation and inhibiting differentiation. Conclusion This work provides the first comprehensive analysis of the early transcriptional events that lead to either deletion or clonal expansion of B cells upon antigen recognition, and demonstrates that Myc functions as the hub of a transcriptional network that control B-cell fate in the periphery.
Collapse
Affiliation(s)
- Jernej Murn
- CEA, DSV, IRCM, Laboratoire d'Exploration Fonctionnelle des Génomes, Evry 91057, France.
| | | | | | | | | | | |
Collapse
|
29
|
Combaluzier B, Mueller P, Massner J, Finke D, Pieters J. Coronin 1 is essential for IgM-mediated Ca2+ mobilization in B cells but dispensable for the generation of immune responses in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 182:1954-61. [PMID: 19201848 DOI: 10.4049/jimmunol.0801811] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronin 1 is a leukocyte specific regulator of Ca(2+)-dependent signaling and is essential for the survival of peripheral T lymphocytes, but its role in B cells is unknown. In this study, we show that coronin 1 is essential for intracellular Ca(2+) mobilization and proliferation upon triggering of the BCR. However, the presence of costimulatory signals rendered coronin 1 dispensable for B cell signaling, consistent with the generation of normal immune responses against a variety of Ags in coronin 1-deficient mice. We conclude that coronin 1, while being essential for T cell function and survival, is dispensable for B cell function in vivo.
Collapse
|
30
|
Bordon A, Bosco N, Du Roure C, Bartholdy B, Kohler H, Matthias G, Rolink AG, Matthias P. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development. PLoS One 2008; 3:e4007. [PMID: 19104664 PMCID: PMC2603323 DOI: 10.1371/journal.pone.0004007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/19/2008] [Indexed: 02/06/2023] Open
Abstract
OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.
Collapse
Affiliation(s)
- Alain Bordon
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Murn J, Alibert O, Wu N, Tendil S, Gidrol X. Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. ACTA ACUST UNITED AC 2008; 205:3091-103. [PMID: 19075289 PMCID: PMC2605229 DOI: 10.1084/jem.20081163] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
B cell receptor (BCR) signaling contributes to the pathogenesis of B cell malignancies, and most B cell lymphomas depend on BCR signals for survival. Identification of genes that restrain BCR-mediated proliferation is therefore an important goal toward improving the therapy of B cell lymphoma. Here, we identify Ptger4 as a negative feedback regulator of proliferation in response to BCR signals and show that its encoded EP4 receptor is a principal molecule conveying the growth-suppressive effect of prostaglandin E2 (PGE2). Stable knockdown of Ptger4 in B cell lymphoma markedly accelerated tumor spread in mice, whereas Ptger4 overexpression yielded significant protection. Mechanistically, we show that the intrinsic activity of Ptger4 and PGE2–EP4 signaling target a similar set of activating genes, and find Ptger4 to be significantly down-regulated in human B cell lymphoma. We postulate that Ptger4 functions in B cells as a candidate tumor suppressor whose activity is regulated by PGE2 in the microenvironment. These findings suggest that targeting EP4 receptor for prostaglandin may present a novel strategy for treatment of B cell malignancies.
Collapse
Affiliation(s)
- Jernej Murn
- CEA, DSV, Institut de Radiobiologie Cellulaire et Moléculaire, Laboratoire d'Exploration Fonctionnelle des Génomes, Evry, France
| | | | | | | | | |
Collapse
|
32
|
Scheikl T, Reis B, Pfeffer K, Holzmann B, Beer S. Reduced notch activity is associated with an impaired marginal zone B cell development and function in Sly1 mutant mice. Mol Immunol 2008; 46:969-77. [PMID: 18950867 DOI: 10.1016/j.molimm.2008.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 01/08/2023]
Abstract
MZ B cells represent a distinct lineage of naive B lymphocytes, apart from FO B cells and peritoneal B1 cells, and mediate humoral immune responses against blood-borne type 2 T-independent antigens. Regulation of MZ B cell development involves the Notch receptor signaling, the intensity of B cell receptor signals, and cell compartmentalization by adhesion and chemokine receptors. Our previous work showed that gene-targeted mice expressing a truncated form of the putative signaling adapter protein SLy1 exhibit reduced numbers of a splenic B cell population enriched in MZ B cells. Here, we demonstrate that Sly1(d/d) mice exhibit a partial, but selective, block in the transition from pre-MZ to mature MZ B cells. Development of both T1 and T2 precursor subsets and FO B cells was normal in Sly1(d/d) mice. Consistent with the loss of MZ B cells, the production of antigen-specific IgM antibodies following immunization with pneumococcal polysaccharides was severely impaired in Sly1(d/d) mice. Importantly, expression of the Notch signaling mediator RBP-J and the Notch target genes Hes-1 and Hes-5 was markedly reduced in MZ but not FO B cells of Sly1(d/d) mice. In contrast, B cell receptor signaling, expression and function of LFA-1 and alpha4-integrins, and expression of chemokine receptors appeared intact in Sly1(d/d) cells. Collectively, these results provide strong evidence that SLy1 is important for the generation and function of MZ B cells and suggest a novel link between SLy1 and the activity of the Notch pathway in the development of MZ B cells.
