1
|
Li YR, Zúñiga-Pflücker JC. Thymus aging and immune reconstitution, progresses and challenges. Semin Immunol 2023; 70:101837. [PMID: 37659170 DOI: 10.1016/j.smim.2023.101837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Thymus is a primary lymphoid organ essential for the development of T lymphocytes. Age-related thymic involution is a prominent feature of immune senescence. The thymus undergoes rapid growth during fetal and neonatal development, peaks in size before puberty and then begins to undergo a decrease in cellularity with age. Dramatic changes occur with age-associated thymic involution. The most prominent features of thymic involution include: (i) epithelial structure disruption, (ii) adipogenesis, and (iii) thymocyte development arrest. There is a sex disparity in thymus aging. It is a multifactorial process controlled and regulated by a series of molecules, including the transcription factor FOXN1, fibroblast and keratinocyte growth factors (FGF and KGF, respectively), sex steroids, Notch signaling, WNT signaling, and microRNAs. Nevertheless, there is still no satisfactory evolutionary or physiological explanation for age-associated thymic involution, and understanding the precise mechanism(s) for thymus aging remains challenging. Sustained thymic regeneration has yet to be achieved by sex steroid ablation. Recent preclinical studies indicate that long-term thymic reconstitution can be achieved via adoptive transfer of in vitro-generated progenitor T (proT) cells, and improvements in the methods for the generation of human proT cells make this an attractive approach. Future clinical applications may rely on new applications integrating proT cells, cytokine support and sex-steroid inhibition treatments.
Collapse
Affiliation(s)
- Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Zheng J, Bu X, Wei X, Ma X, Zhao P. The role of FoxM1 in immune cells. Clin Exp Med 2023; 23:1973-1979. [PMID: 36913035 DOI: 10.1007/s10238-023-01037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Forkhead box M1 (FoxM1), a proliferation specific transcriptional modulator, plays a principal role in many physiological and pathological processes. FoxM1-mediated oncogenic processes have been well addressed. However, functions of FoxM1 in immune cells are less summarized. The literatures about the expression of FoxM1 and its regulation on immune cells were searched on PubMed and Google Scholar. In this review, we provide an overview on the roles of FoxM1 in regulating functions of immune cells, including T cells, B cells, monocytes, macrophages, and dendritic cells, and discuss their contributions to diseases.
Collapse
Affiliation(s)
- Jinju Zheng
- Biotherapy Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xiaocui Bu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Xiaofang Wei
- Biotherapy Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China.
| | - Peng Zhao
- Biotherapy Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
3
|
The unilateral involution in the thymus of a 96-year-old male leads to the preservation of structural integrity in one thymic lobe, as assessed by the expression of medullar and cortical antigens and the presence of CD3+ cells. Heliyon 2022; 8:e11734. [PMID: 36411931 PMCID: PMC9674545 DOI: 10.1016/j.heliyon.2022.e11734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/20/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The process of thymic involution begins soon after birth and continues through adult life. Although evolutionary conserved in all vertebrates, the thymic involution has no defined kinetics. Little is known about the pace of its regression in humans, except that there is a marked increase of thymic involution after puberty. This report describes the unusual structural findings in the thymus of a 96-year-old male. The morphological parameters of the organ were evaluated using H&E and immunohistochemistry (IHC) techniques. The macroscopic examination showed a typical organ's weight and size, except that the right thymic lobe presented a well-preserved organ and the left lobe was significantly adiposed. The H&E staining of the thymic sections from the left and right lobes confirmed advanced thymic adiposity in the left lobe and preserved thymic epithelial space containing hematoxylin-stained cells in the right lobe. The multiplex immunostaining of the right lobe sections with antibodies specific to cytokeratins -14 and -8, CD3, and CD4 revealed the presence of medullar and cortical epithelium and mix population of CD3+/CD4+ and CD3+/CD4- T cells. The T cells were associated with the medulla but not with the cortex of the thymus. The immunostaining with an antibody to FoxN1 showed that the protein was expressed in the thymic epithelium. Taken together, we provide evidence that the thymus of a 96-year-old man involuted different kinetics in each of the two thymic lobes. Furthermore, the presence of CD3+/CD4+ and CD3+/CD4-cells gives a hand to the hypothesis that a pool of T-cells may associate with this primary lymphatic organ for as long as there is the available thymic epithelium and be a source of lymphocytes aiding adaptive immune responses to old age.
Collapse
|
4
|
Mohtashami M, Li YR, Lee CR, Zúñiga-Pflücker JC. Thymus Reconstitution in Young and Aged Mice Is Facilitated by In Vitro-Generated Progenitor T Cells. Front Immunol 2022; 13:926773. [PMID: 35874726 PMCID: PMC9304753 DOI: 10.3389/fimmu.2022.926773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The prolonged lag in T cell recovery seen in older patients undergoing hematopoietic stem cell transplant (HSCT), after chemo-/radiotherapy, can lead to immune dysfunction. As a result, recovering patients may experience a relapse in malignancies and opportunistic infections, leading to high mortality rates. The delay in T cell recovery is partly due to thymic involution, a natural collapse in the size and function of the thymus, as individuals age, and partly due to the damage sustained by the thymic stromal cells through exposure to chemo-/radiotherapy. There is a clear need for new strategies to accelerate intrathymic T cell reconstitution when treating aged patients to counter the effects of involution and cancer therapy regimens. Adoptive transfer of human progenitor T (proT) cells has been shown to accelerate T cell regeneration in radiation-treated young mice and to restore thymic architecture in immunodeficient mice. Here, we demonstrate that the adoptive transfer of in vitro-generated proT cells in aged mice (18-24 months) accelerated thymic reconstitution after treatment with chemotherapy and gamma irradiation compared to HSCT alone. We noted that aged mice appeared to have a more limited expansion of CD4-CD8- thymocytes and slower temporal kinetics in the development of donor proT cells into mature T cells, when compared to younger mice, despite following the same chemo/radiation regimen. This suggests a greater resilience of the young thymus compared to the aged thymus. Nevertheless, newly generated T cells from proT cell engrafted aged and young mice were readily present in the periphery accelerating the reappearance of new naïve T cells. Accelerated T cell recovery was also observed in both aged and young mice receiving both proT cells and HSCT. The strategy of transferring proT cells can potentially be used as an effective cellular therapy in aged patients to improve immune recovery and reduce the risk of opportunistic infections post-HSCT.
