1
|
Asgari D, Stewart AJ, Meisel RP. The role of uncertainty and negative feedback loops in the evolution of induced immune defenses. G3 (BETHESDA, MD.) 2024; 14:jkae182. [PMID: 39106431 PMCID: PMC11457078 DOI: 10.1093/g3journal/jkae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Organisms use constitutive or induced defenses against pathogens and other external threats. Constitutive defenses are constantly on, whereas induced defenses are activated when needed. Each of these strategies has costs and benefits, which can affect the type of defense that evolves in response to pathogens. In addition, induced defenses are usually regulated by multiple negative feedback mechanisms that prevent overactivation of the immune response. However, it is unclear how negative feedback affects the costs, benefits, and evolution of induced responses. To address this gap, we developed a mechanistic model of the well-characterized Drosophila melanogaster immune signaling network that includes 3 separate mechanisms of negative feedback as a representative of the widespread phenomenon of multilevel regulation of induced responses. We show that, under stochastic fly-bacteria encounters, an induced defense is favored when bacterial encounters are rare or uncertain, but in ways that depend on the bacterial proliferation rate. Our model also predicts that the specific negative regulators that optimize the induced response depend on the bacterial proliferation rate, linking negative feedback mechanisms to the factors that favor induction.
Collapse
Affiliation(s)
- Danial Asgari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander J Stewart
- School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9AJ, UK
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Encel SA, Ward AJW. Immune challenge affects risk sensitivity and locomotion in mosquitofish ( Gambusia holbrooki). ROYAL SOCIETY OPEN SCIENCE 2024; 11:241059. [PMID: 39479234 PMCID: PMC11521614 DOI: 10.1098/rsos.241059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024]
Abstract
The immune system is crucial in responding to disease-causing pathogens. However, immune responses may also cause stereotypical changes in behaviour known as sickness behaviours, which often include reduced activity. Sickness behaviours are thought to have an important role in conserving energy required to support the immune response; however, little is known about how they manifest over time or in relation to risk, particularly in fishes. Here, we induced an immune response in mosquitofish (Gambusia holbrooki) by inoculating them with Escherichia coli lipopolysaccharide (LPS). We subsequently tested batches of fish at 24 h intervals and examined: locomotory behaviour, tendency to use a refuge and fast-start response immediately following a threat stimulus (measured as peak acceleration). Control and LPS-treated fish behaved similarly on days 1, 3 and 4. However, 2 days post-inoculation, LPS fish swam more slowly and spent more time in the refuge than control fish, although no difference in post-threat peak acceleration was found. Our findings suggest that sickness behaviours peak roughly 2 days following exposure to LPS and are relatively short-lived. Specifically, immune-challenged individuals exhibit reduced locomotion and exploratory behaviour, becoming more risk averse overall while still retaining the ability to respond acutely to a threat stimulus.
Collapse
Affiliation(s)
- Stella A. Encel
- School of Life and Environmental Sciences, University of Sydney, Camperdown2006, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences, University of Sydney, Camperdown2006, Australia
| |
Collapse
|
3
|
Redford SE, Varanasi SK, Sanchez KK, Thorup NR, Ayres JS. CD4+ T cells regulate sickness-induced anorexia and fat wasting during a chronic parasitic infection. Cell Rep 2023; 42:112814. [PMID: 37490905 DOI: 10.1016/j.celrep.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Infections cause catabolism of fat and muscle stores. Traditionally, studies have focused on understanding how the innate immune system contributes to energy stores wasting, while the role of the adaptive immune system remains elusive. In the present study, we examine the role of the adaptive immune response in adipose tissue wasting and cachexia using a murine model of the chronic parasitic infection Trypanosoma brucei, the causative agent of sleeping sickness. We find that the wasting response occurs in two phases, with the first stage involving fat wasting caused by CD4+ T cell-induced anorexia and a second anorexia-independent cachectic stage that is dependent on CD8+ T cells. Fat wasting has no impact on host antibody-mediated resistance defenses or survival, while later-stage muscle wasting contributes to disease-tolerance defenses. Our work reveals a decoupling of adaptive immune-mediated resistance from the catabolic response during infection.
Collapse
Affiliation(s)
- Samuel E Redford
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karina K Sanchez
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Natalia R Thorup
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
McGrosky A, Pontzer H. The fire of evolution: energy expenditure and ecology in primates and other endotherms. J Exp Biol 2023; 226:297166. [PMID: 36916459 DOI: 10.1242/jeb.245272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Total energy expenditure (TEE) represents the total energy allocated to growth, reproduction and body maintenance, as well as the energy expended on physical activity. Early experimental work in animal energetics focused on the costs of specific tasks (basal metabolic rate, locomotion, reproduction), while determination of TEE was limited to estimates from activity budgets or measurements of subjects confined to metabolic chambers. Advances in recent decades have enabled measures of TEE in free-living animals, challenging traditional additive approaches to understanding animal energy budgets. Variation in lifestyle and activity level can impact individuals' TEE on short time scales, but interspecific differences in TEE are largely shaped by evolution. Here, we review work on energy expenditure across the animal kingdom, with a particular focus on endotherms, and examine recent advances in primate energetics. Relative to other placental mammals, primates have low TEE, which may drive their slow pace of life and be an evolved response to the challenges presented by their ecologies and environments. TEE variation among hominoid primates appears to reflect adaptive shifts in energy throughput and allocation in response to ecological pressures. As the taxonomic breadth and depth of TEE data expand, we will be able to test additional hypotheses about how energy budgets are shaped by environmental pressures and explore the more proximal mechanisms that drive intra-specific variation in energy expenditure.