Collapse
Affiliation(s)
- Tanja Scheikl
- Department of Surgery, TU Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | | | | | | | | |
Collapse
|
33
|
de Paiva LS, Hayashi EA, De Melo GO, Costa SS, Koatz VLG, Nobrega A. Inhibition of B cell development by kalanchosine dimalate. Int Immunopharmacol 2008; 8:828-35. [PMID: 18442786 DOI: 10.1016/j.intimp.2008.01.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/23/2008] [Accepted: 01/31/2008] [Indexed: 01/01/2023]
Abstract
Kalanchoe brasiliensis (Kb) is a medicinal plant from the Crassulaceae family, used in folk medicine to treat inflammatory and infectious diseases. Here we show that short-term treatment of mice with a highly purified compound named kalanchosine dimalate (KMC), obtained from Kb, led to a strong and selective inhibition of B cell development in the bone marrow, without affecting the myeloid lineage development. Numbers of mature B lymphocytes in bone marrow or peripheral lymphoid organs were preserved in KMC treated mice. The inhibitory effect of KMC was acute and rapidly reverted with the interruption of the treatment. In vitro, KMC, inhibited the interleukin-7 dependent proliferation of B cell precursors and do not induce cell death. Also in vitro, the maturation of B cell precursors was not affected by KMC. KMC does not inhibit the proliferative response to IL-3 or IL-2. These results suggest that KMC is selectively affecting B cell lymphopoiesis, possibly acting on the IL-7 signaling pathway, opening new perspectives for a potential therapeutic usage of Kb derived drugs.
Collapse
Affiliation(s)
- Luciana S de Paiva
- Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
34
|
Bosco N, Ceredig R, Rolink A. Transient decrease in interleukin-7 availability arrests B lymphopoiesis during pregnancy. Eur J Immunol 2008; 38:381-90. [DOI: 10.1002/eji.200737665] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Characterization of splenic CD21hi T2 B cells. Immunol Res 2008; 39:240-8. [PMID: 17917068 DOI: 10.1007/s12026-007-0072-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/17/2023]
Abstract
B cell development is a highly regulated process that initiates in the bone marrow (BM) of adult mice. After reaching the IgM+ immature stage in the BM, these B cells migrate to the spleen to complete maturation and incorporation into the long-lived peripheral lymphocyte pool. Studies have identified these splenic immature B cells, and have further attempted to delineate the sequence whereby they transition into mature B cells. As such, these immature splenic populations are termed transitional B cells and have been the focus of intense study. The review summarizes the phenotype and currently known functions of the four putative transitional B cell subsets identified to date. Although most appear to represent short-lived transitional B cells, the CD21hi T2 B cell population exhibits a number of qualities that question its label as a transitional B cell subset.
Collapse
|
36
|
Hughes ED, Qu YY, Genik SJ, Lyons RH, Pacheco CD, Lieberman AP, Samuelson LC, Nasonkin IO, Camper SA, Van Keuren ML, Saunders TL. Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mamm Genome 2007; 18:549-58. [PMID: 17828574 DOI: 10.1007/s00335-007-9054-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Accepted: 05/09/2007] [Indexed: 01/12/2023]
Abstract
Genetically modified mouse strains derived from embryonic stem (ES) cells are powerful tools for gene function analysis. ES cells from the C57BL/6 mouse strain are not widely used to generate mouse models despite the advantage of a defined genetic background. We assessed genetic variation in six such ES cell lines with 275 SSLP markers. Compared to C57BL/6, Bruce4 differed at 34 SSLP markers and had significant heterozygosity on three chromosomes. BL/6#3 and Dale1 ES cell lines differed at only 3 SSLP makers. The C2 and WB6d ES cell lines differed at 6 SSLP markers. It is important to compare the efficiency of producing mouse models with available C57BL/6 ES cells relative to standard 129 mouse strain ES cells. We assessed genetic stability (the tendency of cells to become aneuploid) in 110 gene-targeted ES cell clones from the most widely used C57BL/6 ES cell line, Bruce4, and 710 targeted 129 ES cell clones. Bruce4 clones were more likely to be aneuploid and unsuitable for ES cell-mouse chimera production. Despite their tendency to aneuploidy and consequent inefficiency, use of Bruce4 ES cells can be valuable for models requiring behavioral studies and other mouse models that benefit from a defined C57BL/6 background.