Collapse
Affiliation(s)
| | - Yue Ru Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Christina R. Lee
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Rothenberg EV, Hosokawa H, Ungerbäck J. Mechanisms of Action of Hematopoietic Transcription Factor PU.1 in Initiation of T-Cell Development. Front Immunol 2019; 10:228. [PMID: 30842770 PMCID: PMC6391351 DOI: 10.3389/fimmu.2019.00228] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/28/2019] [Indexed: 12/20/2022] Open
Abstract
PU.1 is an ETS-family transcription factor that plays a broad range of roles in hematopoiesis. A direct regulator of myeloid, dendritic-cell, and B cell functional programs, and a well-known antagonist of terminal erythroid cell differentiation, it is also expressed in the earliest stages of T-cell development of each cohort of intrathymic pro-T cells. Its expression in this context appears to give T-cell precursors initial, transient access to myeloid and dendritic cell developmental competence and therefore to represent a source of antagonism or delay of T-cell lineage commitment. However, it has remained uncertain until recently why T-cell development is also intensely dependent upon PU.1. Here, we review recent work that sheds light on the molecular biology of PU.1 action across the genome in pro-T cells and identifies the genes that depend on PU.1 for their correct regulation. This work indicates modes of chromatin engagement, pioneering, and cofactor recruitment (“coregulator theft”) by PU.1 as well as gene network interactions that not only affect specific target genes but also have system-wide regulatory consequences, amplifying the impact of PU.1 beyond its own direct binding targets. The genes directly regulated by PU.1 also suggest a far-reaching transformation of cell biology and signaling potential between the early stages of T-cell development when PU.1 is expressed and when it is silenced. These cell-biological functions can be important to distinguish fetal from adult T-cell development and have the potential to illuminate aspects of thymic function that have so far remained the most mysterious.
Collapse
Affiliation(s)
- Ellen V Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Hiroyuki Hosokawa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jonas Ungerbäck
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
6
|
Xiao S, Zhang W, Manley NR. Thymic B cell development is controlled by the B potential of progenitors via both hematopoietic-intrinsic and thymic microenvironment-intrinsic regulatory mechanisms. PLoS One 2018; 13:e0193189. [PMID: 29462202 PMCID: PMC5819817 DOI: 10.1371/journal.pone.0193189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Hematopoietic stem cells (HSCs) derived from birth through adult possess differing differentiation potential for T or B cell fate in the thymus; neonatal bone marrow (BM) cells also have a higher potential for B cell production in BM compared to adult HSCs. We hypothesized that this hematopoietic-intrinsic B potential might also regulate B cell development in the thymus during ontogeny. METHODS Foxn1lacZ mutant mice are a model in which down regulation of a thymic epithelial cell (TEC) specific transcription factor beginning one week postnatal causes a dramatic reduction of thymocytes production. In this study, we found that while T cells were decreased, the frequency of thymic B cells was greatly increased in these mutants in the perinatal period. We used this model to characterize the mechanisms in the thymus controlling B cell development. RESULTS Foxn1lacZ mutants, T cell committed intrathymic progenitors (DN1a,b) were progressively reduced beginning one week after birth, while thymic B cells peaked at 3-4 weeks with pre-B-II progenitor phenotype, and originated in the thymus. Heterochronic chimeras showed that the capacity for thymic B cell production was due to a combination of higher B potential of neonatal HSCs, combined with a thymic microenvironment deficiency including reduction of DL4 and increase of IL-7 that promoted B cell fate. CONCLUSION Our findings indicate that the capacity and time course for thymic B-cell production are primarily controlled by the hematopoietic-intrinsic potential for B cells themselves during ontogeny, but that signals from TECs microenvironment also influence the frequency and differentiation potential of B cell development in the thymus.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
7
|
Xiao S, Zhang W, Manley NR. Thymic epithelial cell-derived signals control B progenitor formation and proliferation in the thymus by regulating Let-7 and Arid3a. PLoS One 2018; 13:e0193188. [PMID: 29462197 PMCID: PMC5819816 DOI: 10.1371/journal.pone.0193188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/06/2018] [Indexed: 01/27/2023] Open
Abstract
The postnatal thymus is an efficient microenvironment for T cell specification and differentiation. B cells are also present in the thymus and have been recently shown to impact T cell selection, however, the mechanisms controlling B cell development in the thymus are largely unknown. In Foxn1lacZ mutant mice, down-regulation of Foxn1 expression in thymic epithelial cells beginning 1 week after birth caused a dramatic reduction of T progenitors and an increase of B cell progenitors. This time point is coincident with the switch from fetal to adult-type hematopoietic stem cells (HSCs), which is regulated by the Lin28-Let7 system. We hypothesize that the thymic environment might regulate this process to suppress fetal-type B cell development in the thymus. In this study we show that in the Foxn1lacZ thymus, although the down-regulation of Lin28 in thymocytes was normal, up-regulation of Let-7 was impaired. The failure to up-regulate Let-7 caused a transient increase of Arid3a in B precursors, which is known to promote fetal-type B cell fate. Over-expression of Lin28a in HSCs also reduced Let-7 and promoted Arid3a expression in BM and thymic B progenitors, increasing B cell production in the thymus. The level of Let-7 in thymic B progenitors was up regulated by in vitro co-culture with IL15, Vitamin-D3, and retinoic acid, thus down-regulating Arid3a to promote B cell differentiation. All of these signals were produced in thymic epithelial cells (TECs) related to Let-7 expression in thymic B progenitors, and down-regulated in Foxn1lacZ mutants. Our data show that signals provided by TEC control thymic B cell development by up-regulating Let-7, suppressing Arid3a expression in intrathymic progenitor B cells to limit their proliferation during the neonatal to adult transition.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| | - Nancy R. Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
8
|
Mainardi C, Ebinger M, Enkel S, Feuchtinger T, Teltschik HM, Eyrich M, Schumm M, Rabsteyn A, Schlegel P, Seitz C, Schwarze CP, Müller I, Greil J, Bader P, Schlegel PG, Martin D, Holzer U, Döring M, Handgretinger R, Lang P. CD34 + selected stem cell boosts can improve poor graft function after paediatric allogeneic stem cell transplantation. Br J Haematol 2017; 180:90-99. [PMID: 29205259 DOI: 10.1111/bjh.15012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Abstract
Poor graft function (PGF) is a severe complication of haematopoietic stem cell transplantation (HSCT) and administration of donor stem cell boosts (SCBs) represents a therapeutic option. We report 50 paediatric patients with PGF who received 61 boosts with CD34+ selected peripheral blood stem cells (PBSC) after transplantation from matched unrelated (n = 25) or mismatched related (n = 25) donors. Within 8 weeks, a significant increase in median neutrophil counts (0·6 vs. 1·516 × 109 /l, P < 0·05) and a decrease in red blood cell and platelet transfusion requirement (median frequencies 1 and 7 vs. 0, P < 0·0001 and <0·001), were observed, and 78·8% of patients resolved one or two of their cytopenias. 36·5% had a complete haematological response. Median lymphocyte counts for CD3+ , CD3+ CD4+ , CD19+ and CD56+ increased 8·3-, 14·2-, 22.- and 1·6-fold. The rate of de novo acute graft-versus-host disease (GvHD) grade I-III was only 6% and resolved completely. No GvHD grade IV or chronic GvHD occurred. Patients who responded to SCB displayed a trend toward better overall survival (OS) (P = 0·07). Thus, administration of CD34+ selected SCBs from alternative donors is safe and effective. Further studies are warranted to clarify the impact on immune reconstitution and survival.