Collapse
Affiliation(s)
- Amanda McGrosky
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA.,Duke Global Health Institute, Durham, NC 27708, USA
| |
Collapse
|
5
|
Carbillet J, Hollain M, Rey B, Palme R, Pellerin M, Regis C, Geffré A, Duhayer J, Pardonnet S, Debias F, Merlet J, Lemaître JF, Verheyden H, Gilot-Fromont E. Age and spatio-temporal variations in food resources modulate stress-immunity relationships in three populations of wild roe deer. Gen Comp Endocrinol 2023; 330:114141. [PMID: 36272446 DOI: 10.1016/j.ygcen.2022.114141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022]
Abstract
Living in variable and unpredictable environments, organisms face recurrent stressful situations. The endocrine stress response, which includes the secretion of glucocorticoids, helps organisms to cope with these perturbations. Although short-term elevations of glucocorticoid levels are often associated with immediate beneficial consequences for individuals, long-term glucocorticoid elevation can compromise key physiological functions such as immunity. While laboratory works highlighted the immunosuppressive effect of long-term elevated glucocorticoids, it remains largely unknown, especially in wild animals, whether this relationship is modulated by individual and environmental characteristics. In this study, we explored the co-variation between integrated cortisol levels, assessed non-invasively using faecal cortisol metabolites (FCMs), and 12 constitutive indices of innate, inflammatory, and adaptive immune functions, in wild roe deer living in three populations with previously known contrasting environmental conditions. Using longitudinal data on 564 individuals, we further investigated whether age and spatio-temporal variations in the quantity and quality of food resources modulate the relationship between FCMs and immunity. Negative covariation with glucocorticoids was evident only for innate and inflammatory markers of immunity, while adaptive immunity appeared to be positively or not linked to glucocorticoids. In addition, the negative covariations were generally stronger in individuals facing harsh environmental constraints and in old individuals. Therefore, our results highlight the importance of measuring multiple immune markers of immunity in individuals from contrasted environments to unravel the complex relationships between glucocorticoids and immunity in wild animals. Our results also help explain conflicting results found in the literature and could improve our understanding of the link between elevated glucocorticoid levels and disease spread, and its consequences on population dynamics.
Collapse
Affiliation(s)
- Jeffrey Carbillet
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan, 31326, France; LTSER ZA PYRénées GARonne, Auzeville-Tolosane, 31320, France; Université de Lyon, VetAgro Sup, Marcy-l'Etoile, 69280, France; Institute of Ecology and Earth Sciences, University of Tartu, Tartu 51014, Estonia.
| | - Marine Hollain
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France; Office Français de la biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploitées, Chateauvillain 52210, France
| | - Benjamin Rey
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna 1210, Austria
| | - Maryline Pellerin
- Office Français de la biodiversité, Direction de la Recherche et de l'Appui Scientifique, Service Conservation et Gestion Durable des Espèces Exploitées, Chateauvillain 52210, France
| | - Corinne Regis
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France
| | - Anne Geffré
- Equipe de Biologie médicale-Histologie, CREFRE, Inserm-UPS-ENVT, Toulouse 31000, France
| | - Jeanne Duhayer
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France
| | - Sylvia Pardonnet
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France
| | - François Debias
- Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France
| | - Joël Merlet
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan, 31326, France; LTSER ZA PYRénées GARonne, Auzeville-Tolosane, 31320, France
| | | | - Hélène Verheyden
- Université de Toulouse, INRAE, CEFS, Castanet Tolosan, 31326, France; LTSER ZA PYRénées GARonne, Auzeville-Tolosane, 31320, France
| | - Emmanuelle Gilot-Fromont
- Université de Lyon, VetAgro Sup, Marcy-l'Etoile, 69280, France; Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne Cedex 69100, France
| |
Collapse
|
6
|
Bryla A, Zagkle E, Sadowska ET, Cichoń M, Bauchinger U. Measurements of body temperature and oxidative stress reveal differential costs associated with humoral immune function in a passerine bird. J Exp Biol 2022; 225:279339. [PMID: 36314237 DOI: 10.1242/jeb.244897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Eco-immunology considers resistance to antigens a costly trait for an organism, but actual quantification of such costs is not straightforward. Costs of the immune response are visible in impaired coloration and reduced growth or reproductive success. Activation of the humoral immune response is a slow, complex and long-lasting process, which makes the quantification of its energetic cost a potential losing game. We implemented near-continuous measurements of body temperature in zebra finches (Taeniopygia guttata) as a proxy for the energetic cost, with a particular focus during activation of the humoral immune response until the peak of antibody release several days later. At the peak of the antibody release we additionally measured oxygen consumption (open-flow respirometry) and markers of oxidative stress (dROMs, OXY). Birds with an activated immune response maintained a higher night-time body temperature during the first 4 nights after an immune challenge in comparison to controls, implying increased night-time energy use. At peak antibody production, we did not find differences in night-time body temperature and oxygen consumption but observed differentiated results for oxygen consumption during the day. Immune-challenged females had significantly higher oxygen consumption compared with other groups. Moreover, we found that activation of the humoral immune response increases oxidative damage, a potential cost of maintaining the higher night-time body temperature that is crucial at the early stage of the immune response. The costs generated by the immune system appear to consist of two components - energetic and non-energetic - and these appear to be separated in time.