Collapse
Affiliation(s)
- Elizabeth D Hughes
- Transgenic Animal Model Core, Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The subdivision of bone marrow (BM) with surface markers and reporter systems and the use of multiple culture and transplantation assays to assess differentiation potential have led to extraordinary progress in defining stages of B lymphopoiesis between the hematopoietic stem cell and B cell receptor (BCR)-expressing lymphocytes. Despite the lack of standard nomenclature and a series of technical issues that still need to be resolved, there seems to be a general consensus regarding the major route to becoming a B cell. Nevertheless, evidence that additional, minor pathways through which B lineage cells are generated exists, and a new appreciation that lymphoid progenitors are protean and able to alter their differentiation potential during embryogenesis and after birth in response to infections suggests that a full understanding of B cell development and how it is regulated has not yet been attained.
Collapse
Affiliation(s)
- Richard R Hardy
- The Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | |
Collapse
|
38
|
Shankar M, Nixon JC, Maier S, Workman J, Farris AD, Webb CF. Anti-nuclear antibody production and autoimmunity in transgenic mice that overexpress the transcription factor Bright. THE JOURNAL OF IMMUNOLOGY 2007; 178:2996-3006. [PMID: 17312145 PMCID: PMC2705967 DOI: 10.4049/jimmunol.178.5.2996] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The B cell-restricted transcription factor, B cell regulator of Ig(H) transcription (Bright), up-regulates Ig H chain transcription 3- to 7-fold in activated B cells in vitro. Bright function is dependent upon both active Bruton's tyrosine kinase and its substrate, the transcription factor, TFII-I. In mouse and human B lymphocytes, Bright transcription is down-regulated in mature B cells, and its expression is tightly regulated during B cell differentiation. To determine how Bright expression affects B cell development, transgenic mice were generated that express Bright constitutively in all B lineage cells. These mice exhibited increases in total B220(+) B lymphocyte lineage cells in the bone marrow, but the relative percentages of the individual subpopulations were not altered. Splenic immature transitional B cells were significantly expanded both in total cell numbers and as increased percentages of cells relative to other B cell subpopulations. Serum Ig levels, particularly IgG isotypes, were increased slightly in the Bright-transgenic mice compared with littermate controls. However, immunization studies suggest that responses to all foreign Ags were not increased globally. Moreover, 4-wk-old Bright-transgenic mice produced anti-nuclear Abs. Older animals developed Ab deposits in the kidney glomeruli, but did not succumb to further autoimmune sequelae. These data indicate that enhanced Bright expression results in failure to maintain B cell tolerance and suggest a previously unappreciated role for Bright regulation in immature B cells. Bright is the first B cell-restricted transcription factor demonstrated to induce autoimmunity. Therefore, the Bright transgenics provide a novel model system for future analyses of B cell autoreactivity.
Collapse
Affiliation(s)
- Malini Shankar
- Immunobiology and Cancer, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jamee C. Nixon
- Immunobiology and Cancer, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shannon Maier
- Arthritis and Immunology Programs, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer Workman
- Arthritis and Immunology Programs, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - A. Darise Farris
- Arthritis and Immunology Programs, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Medical Research Foundation, Department of Microbiology and Immunobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Carol F. Webb
- Immunobiology and Cancer, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Medical Research Foundation, Department of Microbiology and Immunobiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Cell Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
39
|
Miller AT, Sandberg M, Huang YH, Young M, Sutton S, Sauer K, Cooke MP. Production of Ins(1,3,4,5)P4 mediated by the kinase Itpkb inhibits store-operated calcium channels and regulates B cell selection and activation. Nat Immunol 2007; 8:514-21. [PMID: 17417640 DOI: 10.1038/ni1458] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 03/15/2007] [Indexed: 02/07/2023]
Abstract
Antigen receptor-mediated production of inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) in lymphocytes triggers the release of Ca2+ from intracellular stores; this release of Ca2+ results in the opening of store-operated Ca2+ channels in the plasma membrane. Here we report that mice lacking Ins(1,4,5)P3 3-kinase B (Itpkb), which converts Ins(1,4,5)P3 to inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4), had impaired B lymphocyte development and defective immunoglobulin G3 antibody responses to a T lymphocyte-independent antigen. Itpkb-deficient B lymphocytes had the phenotypic and functional features of tolerant B lymphocytes and showed enhanced activity of store-operated Ca2+ channels after B lymphocyte receptor stimulation, which was reversed by the provision of exogenous Ins(1,3,4,5)P4. Our data identify Itpkb and its product Ins(1,3,4,5)P4 as inhibitors of store-operated Ca2+ channels and crucial regulators of B cell selection and activation.