Collapse
Affiliation(s)
- Chiara Mainardi
- Department of Paediatric Oncology, Children's University Hospital, University of Padova, Padova, Italy.,Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Martin Ebinger
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Sigrid Enkel
- Transfusion Medicine Department, Tübingen University Hospital, University of Tübingen, Tübingen, Germany
| | - Tobias Feuchtinger
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Heiko-Manuel Teltschik
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Matthias Eyrich
- Department of Paediatric Oncology, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - Michael Schumm
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Armin Rabsteyn
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Patrick Schlegel
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Christian Seitz
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Carl-Phillip Schwarze
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Ingo Müller
- Department of Paediatric Haematology and Oncology, University Hospital Eppendorf, Hamburg, Germany
| | - Johann Greil
- Department of Paediatric Oncology, Haematology and Immunology, University of Heidelberg, Heidelberg, Germany
| | - Peter Bader
- Clinic for Paediatric and Adolescent Medicine, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Paul-Gerhardt Schlegel
- Department of Paediatric Oncology, University Children's Hospital, University of Würzburg, Würzburg, Germany
| | - David Martin
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany.,Filderklinik, Filderstadt-Bonlanden, Germany
| | - Ursula Holzer
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Michaela Döring
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Rupert Handgretinger
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| | - Peter Lang
- Department of Paediatric Haematology/Oncology, Children's University Hospital, Tübingen, Germany
| |
Collapse
|
9
|
Xiao S, Shterev ID, Zhang W, Young L, Shieh JH, Moore M, van den Brink M, Sempowski GD, Manley NR. Sublethal Total Body Irradiation Causes Long-Term Deficits in Thymus Function by Reducing Lymphoid Progenitors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2701-2712. [PMID: 28931604 PMCID: PMC5659725 DOI: 10.4049/jimmunol.1600934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2017] [Indexed: 12/17/2022]
Abstract
Total body irradiation (TBI) damages hematopoietic cells in the bone marrow and thymus; however, the long-term effects of irradiation with aging remain unclear. In this study, we found that the impact of radiation on thymopoiesis in mice varied by sex and dose but, overall, thymopoiesis remained suppressed for ≥12 mo after a single exposure. Male and female mice showed a long-term dose-dependent reduction in thymic cKit+ lymphoid progenitors that was maintained throughout life. Damage to hematopoietic stem cells (HSCs) in the bone marrow was dose dependent, with as little as 0.5 Gy causing a significant long-term reduction. In addition, the potential for T lineage commitment was radiation sensitive with aging. Overall, the impact of irradiation on the hematopoietic lineage was more severe in females. In contrast, the rate of decline in thymic epithelial cell numbers with age was radiation-sensitive only in males, and other characteristics including Ccl25 transcription were unaffected. Taken together, these data suggest that long-term suppression of thymopoiesis after sublethal irradiation was primarily due to fewer progenitors in the BM combined with reduced potential for T lineage commitment. A single irradiation dose also caused synchronization of thymopoiesis, with a periodic thymocyte differentiation profile persisting for at least 12 mo postirradiation. This study suggests that the number and capability of HSCs for T cell production can be dramatically and permanently damaged after a single relatively low TBI dose, accelerating aging-associated thymic involution. Our findings may impact evaluation and therapeutic intervention of human TBI events.
Collapse
Affiliation(s)
- Shiyun Xiao
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| | - Ivo D Shterev
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Wen Zhang
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602
| | - Lauren Young
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jae-Hung Shieh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
| | - Malcolm Moore
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Marcel van den Brink
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Nancy R Manley
- Department of Genetics, Paul D. Coverdell Center, University of Georgia, Athens, GA 30602;
| |
Collapse
|
10
|
Krueger A, Ziętara N, Łyszkiewicz M. T Cell Development by the Numbers. Trends Immunol 2016; 38:128-139. [PMID: 27842955 DOI: 10.1016/j.it.2016.10.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 01/01/2023]
Abstract
T cells are continually generated in the thymus in a highly dynamic process comprising discrete steps of lineage commitment, T cell receptor (TCR) gene rearrangement, and selection. These steps are linked to distinct rates of proliferation, survival, and cell death, but a quantitative picture of T cell development is only beginning to emerge. Here we summarize recent technical advances, including genetic fate mapping, barcoding, and molecular timers, that have allowed the implementation of computational models to quantify developmental dynamics in the thymus. Coupling new techniques with mathematical models has recently resulted in the emergence of new paradigms in early hematopoiesis and might similarly open new perspectives on T cell development.
Collapse
Affiliation(s)
- Andreas Krueger
- Institute of Molecular Medicine, Goethe University Frankfurt am Main, 60590 Frankfurt am Main, Germany.