Collapse
Affiliation(s)
- Amadeusz Bryla
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elisavet Zagkle
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Mariusz Cichoń
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Ulf Bauchinger
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland.,Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
7
|
Wittman TN, Carlson TA, Robinson CD, Bhave RS, Cox RM. Experimental removal of nematode parasites increases growth, sprint speed, and mating success in brown anole lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:852-866. [PMID: 35871281 PMCID: PMC9796785 DOI: 10.1002/jez.2644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Parasites interact with nearly all free-living organisms and can impose substantial fitness costs by reducing host survival, mating success, and fecundity. Parasites may also indirectly affect host fitness by reducing growth and performance. However, experimentally characterizing these costs of parasitism is challenging in the wild because common antiparasite drug formulations require repeated dosing that is difficult to implement in free-living populations, and because the extended-release formulations that are commercially available for livestock and pets are not suitable for smaller animals. To address these challenges, we developed a method for the long-term removal of nematode parasites from brown anole lizards (Anolis sagrei) using an extended-release formulation of the antiparasite drug ivermectin. This treatment eliminated two common nematode parasites in captive adult males and dramatically reduced the prevalence and intensity of infection by these parasites in wild adult males and females. Experimental parasite removal significantly increased the sprint speed of captive adult males, the mating success of wild adult males, and the growth of wild juveniles of both sexes. Although parasite removal did not have any effect on survival in wild anoles, parasites may influence fitness directly through reduced mating success and indirectly through reduced growth and performance. Our method of long-term parasite manipulation via an extended-release formulation of ivermectin should be readily adaptable to many other small vertebrates, facilitating experimental tests of the extent to which parasites affect host phenotypes, fitness, and eco-evolutionary dynamics in the wild.
Collapse
Affiliation(s)
- Tyler N. Wittman
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Torun A. Carlson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Rachana S. Bhave
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Robert M. Cox
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Guitard J, Chrétien E, Bonville JD, Roche DG, Boisclair D, Binning SA. Increased parasite load is associated with reduced metabolic rates and escape responsiveness in pumpkinseed sunfish. J Exp Biol 2022; 225:276167. [PMID: 35818812 DOI: 10.1242/jeb.243160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Wild animals have parasites that can compromise their physiological and/or behavioural performance. Yet, the extent to which parasite load is related to intraspecific variation in performance traits within wild populations remains relatively unexplored. We used pumpkinseed sunfish (Lepomis gibbosus) and their endoparasites as a model system to explore the effects of infection load on host aerobic metabolism and escape performance. Metabolic traits (standard and maximum metabolic rates, aerobic scope) and fast-start escape responses following a simulated aerial attack by a predator (responsiveness, response latency, and escape distance) were measured in fish from across a gradient of visible (i.e. trematodes causing black spot disease counted on fish surfaces) and non-visible (i.e. cestodes in fish abdominal cavity counted post-mortem) endoparasite infection. We found that a higher infection load of non-visible endoparasites was related to lower standard and maximum metabolic rates, but not aerobic scope in fish. Non-visible endoparasite infection load was also related to decreased responsiveness of the host to a simulated aerial attack. Visible endoparasites were not related to changes in metabolic traits nor fast-start escape responses. Our results suggest that infection with parasites that are inconspicuous to researchers can result in intraspecific variation in physiological and behavioral performance in wild populations, highlighting the need to more explicitly acknowledge and account for the role played by natural infections in studies of wild animal performance.
Collapse
Affiliation(s)
- Joëlle Guitard
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.,Institut des sciences de la mer (ISMER), Université de Québec à Rimouski, 310 avenue des Ursulines, Rimouski, Québec, G5L 2Z9, Canada
| | - Emmanuelle Chrétien
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.,Centre eau, terre et environnement, Institut national de la recherche scientifique, Québec, Québec, G1K 9A9, Canada
| | - Jérémy De Bonville
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Dominique G Roche
- Institut de biologie, Université de Neuchâtel, Neuchâtel, Switzerland.,Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Boisclair
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Sandra A Binning
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| |
Collapse
|
9
|
Pikus E, Dunn PO, Minias P. High MHC diversity confers no advantage for phenotypic quality and reproductive performance in a wild bird. J Anim Ecol 2022; 91:1707-1718. [PMID: 35521665 PMCID: PMC9542035 DOI: 10.1111/1365-2656.13737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
1. Genes of the major histocompatibility complex (MHC) encode antigen binding molecules and are an integral part of the acquired immune response of vertebrates. In general, high individual MHC diversity is expected to increase fitness by broadening the spectrum of pathogens recognized by the immune system, in accordance with the heterozygote advantage mechanism. On the other hand, the optimality hypothesis assumes that individuals with optimal (intermediate), rather than maximum diversity of the MHC will achieve the highest fitness because of inherent costs associated with expressing diverse MHC alleles. 2. Here, we tested for associations between individual diversity of the MHC class I and class II genes (binding antigens of intra- and extra-cellular pathogens, respectively) and a range of fitness-related traits (condition, ornament expression and reproduction) in an urban population of the Eurasian coot Fulica atra. 3. Contrary to our expectation, we found that high within-individual allelic diversity of MHC genes (both class I and II) was associated with poorer condition (lower blood haemoglobin concentrations), weaker expression of the putative ornament (smaller frontal shield), later onset of breeding and smaller clutches. An analysis of functional MHC allele clusters (supertypes) provided further support for negative associations of MHC diversity with phenotypic quality and reproductive performance, but most of these relationships could not be explained by the presence of specific maladaptive supertypes. Finally, we found little empirical support for the optimality hypothesis in the Eurasian coot. 4. Our results suggest that the costs of high MHC diversity outweighed any benefits associated with broad MHC repertoire, which could be driven by depauperate pathogen diversity in an urban landscape. To the best of our knowledge, this is one of the first studies providing consistent evidence for negative associations of MHC diversity with a range of fitness-related traits in a natural avian population.