Collapse
Affiliation(s)
- Andrew T Miller
- The Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Finocchi A, Di Cesare S, Romiti ML, Capponi C, Rossi P, Carsetti R, Cancrini C. Humoral immune responses and CD27+ B cells in children with DiGeorge syndrome (22q11.2 deletion syndrome). Pediatr Allergy Immunol 2006; 17:382-8. [PMID: 16846458 DOI: 10.1111/j.1399-3038.2006.00409.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The spectrum of T-cell abnormalities in 22q11.2 syndrome is quite broad, ranging from profound and life threatening to non-existent defects. Humoral abnormalities have been described in some of these patients, although no data are currently available on their phenotypical and functional B cell subsets. The purpose of this study was to investigate humoral immune function in a cohort of 13 children with DiGeorge syndrome by immunophenotyping B and by analysing their functionality in vivo. Humoral immunity was assessed by serum immunoglobulin evaluation, IgG subclasses determination, and testing of specific antibody titers to recall antigens. B cells were analyzed by flow cytometry and the relevant percentage of membrane surface expression of CD27, IgM, IgD was evaluated. In our cohort, one of 13 children (7.7%) had a complete IgA deficiency, four of 13 (30.7%) had minor immunoglobulin abnormalities, and five (38%) had an impaired production of specific antibodies. Five of 13 children (38%) had recurrent infections. Interestingly, peripheral CD27+ B cells were reduced in our patients as compared with age-matched healthy controls, and this decrement was statistically significant for IgM+ IgD+ CD27+ B cells. Immunoglobulin abnormalities were associated with the occurrence of recurrent infections. We conclude that a significant proportion of patients with DiGeorge syndrome have defective humoral immunity, which may represent an additional pathogenic mechanism underlying the increased susceptibility to infections. Whether the decreased CD27+ B-cell subset might be one of the defects that contribute to impaired humoral immunity, and to susceptibility to infection remains to be elucidated.
Collapse
Affiliation(s)
- A Finocchi
- Department of Paediatrics, Tor Vergata University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
41
|
Malaspina A, Moir S, Ho J, Wang W, Howell ML, O’Shea MA, Roby GA, Rehm CA, Mican JM, Chun TW, Fauci AS. Appearance of immature/transitional B cells in HIV-infected individuals with advanced disease: correlation with increased IL-7. Proc Natl Acad Sci U S A 2006; 103:2262-7. [PMID: 16461915 PMCID: PMC1413756 DOI: 10.1073/pnas.0511094103] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Progression of HIV disease is associated with the appearance of numerous B cell defects. We describe herein a population of immature/transitional B cells that is overly represented in the peripheral blood of individuals with advancing HIV disease. These B cells, identified by the expression of CD10, were unresponsive by proliferation to B cell receptor triggering and possessed a phenotype and an Ig diversity profile that confirmed their immature/transitional stage of differentiation. Consistent with an immature status, their lack of proliferation to B cell receptor triggering was reversed with CD40 ligand, but not B cell activation factor. Finally, levels of CD10 expression on B cells were directly correlated with serum levels of IL-7, suggesting that increased levels of IL-7 modulate human B cell maturation either directly or indirectly by means of a homeostatic effect on lymphopenia. Taken together, these data offer insight into human B cell development as well as B cell dysfunction in advanced HIV disease that may be linked to IL-7-dependent homeostatic events.