| | - Natalia Ziętara
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| | - Marcin Łyszkiewicz
- Dr von Hauner Children's Hospital, Ludwig Maximilian University, 80337 Munich, Germany
| |
Collapse
|
11
|
Farese AM, Hankey KG, Cohen MV, MacVittie TJ. Lymphoid and Myeloid Recovery in Rhesus Macaques Following Total Body X-Irradiation. HEALTH PHYSICS 2015; 109:414-26. [PMID: 26425902 PMCID: PMC4593069 DOI: 10.1097/hp.0000000000000348] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recovery from severe immunosuppression requires hematopoietic stem cell reconstitution and effective thymopoiesis to restore a functional immune cell repertoire. Herein, a model of immune cell reconstitution consequent to potentially lethal doses of irradiation is described, which may be valuable in evaluating potential medical countermeasures. Male rhesus macaques were total body irradiated by exposure to 6.00 Gy 250 kVp x-radiation (midline tissue dose, 0.13 Gy min), resulting in an approximate LD10/60 (n = 5/59). Animals received medical management, and hematopoietic and immune cell recovery was assessed (n ≤ 14) through 370 d post exposure. A subset of animals (n ≤ 8) was examined through 700 d. Myeloid recovery was assessed by neutrophil and platelet-related parameters. Lymphoid recovery was assessed by the absolute lymphocyte count and FACS-based phenotyping of B- and T-cell subsets. Recent thymic emigrants were identified by T cell receptor excision circle quantification. Severe neutropenia, lymphopenia, and thrombocytopenia resolved within 30 d. Total CD3+ cells μL required 60 d to reach values 60% of normal, followed by subsequent slow recovery to approximately normal by 180 d post irradiation. Recovery of CD3+4+ and CD3+8+ cell memory and naïve subsets were markedly different. Memory populations were ≥ 100% of normal by day 60, whereas naïve populations were only 57% normal at 180 d and never fully recovered to baseline post irradiation. Total (CD20+) B cells μL were within normal levels by 77 d post exposure. This animal model elucidates the variable T- and B-cell subset recovery kinetics after a potentially lethal dose of total-body irradiation that are dependent on marrow-derived stem and progenitor cell recovery, peripheral homeostatic expansion, and thymopoiesis.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| |
Collapse
|
12
|
Franckaert D, Schlenner SM, Heirman N, Gill J, Skogberg G, Ekwall O, Put K, Linterman MA, Dooley J, Liston A. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol 2015; 45:1535-47. [PMID: 25627671 PMCID: PMC4670717 DOI: 10.1002/eji.201445277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/14/2022]
Abstract
The thymus is the organ devoted to T-cell production. The thymus undergoes multiple rounds of atrophy and redevelopment before degenerating with age in a process known as involution. This process is poorly understood, despite the influence the phenomenon has on peripheral T-cell numbers. Here we have investigated the FVB/N mouse strain, which displays premature thymic involution. We find multiple architectural and cellular features that precede thymic involution, including disruption of the epithelial–endothelial relationship and a progressive loss of pro-T cells. The architectural features, reminiscent of the human thymus, are intrinsic to the nonhematopoietic compartment and are neither necessary nor sufficient for thymic involution. By contrast, the loss of pro-T cells is intrinsic to the hematopoietic compartment, and is sufficient to drive premature involution. These results identify pro-T-cell loss as the main driver of premature thymic involution, and highlight the plasticity of the thymic stroma, capable of maintaining function across diverse interstrain architectures.
Collapse
Affiliation(s)
- Dean Franckaert
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Susan M Schlenner
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Nathalie Heirman
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Jason Gill
- Mechanisms of Cancer, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Gabriel Skogberg
- Department of Rheumatology and Inflammation Research, Göteborg University, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Göteborg University, Gothenburg, Sweden
| | - Karen Put
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | - James Dooley
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| |
Collapse
|
13
|
MacVittie TJ, Bennett AW, V Cohen M, Farese AM, Higgins A, Hankey KG. Immune cell reconstitution after exposure to potentially lethal doses of radiation in the nonhuman primate. HEALTH PHYSICS 2014; 106:84-96. [PMID: 24276552 DOI: 10.1097/hp.0b013e3182a2a9b2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Delayed immune reconstitution remains a major cause of morbidity associated with myelosuppression induced by cytotoxic therapy or myeloablative conditioning for stem cell transplant, as well as potentially lethal doses of total- or partial-body irradiation. Restoration of a functional immune cell repertoire requires hematopoietic stem cell reconstitution for all immune cells and effective thymopoiesis for T cell recovery. There are no medical countermeasures available to mitigate damage consequent to high-dose, potentially lethal irradiation, and there are no well characterized large animal models of prolonged immunosuppression to assess efficacy of potential countermeasures. Herein, the authors describe a model of T and B cell reconstitution following lethal doses of partial-body irradiation with 5% bone marrow sparing that includes full exposure of the thymus. Rhesus macaques (n = 31 male, 5.5-11.3 kg body weight) were exposed to midline tissue doses of 9.0-12.0 Gy using 6 MV LINAC-derived photons at a dose rate of 0.80 Gy min, sparing approximately 5% of bone marrow (tibiae, ankles, and feet). All animals received medical management and were monitored for myeloid and lymphoid suppression and recovery through 180 d post-exposure. Myeloid recovery was assessed by neutrophil and platelet-related hematological parameters. Reconstitution of B and T cell subsets was assessed by flow cytometric immunophenotyping, and recent thymic emigrants were identified by RT-PCR of T cell receptor excision circles. Mortality was recorded through 180 d post-exposure. Acute myelo-suppression was characterized by severe neutropenia and thrombocytopenia, followed by recovery 30-60 d post-exposure. Total T (CD3+) and B (CD20+) cells were reduced significantly following exposure and exhibited differential recovery patterns post-exposure. Both CD4+ and CD8+ subsets of naïve T cells and total CD4+ T cell counts remained significantly lower than baseline through 180 d post-exposure. The failure of recent thymic emigrants and naïve T cell subsets to recover to normal baseline values reflects the severe radiation effects on the recovery of marrow-derived stem and early thymic progenitor cells, their mobilization and seeding of receptive thymic niches, and slow endogenous thymic regeneration.
Collapse
Affiliation(s)
- Thomas J MacVittie
- *University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD; †Integrated Research Facility, Frederick, MD; ‡Naval Medical Research Center, Silver Spring, MD
| | | | | | | | | | | |
Collapse
|
14
|
Human proT-cells generated in vitro facilitate hematopoietic stem cell-derived T-lymphopoiesis in vivo and restore thymic architecture. Blood 2013; 122:4210-9. [PMID: 24215033 DOI: 10.1182/blood-2012-12-472803] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is followed by a period of immune deficiency due to a paucity in T-cell reconstitution. Underlying causes are a severely dysfunctional thymus and an impaired production of thymus-seeding progenitors in the host. Here, we addressed whether in vitro-derived human progenitor T (proT)-cells could not only represent a source of thymus-seeding progenitors, but also able to influence the recovery of the thymic microenvironment. We examined whether co-transplantation of in vitro-derived human proT-cells with hematopoietic stem cells (HSCs) was able to facilitate HSC-derived T-lymphopoiesis posttransplant. A competitive transfer approach was used to define the optimal proT subset capable of reconstituting immunodeficient mice. Although the 2 subsets tested (proT1, CD34(+)CD7(+)CD5(-); proT2, CD34(+)CD7(+)CD5(+)) showed thymus engrafting function, proT2-cells exhibited superior engrafting capacity. Based on this, when proT2-cells were coinjected with HSCs, a significantly improved and accelerated HSC-derived T-lymphopoiesis was observed. Furthermore, we uncovered a potential mechanism by which receptor activator of nuclear factor κb (RANK) ligand-expressing proT2-cells induce changes in both the function and architecture of the thymus microenvironment, which favors the recruitment of bone marrow-derived lymphoid progenitors. Our findings provide further support for the use of Notch-expanded progenitors in cell-based therapies to aid in the recovery of T-cells in patients undergoing HSCT.