Collapse
Affiliation(s)
- Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-, Milwaukee
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
10
|
Asare E, Yang Z, Yang H, Wang Z. Evaluation of dietary Pancreatin as an exogenous enzyme on growth performance, gene expression, immunological responses, serum immunoglobins, and intestinal morphology in cockerels. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2021.2019044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Emmanuel Asare
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Zhi Yang
- Joint International Research Laboratory of Agriculture and Agric-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, P.R. China
| | - Haiming Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| | - Zhiyue Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, P.R. China
| |
Collapse
|
11
|
de Barros MSF, da Silva Neto LS, Calado TCDS. First record of parasitism by Probopyrus pandalicola (Isopoda, Bopyridae) on the freshwater prawn Macrobrachium acanthurus (Decapoda, Palaemonidae) and ecological interactions. J Parasit Dis 2021; 45:273-278. [PMID: 33746414 DOI: 10.1007/s12639-020-01306-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
In this study, we aimed to record, for the first time, parasitic infestation by the isopod Probopyrus pandalicola on the prawn Macrobrachium acanthurus, as well as to register some ecological interactions. We hypothesized that the parasitic infection is able to negatively affect the prawn's nutritional condition and that this interaction can modify growth relationships in male individuals. We collected both parasitized (n = 25) and parasite-free (n = 25) individuals in several locations of the Contas River, state of Bahia, Brazil, which had their morphometric characteristics determined, including of the parasites. Relative growth models were constructed for both groups in order to compare slopes and intercepts and determine if the growth patterns are modified by the parasite. We also determined the body condition of the prawns, which was also compared between the two groups. Our results clearly demonstrated that the parasitic infection is able to induce modifications in relative growth patterns in male individuals and that this isopod is capable of reducing the nutritional condition of the prawns. This study indicates that this parasite can induce deleterious effects in the prawn, but individually. Further studies should be conducted to assess the relevance of our findings in conservation and management.
Collapse
Affiliation(s)
- Matheus Souza Ferreira de Barros
- Laboratório de Ecologia de Peixes e Pesca (LAEPP) da Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Maceió, Brazil
| | - Luiz Soares da Silva Neto
- Laboratórios Integrados de Ciências do Mar e Naturais da Universidade Federal de Alagoas, Setor de Crustáceos, Maceió, Brazil
| | | |
Collapse
|
12
|
Zhang Y, Hill GE, Ge Z, Park NR, Taylor HA, Andreasen V, Tardy L, Kavazis AN, Bonneaud C, Hood WR. Effects of a Bacterial Infection on Mitochondrial Function and Oxidative Stress in a Songbird. Physiol Biochem Zool 2021; 94:71-82. [PMID: 33399516 DOI: 10.1086/712639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractAs a major physiological mechanism involved in cellular renewal and repair, immune function is vital to the body's capacity to support tissue maintenance and organismal survival. Because immune defenses can be energetically expensive, the activities of metabolically active organs, such as the liver, are predicted to increase during infection by most pathogens. However, some pathogens are immunosuppressive, which might reduce the metabolic capacities of select organs to suppress immune response. Mycoplasma gallisepticum (MG) is a well-known immunosuppressive bacterium that infects domestic chickens and turkeys as well as songbirds. In the house finch (Haemorhous mexicanus), which is the primary host for MG among songbird species, MG infects both the respiratory system and the conjunctiva of the eye, causing conspicuous swelling. To study the effect of a systemic bacterial infection on cellular respiration and oxidative damage in the house finch, we measured mitochondrial respiration, mitochondrial membrane potential, reactive oxygen species production, and oxidative damage in the livers of house finches that were wild caught and either infected with MG, as indicated by genetic screening for the pathogen, or free of MG infection. We observed that MG-infected house finches showed significantly lower oxidative lipid and protein damage in liver tissue compared with their uninfected counterparts. Moreover, using complex II substrates, we documented a nonsignificant trend for lower state 3 respiration of liver mitochondria in MG-infected house finches compared with uninfected house finches (P=0.07). These results are consistent with the hypothesis that MG suppresses organ function in susceptible hosts.
Collapse
|
13
|
Wang AZ, Husak JF. Endurance and sprint training affect immune function differently in green anole lizards ( Anolis carolinensis). J Exp Biol 2020; 223:jeb232132. [PMID: 32917817 DOI: 10.1242/jeb.232132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023]
Abstract
Limited resources must be partitioned among traits that enhance fitness. Although survival-related traits often trade off with reproduction, survival-related traits themselves may trade off with each other under energy limitations. Whole-organism performance and the immune system both enhance survival, yet are costly, but it is unclear how the two might trade off with each other under energy-limited conditions. Resources can be allocated to very different types of performance (e.g. aerobic endurance versus anaerobic sprinting), just as they can be allocated to different components of the immune system (e.g. innate versus acquired) to maximize survival. We forced allocation to different performance traits in green anole lizards (Anolis carolinensis) using specialized exercise training, to determine how different components of the immune system would be impacted by shifts in energy use. We measured immunocompetence in endurance-trained, sprint-trained and untrained control lizards by evaluating swelling response to phytohemagglutinin (cell-mediated immunity), antibody response to sheep red blood cells (acquired humoral immunity) and wound healing (integrated immunity). Endurance-trained lizards had reduced cell-mediated immunity, whereas sprint-trained lizards had reduced rates of wound healing. The acquired immune response was not affected by either type of training. Because each immune measure responded differently to the different types of training, our results do not support the hypothesis that simple energy limitation determines overall investment in immunity. Instead, different components of the immune system appear to be affected in ways specific to how energy is invested in performance.
Collapse
Affiliation(s)
- Andrew Z Wang
- Department of Biology, University of St Thomas, St. Paul, MN 55105, USA
| | - Jerry F Husak
- Department of Biology, University of St Thomas, St. Paul, MN 55105, USA
| |
Collapse
|
14
|
Kubacka J, Cichoń M. An immune challenge of female great tits decreases offspring survival and has sex-specific effects on offspring body size. Acta Ethol 2020. [DOI: 10.1007/s10211-020-00351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractInvestment in immunity is expected to decrease (costly immunity) or enhance (terminal investment) reproductive performance. Here, we tested the effects of activation of the immune system in female great tits (Parus major) on (1) their reproductive effort and (2) the survival and body condition of their offspring, controlling for chick sex. We injected females tending 3-day-old chicks with sheep red blood cells (SRBC) or saline (control) and recorded their provisioning rates 6 days later, during the expected peak of antibody production. We measured tarsus length and body mass in 11-day-old chicks and monitored changes in brood size. We found that female provisioning rates were unaffected by the SRBC challenge. An analysis without an outlier, however, showed a significant challenge-by-hatch date interaction. This interaction indicated that female provisioning rates decreased with hatch dates in the SRBC but not in the control nests, suggesting a stronger effect in later breeders. Chick body mass was not affected by female immunisation nor by its interaction with chick sex. However, we found a significant challenge-by-sex interaction on offspring tarsus. In SRBC nests, the difference in tarsus length between male and female chicks was lower than in controls, suggesting sex-dependent effects of the challenge on offspring structural growth. Finally, chick mortality was greater in SRBC nests compared with controls, but chick survival probability was not affected by sex. Overall, our results support the costly immunity but not the terminal investment hypothesis in the great tit.