Collapse
Affiliation(s)
| | | | - Jason Ho
- *Laboratory of Immunoregulation, and
| | - Wei Wang
- *Laboratory of Immunoregulation, and
| | | | | | | | | | - JoAnn M. Mican
- Office of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892
| | | | | |
Collapse
|
42
|
Chen HC, Byrd JC, Muthusamy N. Differential Role for Cyclic AMP Response Element Binding Protein-1 in Multiple Stages of B Cell Development, Differentiation, and Survival. THE JOURNAL OF IMMUNOLOGY 2006; 176:2208-18. [PMID: 16455977 DOI: 10.4049/jimmunol.176.4.2208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
CREB-1 is expressed in the bone marrow and in developing B cells. To determine the role of CREB-1 in developing B cells in the bone marrow, several lines of transgenic (Tg) mice overexpressing a dominant-negative Ser(119-ala) phosphomutant CREB-1 in the bone marrow were generated. Analysis of RNA and protein revealed expression of the transgene in the bone marrow. Flow cytometric analysis of bone marrow cells from Tg mice revealed approximately 70% increase in pre-B1 (CD43(+)B220(+)CD24(+(int))) and approximately 60% decreased pre-BII (CD43(+)B220(+)CD24(++(high))) cells, indicating a developmental block in pre-BI to pre-BII transition. Consistent with this, the Tg mice showed approximately 4-fold decrease in immature and mature B cells in the bone marrow. RT-PCR analysis of RNA from Tg mice revealed increased JunB and c-Jun in pre-BII cells associated with decreased S-phase entry. Adoptive transfer of bone marrow cells into RAG-2(-/-) mice resulted in reconstitution of non-Tg but not Tg bone marrow-derived CD43(+)B220(+)CD24(high) population that is normally absent in RAG-2(-/-) mice. In the periphery, the Tg mice exhibited decreased CD21(dim)CD23(high)IgM(+) follicular B cells in the spleen and increased B1a and B1b B cells in the peritoneum. While exhibiting normal Ab responses to T-independent Ags and primary response to the T-dependent Ag DNP-keyhole limpet hemocyanin, the Tg mice exhibited severely impaired secondary Ab responses. These studies provide the first evidence for a differential role for CRE-binding proteins in multiple stages of B cell development, functional maturation, and B1 and B2 B cells.
Collapse
Affiliation(s)
- Hui-Chen Chen
- Division of Hematology and Oncology, Department of Internal Medicine, The Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
43
|
Huq Ronny FM, Igarashi H, Sakaguchi N. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival. Biochem Biophys Res Commun 2006; 340:338-46. [PMID: 16343422 DOI: 10.1016/j.bbrc.2005.11.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM(lo)IgD(hi) B-cells but not in AICD susceptible immature IgM(hi)IgD(lo) B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23(hi) B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack of G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells.
Collapse
Affiliation(s)
- Faisal Mahmudul Huq Ronny
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | | | | |
Collapse
|
44
|
Harfst E, Andersson J, Grawunder U, Ceredig R, Rolink AG. Homeostatic and functional analysis of mature B cells in λ5-deficient mice. Immunol Lett 2005; 101:173-84. [PMID: 16005080 DOI: 10.1016/j.imlet.2005.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/22/2005] [Accepted: 05/26/2005] [Indexed: 12/22/2022]
Abstract
The peripheral B-cell pool is in dynamic equilibrium and is controlled by a variety of factors. The rate of generation of B cells can influence both the composition and size of the peripheral B-cell compartment. Mice deficient for lambda5 gene expression have a block in early B-cell development leading to a markedly reduced number of peripheral B cells. To address the question of how this early developmental block influences the composition of the B-cell pool, we have analyzed mature B-cell subpopulations in lambda5-deficient mice. In analogy with other situations of B lymphopenia, the proportion was increased but not the absolute number of marginal-zone B cells, whereas those of follicular B cells were decreased. Immunohistology revealed that B-cell follicles were smaller in overall size and contained a prominent B-cell replete marginal zone. BrdU labelling kinetics showed slower turnover of follicular as well as of marginal-zone B cells. Functionally, lambda5(-/-) mice were able to mount not only primary but also secondary thymus-dependent as well as thymus-independent responses, albeit mostly at reduced levels.
Collapse
Affiliation(s)
- Eva Harfst
- Developmental and Molecular Immunology, Department of Clinical and Biological Sciences (DKBW), University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Abstract
Immature B cells undergo key maturation and selection events after migrating to peripheral lymphoid organs. We will review recent advances in our understanding of the cell populations and molecular interactions underlying the differentiation of immature peripheral B cells into mature marginal zone (MZ) and follicular B cells, and discuss potential mechanisms by which numbers of MZ and follicular B cells are maintained. We will also discuss current controversies over the identity of precursor cells for MZ and follicular B cells, and propose a potentially unifying model for precursor-product relationships in peripheral B cell maturation.