Collapse
|
15
|
Abstract
For a very long time, we studied the metallophilic macrophages of the rodent thymus and in this review our results on morphological, histochemical, enzymehistochemical, immunohistochemical, ultrastructural and functional features of these cells, as well as the molecular regulation of their development, will be presented. Furthermore, the differences between species will also be discussed and the comparisons with similar/related cell types (metallophilic macrophages in the marginal sinus of the spleen, subcapsular sinus of the lymph nodes and germinal centers of secondary lymphoid follicles) will be made. Metallophilic macrophages are strategically positioned in the thymic cortico-medullary zone and are very likely to be involved in: (i) the metabolism, synthesis and production of bioactive lipids, most likely arachidonic acid metabolites, based on their histochemical and enzymehistochemical features, and (ii) the process of negative selection that occurs in the thymus, based on their ultrastructural features and their reactivity after the application of toxic or immunosuppressive/immunomodulatory agents. Taken together, their phenotypic and functional features strongly suggest that metallophilic macrophages play a significant role in the thymic physiology.
Collapse
|
16
|
Chinn IK, Blackburn CC, Manley NR, Sempowski GD. Changes in primary lymphoid organs with aging. Semin Immunol 2012; 24:309-20. [PMID: 22559987 PMCID: PMC3415579 DOI: 10.1016/j.smim.2012.04.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/30/2012] [Accepted: 04/09/2012] [Indexed: 12/13/2022]
Abstract
Aging is associated with decreased immune function that leads to increased morbidity and mortality in the elderly. Immune senescence is accompanied by age-related changes in two primary lymphoid organs, bone marrow and thymus, that result in decreased production and function of B and T lymphocytes. In bone marrow, hematopoietic stem cells exhibit reduced self-renewal potential, increased skewing toward myelopoiesis, and decreased production of lymphocytes with aging. These functional sequelae of aging are caused in part by increased oxidative stress, inflammation, adipocyte differentiation, and disruption of hypoxic osteoblastic niches. In thymus, aging is associated with tissue involution, exhibited by a disorganization of the thymic epithelial cell architecture and increased adiposity. This dysregulation correlates with a loss of stroma-thymocyte 'cross-talk', resulting in decreased export of naïve T cells. Mounting evidence argues that with aging, thymic inflammation, systemic stress, local Foxn1 and keratinocyte growth factor expression, and sex steroid levels play critical roles in actively driving thymic involution and overall adaptive immune senescence across the lifespan. With a better understanding of the complex mechanisms and pathways that mediate bone marrow and thymus involution with aging, potential increases for the development of safe and effective interventions to prevent or restore loss of immune function with aging.
Collapse
Affiliation(s)
- Ivan K. Chinn
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, 27710 USA
- Duke Human Vaccine Institute, Box 103020, Duke University Medical Center, Durham, North Carolina, 27710 USA
| | - Clare C. Blackburn
- MRC Centre for Regenerative Medicine, School of Biological Sciences, University of Edinburgh, SCRM Building, 5 Little France Drive, Edinburgh, United Kingdom EH16 4UU
| | - Nancy R. Manley
- Department of Genetics, University of Georgia, 500 DW Brooks Drive, S270B Coverdell Building, Athens, Georgia, 30602 USA
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute, Box 103020, Duke University Medical Center, Durham, North Carolina, 27710 USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, 27710 USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, 27710 USA
| |
Collapse
|
17
|
Leposavic G, Perisic M, Pilipovic I. Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis. Immunol Res 2012; 52:7-19. [PMID: 22407539 DOI: 10.1007/s12026-012-8278-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is a growing body of evidence indicating the important role of the neonatal steroid milieu in programming sexually diergic changes in thymopoietic efficiency, which in rodents occur around puberty and lead to a substantial phenotypic and functional remodeling of the peripheral T-cell compartment. This in turn leads to an alteration in the susceptibility to infection and various immunologically mediated pathologies. Our laboratory has explored interdependence in the programming and development of the hypothalamo-pituitary-gonadal axis and thymus using experimental model of neonatal androgenization. We have outlined critical points in the complex process of T-cell development depending on neonatal androgen imprinting and the peripheral outcome of these changes and have pointed to underlying mechanisms. Our research has particularly contributed to an understanding of the putative role of changes in catecholamine-mediated communications in the thymopoietic alterations in adult neonatally androgenized rats.
Collapse
Affiliation(s)
- Gordana Leposavic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | | | | |
Collapse
|
18
|
Berent-Maoz B, Montecino-Rodriguez E, Dorshkind K. Genetic regulation of thymocyte progenitor aging. Semin Immunol 2012; 24:303-8. [PMID: 22559986 DOI: 10.1016/j.smim.2012.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 02/06/2023]
Abstract
The number of T cell progenitors is significantly reduced in the involuted thymus, and the growth and developmental potential of the few cells that are present is severely attenuated. This review provides an overview of how aging affects T cell precursors before and following entry into the thymus and discusses the age-related genetic changes that may occur in them. Finally, interventions that rejuvenate thymopoiesis in the elderly by targeting T cell progenitors are discussed.