Collapse
|
15
|
Zamora-Camacho FJ, Comas M, Moreno-Rueda G. Immune challenge does not impair short-distance escape speed in a newt. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Bech C, Christiansen MT, Kvernland P, Nygård RM, Rypdal E, Sneltorp SK, Trondrud LM, Tvedten ØG. The standard metabolic rate of a land snail (Cepaea hortensis) is a repeatable trait and influences winter survival. Comp Biochem Physiol A Mol Integr Physiol 2020; 249:110773. [PMID: 32711162 DOI: 10.1016/j.cbpa.2020.110773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
Phenotypic selection on physiological parameters is an underrepresented topic in studies of evolutionary biology. There is especially a lack of studies involving invertebrate organisms. We studied the repeatability of the standard metabolic rate (SMR) and the effect of individual variation in SMR on the subsequent winter survival in a terrestrial shell-bearing mollusc, the white-lipped snail (Cepaea hortensis) in mid-Norway. SMR was measured twice during the autumn and - after an experimental overwintering at controlled conditions - twice during the following spring. We found a significant repeatability of SMR over all three time periods tested, with a clear effect of time, with a high repeatability of 0.56 over 4 days during spring, 0.44 over 12 days in the autumn and 0.17 over 194 days from autumn to spring. That SMR is a repeatable physiological trait across the winter period during which a possible selection might occur, suggests that SMR could be a potential target of natural selection. We indeed found that the autumn SMR significantly influenced the probability of survival during the winter period, with a combination of a positive linear (P = .011) and a quadratic stabilizing (P = .001) effect on SMR. Our results hence support the view that metabolic rate is an important physiological component influencing the fitness of an organism.
Collapse
Affiliation(s)
- Claus Bech
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | - Pernille Kvernland
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Randi Marie Nygård
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Eline Rypdal
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Sara Kjeldsø Sneltorp
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Liv Monica Trondrud
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Øyvind Gjønnes Tvedten
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
17
|
Albery GF, Watt KA, Keith R, Morris S, Morris A, Kenyon F, Nussey DH, Pemberton JM. Reproduction has different costs for immunity and parasitism in a wild mammal. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Gregory F. Albery
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Kathryn A. Watt
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Rosie Keith
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Sean Morris
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Alison Morris
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Fiona Kenyon
- Moredun Research Institute Pentlands Science Park Midlothian UK
| | - Daniel H. Nussey
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Josephine M. Pemberton
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
18
|
Barbour K, McClune DW, Delahay RJ, Speakman JR, McGowan NE, Kostka B, Montgomery WI, Marks NJ, Scantlebury DM. No energetic cost of tuberculosis infection in European badgers (Meles meles). J Anim Ecol 2019; 88:1973-1985. [DOI: 10.1111/1365-2656.13092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Katie Barbour
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - David W. McClune
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - Richard J. Delahay
- National Wildlife Management Centre Animal and Plant Health Agency York UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Natasha E. McGowan
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - Berit Kostka
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - W. Ian Montgomery
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - Nikki J. Marks
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| | - David M. Scantlebury
- School of Biological Sciences Institute for Global Food Security Queen’s University Belfast UK
| |
Collapse
|
19
|
|
20
|
Bonneaud C, Sepil I, Wilfert L, Calsbeek R. Plasmodium Infections in Natural Populations of Anolis sagrei Reflect Tolerance Rather Than Susceptibility. Integr Comp Biol 2018; 57:352-361. [PMID: 28859403 PMCID: PMC5886326 DOI: 10.1093/icb/icx044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parasites can represent formidable selection pressures for hosts, but the cost of infection is sometimes difficult to demonstrate in natural populations. While parasite exploitation strategies may, in some instances, actually inflict low costs on their hosts, the response of hosts to infection is also likely to determine whether or not these costs can be detected. Indeed, costs of infection may be obscured if infected individuals in the wild are those that are the most tolerant, rather than the most susceptible, to infection. Here we test this hypothesis in two natural populations of Anolis sagrei, one of the most common anole lizard of the Bahamas. Plasmodium parasites were detected in > 7% of individuals and belonged to two distinct clades: P. mexicanum and P. floriensis. Infected individuals displayed greater body condition than non-infected ones and we found no association between infection status, stamina, and survival to the end of the breeding season. Furthermore, we found no significant difference in the immuno-competence (measured as a response to phytohemagglutinin challenge) of infected versus non-infected individuals. Taken together, our results suggest that the infected individuals that are caught in the wild are those most able to withstand the cost of the infection and that susceptible, infected individuals have been removed from the population (i.e., through disease-induced mortality). This study highlights the need for caution when interpreting estimates of infection costs in natural populations, as costs may appear low either when parasites exploitation strategies truly inflict low costs on their hosts or when those costs are so high that susceptible hosts are removed from the population.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10?9EF, UK
| | - Irem Sepil
- Department of Zoology, University of Oxford, Oxford, OX1?3PS, UK
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10?9EF, UK
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, New Hampshire, Hanover, NH 03755, USA
| |
Collapse
|
21
|
Delhaye J, Jenkins T, Glaizot O, Christe P. Avian malaria and bird humoral immune response. Malar J 2018; 17:77. [PMID: 29426311 PMCID: PMC5807826 DOI: 10.1186/s12936-018-2219-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 01/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background Plasmodium parasites are known to impose fitness costs on their vertebrate hosts. Some of these costs are due to the activation of the immune response, which may divert resources away from self-maintenance. Plasmodium parasites may also immuno-deplete their hosts. Thus, infected individuals may be less able to mount an immune response to a new pathogen than uninfected ones. However, this has been poorly investigated. Methods The effect of Plasmodium infection on bird humoral immune response when encountering a novel antigen was tested. A laboratory experiment was conducted on canaries (Serinus canaria) experimentally infected with Plasmodium relictum (lineage SGS1) under controlled conditions. Birds were immune challenged with an intra-pectoral injection of a novel non-pathogenic antigen (keyhole limpet haemocyanin, KLH). One week later they were challenged again. The immune responses to the primary and to the secondary contacts were quantified as anti-KLH antibody production via enzyme-linked immunosorbent assay (ELISA). Results There was no significant difference in antibody production between uninfected and Plasmodium infected birds at both primary and secondary contact. However, Plasmodium parasite intensity in the blood increased after the primary contact with the antigen. Conclusions There was no effect of Plasmodium infection on the magnitude of the humoral immune response. However, there was a cost of mounting an immune response in infected individuals as parasitaemia increased after the immune challenge, suggesting a trade-off between current control of chronic Plasmodium infection and investment against a new immune challenge.