Collapse
Affiliation(s)
- Bhaskar Srivastava
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | | | | | |
Collapse
|
46
|
Conley ME, Broides A, Hernandez-Trujillo V, Howard V, Kanegane H, Miyawaki T, Shurtleff SA. Genetic analysis of patients with defects in early B-cell development. Immunol Rev 2005; 203:216-34. [PMID: 15661032 DOI: 10.1111/j.0105-2896.2005.00233.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Approximately 85% of patients with defects in early B-cell development have X-linked agammaglobulinemia (XLA), a disorder caused by mutations in the cytoplasmic Bruton's tyrosine kinase (Btk). Although Btk is activated by cross-linking of a variety of cell-surface receptors, the most critical signal transduction pathway is the one initiated by the pre-B cell and B-cell antigen receptor complex. Mutations in Btk are highly diverse, and no single mutation accounts for more than 3% of patients. Although there is no strong genotype/phenotype correlation in XLA, the specific mutation in Btk is one of the factors that influences the severity of disease. Mutations in the components of the pre-B cell and B-cell antigen receptor complex account for an additional 5-7% of patients with defects in early B-cell development. Patients with defects in these proteins are clinically indistinguishable from those with XLA. However, they tend to be younger at the time of diagnosis, and whereas most patients with XLA have a small number of B cells in the peripheral circulation, these cells are not found in patients with defects in micro heavy chain or Igalpha. Polymorphic variants in the components of the pre-B cell and B-cell receptor complex, particularly micro heavy chain and lambda5, may contribute to the severity of XLA.
Collapse
Affiliation(s)
- Mary Ellen Conley
- Department of Pediatrics, University of Tennessee College of Medicine, Memphis, TN 38105, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Harnett MM, Katz E, Ford CA. Differential signalling during B-cell maturation. Immunol Lett 2005; 98:33-44. [PMID: 15790506 DOI: 10.1016/j.imlet.2004.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 11/04/2004] [Accepted: 11/07/2004] [Indexed: 11/30/2022]
Abstract
The molecular mechanism by which the antigen receptors (BCR) on B cells can elicit differential maturation state-specific responses is one of the central problems in B-cell differentiation yet to be resolved. Indeed, many of the early signalling events detected following BCR ligation, such as activation of protein tyrosine kinases (PTK), phospholipase C (PLC), phosphoinositide-3-kinase (PI 3K), protein kinase C (PKC) and the RasMAPK (mitogen activating protein kinase) signalling cascades are observed throughout B-cell maturation. However, it is becoming clear that the differential functional responses of these BCR-coupled signals observed during B-cell maturation are dependent on a number of parameters including signal strength and duration, subcellular localisation of the signal, maturation-restricted expression of downstream signalling effector elements/isoforms and modulation of signal by co-receptors. Thus, the combined signature of BCR signalling is likely to dictate the functional response and act as a developmental checkpoint for B-cell maturation.
Collapse
Affiliation(s)
- Margaret M Harnett
- Division of Immunology, Infection and Inflammation, University of Glasgow, Glasgow G116NT, UK.
| | | | | |
Collapse
|
48
|
Feng B, Cheng S, Hsia CY, King LB, Monroe JG, Liou HC. NF-κB inducible genes BCL-X and cyclin E promote immature B-cell proliferation and survival. Cell Immunol 2004; 232:9-20. [PMID: 15922711 DOI: 10.1016/j.cellimm.2005.01.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 01/06/2005] [Accepted: 01/06/2005] [Indexed: 12/22/2022]
Abstract
B-cell receptor (BCR) ligation induces proliferation and survival in mature B-cells but conversely, can lead to apoptosis in immature B-cells. We have previously shown that c-Rel, a member of the NF-kappaB transcription factor family, is essential for mature B-cell survival and proliferation via regulation of the anti-apoptotic molecule Bcl-X and cell cycle genes E2F3a and cyclin E. Here, we report that c-Rel-deficient mature B-cells are rendered sensitive to BCR-induced growth arrest and apoptosis in a manner that strongly resembles the phenotypic response of immature B-cells to BCR signaling. We further demonstrate that BCR-stimulated immature B-cells are defective in NF-kappaB activation, but that introduction of two downstream c-Rel target genes, Bcl-X and cyclin E, can restore survival and proliferation to these cells. Our studies therefore suggest that specific blockade of NF-kappaB activation may be responsible for the growth arrest and apoptosis of BCR-activated immature B-cells.
Collapse
Affiliation(s)
- Biao Feng
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|