Collapse
Affiliation(s)
- Beata Berent-Maoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | | | | |
Collapse
|
19
|
Zhao R. Immune regulation of osteoclast function in postmenopausal osteoporosis: a critical interdisciplinary perspective. Int J Med Sci 2012; 9:825-32. [PMID: 23136547 PMCID: PMC3491443 DOI: 10.7150/ijms.5180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 10/15/2012] [Indexed: 01/11/2023] Open
Abstract
Extensive studies on cross talk between immune and skeletal systems in autoimmune diseases give rise to a new discipline of 'osteoimmunology', which explores the molecular regulation of osteoclasts by immune system. Postmenopausal osteoporosis is recognized as a cytokine driven disease, but the mechanism that how estrogen deficiency interplaying with cytokines to stimulate bone loss remains to be elucidated. Although the effect of individual cytokines on osteoclast formation is well characterized, the major challenge is to fit a multitude of redundant pathways and cytokines into a systemic model of postmenopausal osteoporosis. This review presents current findings and hypothesis to explain estrogen deficiency-stimulated bone loss in a critical interdisciplinary perspective. To better understand the interaction between osteoclasts and immune system in postmenopausal osteoporosis, many of the lessons have been explored in animal models.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Zhejiang, Jinhua, China.
| |
Collapse
|
20
|
Gordon J, Manley NR. Mechanisms of thymus organogenesis and morphogenesis. Development 2011; 138:3865-78. [PMID: 21862553 DOI: 10.1242/dev.059998] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thymus is the primary organ responsible for generating functional T cells in vertebrates. Although T cell differentiation within the thymus has been an area of intense investigation, the study of thymus organogenesis has made slower progress. The past decade, however, has seen a renewed interest in thymus organogenesis, with the aim of understanding how the thymus develops to form a microenvironment that supports T cell maturation and regeneration. This has prompted modern revisits to classical experiments and has driven additional genetic approaches in mice. These studies are making significant progress in identifying the molecular and cellular mechanisms that control specification, early organogenesis and morphogenesis of the thymus.
Collapse
Affiliation(s)
- Julie Gordon
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
21
|
Li T, Wu N, Dai Y, Qiu Z, Han Y, Xie J, Zhu T, Li Y. Reduced thymic output is a major mechanism of immune reconstitution failure in HIV-infected patients after long-term antiretroviral therapy. Clin Infect Dis 2011; 53:944-51. [PMID: 21960716 DOI: 10.1093/cid/cir552] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Approximately 20% of human immunodeficiency virus type 1 (HIV-1)--infected adults do not normalize their CD4(+) T lymphocytes after long-term effective highly active antiretroviral therapy (HAART). The mechanistic basis for this failure is unclear. METHODS Seventy-four patients were followed up regularly for 3-7 years. Patients with undetectable plasma viral load (<50 copies/mL) for over 12 months were further classified into 2 groups: (1) immunological nonresponders, whose CD4(+) T-cell count was < 200/μL or <20% compared with baseline; and (2) immunological responders, whose CD4(+) T-cell count was > 300/μL or >30% compared with baseline. RESULTS Compared with 17 immunological responders, 13 immunological nonresponders had a lower magnitude of naive CD4(+) T-cell increase, a lower percentage of recent thymic immigrants (CD31(+)%), and a higher percentage of activated CD8(+) T cells. Furthermore, unlike CD4(+) T cells, which increased along with the decrease of viral load, the percentage of recent thymic immigrants (CD31(+)%) had little change in the majority of patients. These data were fit into a mathematical model, , from which we deduced that the initial rate of CD4(+) T-cell restoration is associated significantly with the percentage of recent thymic immigrants (CD31(+)%). CONCLUSIONS Our data indicate that the failure to restore CD4(+) T-cell count following HAART was associated primarily with a defect in recent thymic immigrants, which suggests the existence of thymus exhaustion.
Collapse
Affiliation(s)
- Taisheng Li
- Department of Infectious Disease, Peking Union Medical College Hospital, and Chinese Academy of Medical Sciences, Beijing, China.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol 2010; 31:191-8. [DOI: 10.1016/j.it.2010.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/02/2010] [Accepted: 02/25/2010] [Indexed: 12/28/2022]
|
23
|
Mignini F, Sabbatini M, D'Andrea V, Cavallotti C. Intrinsic innervation and dopaminergic markers after experimental denervation in rat thymus. Eur J Histochem 2010; 54:e17. [PMID: 20558339 PMCID: PMC3167301 DOI: 10.4081/ejh.2010.e17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/08/2010] [Accepted: 02/17/2010] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to examine rat thymus innervation using denervation techniques and to explore the related microanatomical localization of dopamine, D1, D2 receptors and dopamine membrane transporter (DAT). In the thymus subcapsular region, the parenchymal cholinergic fibers belong exclusively to phrenic nerve branching. No somatic phrenic nerve branching was detected in any other analysed thymus lobule regions. In rats subjected to sympathetic or parasympathetic ablation, it was observed that catecholaminergic and cholinergic nerve fibers respectively contributed to forming plexuses along vessel walls. In the subcapsular and septal region, no parenchymal nerve branching, belonging to sympathetic or parasympathetic nervous system was noted. Instead, in the deep cortical region, cortico-medullary junction (CM-j) and medulla, catecholaminergic and cholinergic nerve fibers were detected along the vessels and parenchyma. Dopamine and dopamine receptors were widely diffused in the lobular cortico-medullary junction region and in the medulla, where the final steps of thymocyte maturation and their trafficking take place. No variation in dopamine and DAT immune reaction was observed following total or partial parasympathectomy or phrenic nerve cutting. After chemical or surgical sympathectomy however, neither dopamine nor DAT immune reaction was noted again. Instead, D1 and D2 dopamine receptor expression was not affected by thymus denervation. In rats subjected to specific denervation, it was observed the direct intraparenchymal branching of the phrenic nerve and sympathetic and parasympathetic fibers into thymus parenchyma along vessels. These findings on the dopaminergic system highlight the importance of neurotransmitter receptor expression in the homeostasis of neuroimmune modulation.
Collapse
Affiliation(s)
- F Mignini
- Dip. Medicina Clinica e Sperimentale, Lab. Anatomia Umana, Univ. Piemonte Oriental, Novara, Italy
| | | | | | | |
Collapse
|
24
|
Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 92:103-20. [PMID: 20800818 DOI: 10.1016/s1877-1173(10)92005-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional regulatory networks are the central regulatory mechanisms that control organ identity, patterning, and differentiation. In the case of the thymus, several key transcription factors have been identified that are critical for various aspects of thymus organogenesis and thymic epithelial cell (TEC) differentiation. The thymus forms from the third pharyngeal pouch endoderm during embryogenesis. Organ development progresses from initial thymus cell fate specification, through multiple stages of TEC differentiation and cortical (cTEC) and medullary (mTEC) formation. Transcription factors have been identified for each of these stages: a Hoxa3-dependent cascade at initial fate specification, Foxn1 for early (and later) TEC differentiation, and NF-kappaB for mTEC differentiation. As important as these factors are, their interrelationships are not understood, and many more transcription factors are likely required for complete thymus organogenesis to occur. In this chapter, we review the literature on these known genes, as well as identify gaps in our knowledge for future studies.