Collapse
Affiliation(s)
- Jessica Delhaye
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, Unil Sorge, 1015, Lausanne, Switzerland.
| | - Tania Jenkins
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, Unil Sorge, 1015, Lausanne, Switzerland
| | - Olivier Glaizot
- Museum of Zoology, Place de la Riponne 6, 1005, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Le Biophore, Unil Sorge, 1015, Lausanne, Switzerland
| |
Collapse
|
22
|
Kankova Z, Zeman M, Ledecka D, Okuliarova M. Variable effects of elevated egg yolk testosterone on different arms of the immune system in young quail. Gen Comp Endocrinol 2018; 256:30-36. [PMID: 28736225 DOI: 10.1016/j.ygcen.2017.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/29/2017] [Accepted: 07/16/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Zuzana Kankova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Daniela Ledecka
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Okuliarova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
23
|
Stabilising selection on immune response in male black grouse Lyrurus tetrix. Oecologia 2017; 186:405-414. [PMID: 29177843 PMCID: PMC5799332 DOI: 10.1007/s00442-017-4014-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022]
Abstract
Illnesses caused by a variety of micro- and macro- organisms can negatively affect individuals’ fitness, leading to the expectation that immunity is under positive selection. However, immune responses are costly and individuals must trade-off their immune response with other fitness components (e.g. survival or reproductive success) meaning that individuals with intermediate response may have the greatest overall fitness. Such a process might be particularly acute in species with strong sexual selection because the condition-dependence of male secondary sexual-traits might lead to striking phenotypic differences amongst males of different immune response levels. We tested whether there is selection on immune response by survival and reproduction in yearling and adult male black grouse (Lyrurus tetrix) following an immune challenge with a novel antigen and tested the hypothesis that sexual signals and body mass are honest signals of the immune response. We show that yearling males with highest immune response to these challenges had higher survival, but the reverse was true for adults. Adults with higher responses had highest mass loss and adult males with intermediate immune response had highest mating success. Tail length was related to baseline response in adults and more weakly in yearlings. Our findings reveal the complex fitness consequences of mounting an immune response across age classes. Such major differences in the direction and magnitude of selection in multiple fitness components is an alternative route underpinning the stabilising selection of immune responses with an intermediate immune response being optimal.
Collapse
|
24
|
Titon SCM, Assis VR, Titon Junior B, Cassettari BDO, Fernandes PACM, Gomes FR. Captivity effects on immune response and steroid plasma levels of a Brazilian toad (Rhinella schneideri). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:127-138. [DOI: 10.1002/jez.2078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/30/2017] [Accepted: 06/11/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Stefanny Christie Monteiro Titon
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Vania Regina Assis
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Braz Titon Junior
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Bruna de Oliveira Cassettari
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Pedro Augusto Carlos Magno Fernandes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| | - Fernando Ribeiro Gomes
- Laboratório de Comportamento e Fisiologia Evolutiva; Departamento de Fisiologia, Instituto de Biociências; Universidade de São Paulo; São Paulo Brazil
| |
Collapse
|
25
|
Graham J, Mady R, Greives T. Experimental immune activation using a mild antigen decreases reproductive success in free-living female Dark-eyed Juncos (Junco hyemalis). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Seasonal animals time breeding so that offspring rearing coincides with favorable conditions. Offspring rearing is energetically demanding; therefore, additional energetic challenges during this life-history stage may allocate energy away from offspring care, decreasing reproductive success. Activation of the immune system may be one such energetic challenge, and may have a disproportionately higher impact on reproductive success earlier in the breeding season when resources are less abundant and thermoregulatory demands are greater. We monitored nestling growth and survival in incubating female Dark-eyed Juncos (Junco hyemalis (L., 1758)) injected with a mild antigen to stimulate antibody production and induce an energetic challenge. We found nests of treated females were more likely than controls to fail prior to 6 days post hatch, coinciding with timing of peak antibody production. No effect of season was detected. Offspring mass did not differ between treatments prior to failure, suggesting that failure was potentially due to differences in behaviour other than nestling feeding. Our findings indicate a trade-off between immunity and nest survival that is not affected by time of season. Based on the results of our study, we suggest that future research be directed toward how immune activation influences behaviours, including nest guarding and predator aggression, and mediates this trade-off.
Collapse
Affiliation(s)
- J.L. Graham
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 201 Stevens Hall, Fargo, ND 58102, USA
| | - R.P. Mady
- Department of Biological Sciences, Towson University, 8000 York Road, 341 Smith Hall, Towson, MD 21252, USA
| | - T.J. Greives
- Department of Biological Sciences, North Dakota State University, 1340 Bolley Drive, 201 Stevens Hall, Fargo, ND 58102, USA
| |
Collapse
|
26
|
Bonneaud C, Wilson RS, Seebacher F. Immune-Challenged Fish Up-Regulate Their Metabolic Scope to Support Locomotion. PLoS One 2016; 11:e0166028. [PMID: 27851769 PMCID: PMC5113038 DOI: 10.1371/journal.pone.0166028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 10/22/2016] [Indexed: 12/24/2022] Open
Abstract
Energy-based trade-offs occur when investment in one fitness-related trait diverts energy away from other traits. The extent to which such trade-offs are shaped by limits on the rate of conversion of energy ingested in food (e.g. carbohydrates) into chemical energy (ATP) by oxidative metabolism rather than by the amount of food ingested in the first place is, however, unclear. Here we tested whether the ATP required for mounting an immune response will lead to a trade-off with ATP available for physical activity in mosquitofish (Gambusia holbrooki). To this end, we challenged fish either with lipopolysaccharide (LPS) from E. coli or with Sheep Red Blood Cells (SRBC), and measured oxygen consumption at rest and during swimming at maximum speed 24h, 48h and 7 days post-challenge in order to estimate metabolic rates. Relative to saline-injected controls, only LPS-injected fish showed a significantly greater resting metabolic rate two days post-challenge and significantly higher maximal metabolic rates two and seven days post-challenge. This resulted in a significantly greater metabolic scope two days post-challenge, with LPS-fish transiently overcompensating by increasing maximal ATP production more than would be required for swimming in the absence of an immune challenge. LPS-challenged fish therefore increased their production of ATP to compensate physiologically for the energetic requirements of immune functioning. This response would avoid ATP shortages and allow fish to engage in an aerobically-challenging activity (swimming) even when simultaneously mounting an immune response. Nevertheless, relative to controls, both LPS- and SRBC-fish displayed reduced body mass gain one week post-injection, and LPS-fish actually lost mass. The concomitant increase in metabolic scope and reduced body mass gain of LPS-challenged fish indicates that immune-associated trade-offs are not likely to be shaped by limited oxidative metabolic capacities, but may instead result from limitations in the acquisition, assimilation or efficient use of resources.
Collapse
Affiliation(s)
- Camille Bonneaud
- Centre for Ecology & Conservation, University of Exeter Penryn Campus, Penryn TR10 9FE, Cornwall, United Kingdom
- Station d’Ecologie Expérimentale du CNRS, USR 2936, 09200 Moulis, France
- * E-mail:
| | - Robbie S. Wilson
- School of Biological Sciences, University of Queensland, Brisbane St Lucia QLD 4072, Australia
| | - Frank Seebacher
- School of Biological Sciences, University of Sydney, Sydney NSW 2006, Australia
| |
Collapse
|
27
|
Orlofske SA, Belden LK, Hopkins WA. Effects of Echinostoma trivolvis metacercariae infection during development and metamorphosis of the wood frog (Lithobates sylvaticus). Comp Biochem Physiol A Mol Integr Physiol 2016; 203:40-48. [PMID: 27543422 DOI: 10.1016/j.cbpa.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Abstract
Many organisms face energetic trade-offs between defense against parasites and other host processes that may determine overall consequences of infection. These trade-offs may be particularly evident during unfavorable environmental conditions or energetically demanding life history stages. Amphibian metamorphosis, an ecologically important developmental period, is associated with drastic morphological and physiological changes and substantial energetic costs. Effects of the trematode parasite Echinostoma trivolvis have been documented during early amphibian development, but effects during later development and metamorphosis are largely unknown. Using a laboratory experiment, we examined the energetic costs of late development and metamorphosis coupled with E. trivolvis infection in wood frogs, Lithobates [=Rana] sylvaticus. Echinostoma infection intensity did not differ between tadpoles examined prior to and after completing metamorphosis, suggesting that metacercariae were retained through metamorphosis. Infection with E. trivolvis contributed to a slower growth rate and longer development period prior to the initiation of metamorphosis. In contrast, E. trivolvis infection did not affect energy expenditure during late development or metamorphosis. Possible explanations for these results include the presence of parasites not interfering with pronephros degradation during metamorphosis or the mesonephros compensating for any parasite damage. Overall, the energetic costs of metamorphosis for wood frogs were comparable to other species with similar life history traits, but differed from a species with a much shorter duration of metamorphic climax. Our findings contribute to understanding the possible role of energetic trade-offs between parasite defense and host processes by considering parasite infection with simultaneous energetic demands during a sensitive period of development.
Collapse
Affiliation(s)
- Sarah A Orlofske
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - William A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
28
|
Cox CL, Peaden RT, Cox RM. The metabolic cost of mounting an immune response in male brown anoles (Anolis sagrei). ACTA ACUST UNITED AC 2015; 323:689-695. [DOI: 10.1002/jez.1960] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Christian L. Cox
- Department of Biology; Georgia Southern University; Statesboro Georgia
- Department of Biology; University of Virginia; Charlottesville Virginia
| | - Robert T. Peaden
- Department of Biology; University of Virginia; Charlottesville Virginia
| | - Robert M. Cox
- Department of Biology; University of Virginia; Charlottesville Virginia
| |
Collapse
|
29
|
Petit M, Vézina F. Reaction norms in natural conditions: how does metabolic performance respond to weather variations in a small endotherm facing cold environments? PLoS One 2014; 9:e113617. [PMID: 25426860 PMCID: PMC4245212 DOI: 10.1371/journal.pone.0113617] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/29/2014] [Indexed: 11/30/2022] Open
Abstract
Reaction norms reflect an organisms' capacity to adjust its phenotype to the environment and allows for identifying trait values associated with physiological limits. However, reaction norms of physiological parameters are mostly unknown for endotherms living in natural conditions. Black-capped chickadees (Poecile atricapillus) increase their metabolic performance during winter acclimatization and are thus good model to measure reaction norms in the wild. We repeatedly measured basal (BMR) and summit (Msum) metabolism in chickadees to characterize, for the first time in a free-living endotherm, reaction norms of these parameters across the natural range of weather variation. BMR varied between individuals and was weakly and negatively related to minimal temperature. Msum varied with minimal temperature following a Z-shape curve, increasing linearly between 24°C and −10°C, and changed with absolute humidity following a U-shape relationship. These results suggest that thermal exchanges with the environment have minimal effects on maintenance costs, which may be individual-dependent, while thermogenic capacity is responding to body heat loss. Our results suggest also that BMR and Msum respond to different and likely independent constraints.