Collapse
|
25
|
Abstract
T-cell development in the thymus depends on continuous supply of T-cell progenitors from bone marrow (BM). Several extrathymic candidate progenitors have been described that range from multipotent cells to lymphoid cell committed progenitors and even largely T-lineage committed precursors. However, the nature of precursors seeding the thymus under physiologic conditions has remained largely elusive and it is not known whether there is only one physiologic T-cell precursor population or many. Here, we used a competitive in vivo assay based on depletion rather than enrichment of classes of BM-derived precursor populations, thereby only minimally altering physiologic precursor ratios to assess the contribution of various extrathymic precursors to T-lineage differentiation. We found that under these conditions multiple precursors, belonging to both multipotent progenitor (MPP) and common lymphoid progenitor (CLP) subsets have robust T-lineage potential. However, differentiation kinetics of different precursors varied considerably, which might ensure continuous thymic output despite gated importation of extrathymic precursors. In conclusion, our data suggest that the thymus functions to impose T-cell fate on any precursor capable of filling the limited number of progenitor niches.
Collapse
|
26
|
Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ. PSGL-1 function in immunity and steady state homeostasis. Immunol Rev 2009; 230:75-96. [PMID: 19594630 DOI: 10.1111/j.1600-065x.2009.00797.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The substantial importance of P-selectin glycoprotein ligand 1 (PSGL-1) in leukocyte trafficking has continued to emerge beyond its initial identification as a selectin ligand. PSGL-1 seemed to be a relatively simple molecule with an extracellular mucin domain extended as a flexible rod, teleologically consistent with its primary role in tethering leukocytes to endothelial selectins. The rolling interaction between leukocyte and endothelium mediated by this selectin-PSGL-1 interaction requires branched O-glycan extensions on specific PSGL-1 amino acid residues. In some cells, such as neutrophils, the glycosyltransferases involved in formation of the O-glycans are constitutively expressed, while in other cells, such as T cells, they are expressed only after appropriate activation. Thus, PSGL-1 supports leukocyte recruitment in both innate and adaptive arms of the immune response. A complex array of amino acids within the selectins engage multiple sugar residues of the branched O-glycans on PSGL-1 and provide the molecular interactions responsible for the velcro-like catch bonds that support leukocyte rolling. Such binding of PSGL-1 can also induce signaling events that influence cell phenotype and function. Scrutiny of PSGL-1 has revealed a better understanding of how it performs as a selectin ligand and yielded unexpected insights that extend its scope from supporting leukocyte rolling in inflammatory settings to homeostasis including stem cell homing to the thymus and mature T-cell homing to secondary lymphoid organs. PSGL-1 has been found to bind homeostatic chemokines CCL19 and CCL21 and to support the chemotactic response to these chemokines. Surprisingly, the O-glycan modifications of PSGL-1 that support rolling mediated by selectins in inflammatory conditions interfere with PSGL-1 binding to homeostatic chemokines and thereby limit responsiveness to the chemotactic cues used in steady state T-cell traffic. The multi-level influence of PSGL-1 on cell traffic in both inflammatory and steady state settings is therefore substantially determined by the orchestrated addition of O-glycans. However, central as specific O-glycosylation is to PSGL-1 function, in vivo regulation of PSGL-1 glycosylation in T cells remains poorly understood. It is our purpose herein to review what is known, and not known, of PSGL-1 glycosylation and to update understanding of PSGL-1 functional scope.
Collapse
Affiliation(s)
- Douglas A Carlow
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 2009; 114:972-82. [PMID: 19491395 DOI: 10.1182/blood-2008-10-187013] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
T-cell development follows a defined set of stage-specific differentiation steps. However, molecular and cellular events occurring at early stages of human T-cell development remain to be fully elucidated. To address this, human umbilical cord blood (UCB) hematopoietic stem cells (HSCs) were induced to differentiate to the T lineage in OP9-DL1 cocultures. A developmental program involving a sequential and temporally discrete expression of key differentiation markers was revealed. Quantitative clonal analyses demonstrated that CD34(+)CD38(-) and CD34(+)CD38(lo) subsets of UCB contain a similarly high T-lineage progenitor frequency, whereas the frequency in CD34(+)CD38(+/hi) cells was 5-fold lower. Delta-like/Notch-induced signals increased the T-cell progenitor frequency of CD34(+)CD38(-/lo) cells differentiated on OP9-DL1, and 2 distinct progenitor subsets, CD34(+)CD45RA(+)CD7(++)CD5(-)CD1a(-) (proT1) and CD34(+)CD45RA(+)CD7(++)CD5(+)CD1a(-) (proT2), were identified and their thymus engrafting capacity was examined, with proT2 cells showing a 3-fold enhanced reconstituting capacity compared with the proT1 subset. Furthermore, in vitro-generated CD34(+)CD7(++) progenitors effectively engrafted the thymus of immunodeficient mice, which was enhanced by the addition of an IL-7/IL-7 antibody complex. Taken together, the identification of T-progenitor subsets readily generated in vitro may offer important avenues to improve cellular-based immune-reconstitution approaches.
Collapse
|
28
|
Gossens K, Naus S, Corbel SY, Lin S, Rossi FMV, Kast J, Ziltener HJ. Thymic progenitor homing and lymphocyte homeostasis are linked via S1P-controlled expression of thymic P-selectin/CCL25. ACTA ACUST UNITED AC 2009; 206:761-78. [PMID: 19289576 PMCID: PMC2715120 DOI: 10.1084/jem.20082502] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thymic T cell progenitor (TCP) importation is a periodic, gated event that is dependent on the expression of functional P-selectin ligands on TCPs. Occupancy of intrathymic TCP niches is believed to negatively regulate TCP importation, but the nature of this feedback mechanism is not yet resolved. We show that P-selectin and CCL25 are periodically expressed in the thymus and are essential parts of the thymic gate-keeping mechanism. Periodicity of thymic TCP receptivity and the size of the earliest intrathymic TCP pool were dependent on the presence of functional P-selectin ligand on TCPs. Furthermore, we show that the numbers of peripheral blood lymphocytes directly affected thymic P-selectin expression and TCP receptivity. We identified sphingosine-1-phosphate (S1P) as one feedback signal that could mediate influence of the peripheral lymphocyte pool on thymic TCP receptivity. Our findings suggest a model whereby thymic TCP importation is controlled by both early thymic niche occupancy and the peripheral lymphocyte pool via S1P.
Collapse
Affiliation(s)
- Klaus Gossens
- The Biomedical Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Ceredig R. The impact of cell re-entry into the primary lymphoid organs on lymphocyte repertoire and functionality. Immunol Cell Biol 2009; 87:13-5. [PMID: 19129851 DOI: 10.1038/icb.2008.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Holland AM, Zakrzewski JL, Goldberg GL, Ghosh A, van den Brink MRM. Adoptive precursor cell therapy to enhance immune reconstitution after hematopoietic stem cell transplantation in mouse and man. Semin Immunopathol 2008; 30:479-87. [PMID: 19015856 DOI: 10.1007/s00281-008-0138-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 10/01/2008] [Indexed: 01/23/2023]
Abstract
Hematopoietic stem cell transplantation is a curative therapy for hematological malignancies. T cell deficiency following transplantation is a major cause of morbidity and mortality. In this review, we discuss adoptive transfer of committed precursor cells to enhance T cell reconstitution and improve overall prognosis after transplantation.
Collapse
Affiliation(s)
- Amanda M Holland
- Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | | | | | | | | |
Collapse
|
31
|
Exogenous insulin-like growth factor 1 enhances thymopoiesis predominantly through thymic epithelial cell expansion. Blood 2008; 112:2836-46. [PMID: 18658030 DOI: 10.1182/blood-2008-04-149435] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) enhances thymopoiesis but given the broad distribution of IGF-1 receptors (IGF-1Rs), its mechanism of action has remained unclear. To identify points of thymic regulation by IGF-1, we examined its effects on T-cell precursors, thymocytes, and thymic epithelial cells (TECs) in normal and genetically altered mice. In thymus-intact but not thymectomized mice, IGF-1 administration increased peripheral naive and recent thymic emigrant (RTE) populations, demonstrating its effect on T-cell production, not peripheral expansion. IGF-1 administration increased bone marrow LSK (lineage(-), Sca-1(+), c-kit(+)) precursor proliferation and peripheral LSK populations, increased thymocyte populations in a sequential wave of expansion, and proportionately expanded TEC subpopulations and enhanced their chemokine expression. To separate IGF-1's effects on thymocytes and TECs, we generated mice lacking IGF-1R on thymocytes and T cells. Thymocyte and RTE numbers were decreased in these mice, but IGF-1 treatment produced comparable thymocyte numbers to similarly treated wild-type mice. We additionally separated thymic- from LSK-specific effects by demonstrating that IGF-1 increased thymocyte numbers despite impaired early thymic progenitor (ETP) importation in PSGL-1KO mice. These results indicate the critical point thymic function regulation by IGF-1 involves TEC expansion regulating thymocyte precursor entry and facilitating thymocyte development.
Collapse
|
32
|
Nitta T, Murata S, Ueno T, Tanaka K, Takahama Y. Thymic microenvironments for T-cell repertoire formation. Adv Immunol 2008; 99:59-94. [PMID: 19117532 DOI: 10.1016/s0065-2776(08)00603-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Functionally competent immune system includes a functionally competent T-cell repertoire that is reactive to foreign antigens but is tolerant to self-antigens. The repertoire of T cells is primarily formed in the thymus through positive and negative selection of developing thymocytes. Immature thymocytes that undergo V(D)J recombination of T-cell antigen receptor (TCR) genes and that express the virgin repertoire of TCRs are generated in thymic cortex. The recent discovery of thymoproteasomes, a molecular complex specifically expressed in cortical thymic epithelial cells (cTEC), has revealed a unique role of cTEC in cuing the further development of immature thymocytes in thymic cortex, possibly by displaying unique self-peptides that induce positive selection. Cortical thymocytes that receive TCR-mediated positive selection signals are destined to survive for further differentiation and are induced to express CCR7, a chemokine receptor. Being attracted to CCR7 ligands expressed by medullary thymic epithelial cells (mTEC), CCR7-expressing positively selected thymocytes relocate to thymic medulla. The medullary microenvironment displays another set of unique self-peptides for trimming positively selected T-cell repertoire to establish self-tolerance, via promiscuous expression of tissue-specific antigens by mTEC and efficient antigen presentation by dendritic cells. Recent results demonstrate that tumor necrosis factor (TNF) superfamily ligands, including receptor activating NF-kappaB ligand (RANKL), CD40L, and lymphotoxin, are produced by positively selected thymocytes and pivotally regulate mTEC development and thymic medulla formation.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | |
Collapse
|
33
|
Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol 2007; 19:331-40. [PMID: 18024073 DOI: 10.1016/j.smim.2007.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
The immune system undergoes dramatic changes with age-the thymus involutes, particularly from puberty, with the gradual loss of newly produced naïve T cells resulting in a restricted T cell receptor repertoire, skewed towards memory cells. Coupled with a similar, though less dramatic age-linked decline in bone marrow function, this translates to a reduction in immune responsiveness and has important clinical implications particularly in immune reconstitution following cytoablation regimes for cancer treatment or following severe viral infections such as HIV. Given that long-term reconstitution of the immune system is dependent on the bi-directional interplay between primary lymphoid organ stromal cells and the progenitors whose downstream differentiation they direct, regeneration of the thymus is fundamental to developing new strategies for the clinical management of many major diseases of immunological origin. This review will discuss the impact of aging on primary lymphoid organ niches and current approaches for thymic regeneration and immune reconstitution.
Collapse
|
34
|
Cai AQ, Landman KA, Hughes BD, Witt CM. T cell development in the thymus: From periodic seeding to constant output. J Theor Biol 2007; 249:384-94. [PMID: 17869276 DOI: 10.1016/j.jtbi.2007.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/27/2007] [Accepted: 07/27/2007] [Indexed: 11/15/2022]
Abstract
T cell development occurs in the thymus throughout life. Recent experimental findings show that the seeding of the thymus by multi-potent stem cells from the bone marrow is periodic rather than continuous, as previously assumed. However it is well known that the output rate of cells from the thymus is relatively constant. A quantitative model is used to verify the current hypotheses regarding T cell development in the steady state mouse thymus. The results show that the thymus could be at a periodic steady state with out-of-phase thymocyte populations. Experiments to examine possible periodic fluctuations in the thymus are proposed and methods for further analysis are outlined.
Collapse
Affiliation(s)
- Anna Q Cai
- Department of Mathematics and Statistics, The University of Melbourne, Vic. 3010, Australia
| | | | | | | |
Collapse
|
35
|
|
36
|
Affiliation(s)
- Cynthia Guidos
- Program in Developmental Biology, Hospital for Sick Children Research Institute, Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|