Collapse
Affiliation(s)
- Magali Petit
- Département de Biologie, chimie et géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski (Québec), G5L 3A1, Canada
- Groupe de recherche sur les environnements nordiques BOREAS, Rimouski (Québec), Canada
- Centre d'Etudes Nordiques, Québec (Québec), Canada
- Centre de la Science de la Biodiversité du Québec, Montréal (Québec), Canada
- * E-mail:
| | - François Vézina
- Département de Biologie, chimie et géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski (Québec), G5L 3A1, Canada
- Groupe de recherche sur les environnements nordiques BOREAS, Rimouski (Québec), Canada
- Centre d'Etudes Nordiques, Québec (Québec), Canada
- Centre de la Science de la Biodiversité du Québec, Montréal (Québec), Canada
| |
Collapse
|
30
|
Soler M, Ruiz-Raya F, Carra LG, Medina-Molina E, Ibáñez-Álamo JD, Martín-Gálvez D. A long-term experimental study demonstrates the costs of begging that were not found over the short term. PLoS One 2014; 9:e111929. [PMID: 25372280 PMCID: PMC4221185 DOI: 10.1371/journal.pone.0111929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Parent-offspring conflict theory predicts that begging behaviour could escalate continuously over evolutionary time if it is not prevented by costliness of begging displays. Three main potential physiological costs have been proposed: growth, immunological and metabolic costs. However, empirical evidence on this subject remains elusive because published results are often contradictory. In this study, we test for the existence of these three potential physiological costs of begging in house sparrow (Passer domesticus) nestlings by stimulating a group of nestlings to beg for longer and another group for shorter periods than in natural conditions. All nestlings were fed with the same quantity of food. Our study involves a long-term experimental treatment for begging studies (five consecutive days). Long-term studies frequently provide clearer results than short-term studies and, sometimes, relevant information not reported by the latter ones. Our long-term experiment shows (i) a clear effect on the immune response even since the first measurement (6 hours), but it was higher during the second (long-term) than during the first (short-term) test; (ii) evidence of a growth cost of begging in house sparrow nestlings not previously found by other studies; (iii) body condition was affected by our experimental manipulation only after 48 hour; (iv) a metabolic cost of begging never previously shown in any species, and (v) for the first time, it has shown a simultaneous effect of the three potential physiological costs of begging: immunocompetence, growth, and metabolism. This implies first, that a multilevel trade-off can occur between begging and all physiological costs and, second, that a lack of support in a short-term experiment for the existence of a tested cost of begging does not mean absence of that cost, because it can be found in a long-term experiment.
Collapse
Affiliation(s)
- Manuel Soler
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Spain
- * E-mail:
| | - Francisco Ruiz-Raya
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Laura G. Carra
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Eloy Medina-Molina
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Juan Diego Ibáñez-Álamo
- Departamento de Biología Animal, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - David Martín-Gálvez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Almería, Spain
| |
Collapse
|
31
|
Martel SI, Riquelme SA, Kalergis AM, Bozinovic F. Dietary effect on immunological energetics in mice. J Comp Physiol B 2014; 184:937-44. [DOI: 10.1007/s00360-014-0852-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/27/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022]
|
32
|
Fairbanks BM, Hawley DM, Alexander KA. The impact of health status on dispersal behavior in banded mongooses (Mungos mungo). ECOHEALTH 2014; 11:258-262. [PMID: 24504905 DOI: 10.1007/s10393-014-0912-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 06/03/2023]
Abstract
While disease and injury have obvious impacts on mortality, they can have less understood non-lethal impacts on behavior. These behavioral effects might have a significant consequences for population-level disease dynamics if diseased individuals are more or less likely to disperse. We opportunistically observed dispersal events in banded mongooses (Mungos mungo) that were either healthy or unhealthy due to injury and/or clinical signs of a novel tuberculosis pathogen, Mycobacterium mungi. We found that diseased and/or injured mongooses were significantly less likely to disperse than healthy individuals, suggesting that disease may have an important consequences for dispersal that could in turn affect population-level disease dynamics.
Collapse
Affiliation(s)
- Bonnie M Fairbanks
- Department of Biological Sciences, Virginia Tech, Derring Hall Room 2125, 1405 Perry Street, Mail Code 0406, Blacksburg, VA, 24061, USA,
| | | | | |
Collapse
|
33
|
Brock PM, Murdock CC, Martin LB. The history of ecoimmunology and its integration with disease ecology. Integr Comp Biol 2014; 54:353-62. [PMID: 24838746 DOI: 10.1093/icb/icu046] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology. Arguably, the greatest contribution of ecoimmunology to wider biology has been the establishment of immunity as an integral part of organismal biology, one that may be regulated to maximize fitness in the context of costs, constraints, and complex interactions. We discuss historical impediments and ongoing progress in ecoimmunology, in particular the thorny issue of what ecoimmunologists should, should not, or cannot measure, and what novel contributions ecoimmunologists have made to the understanding of host-parasite interactions. Finally, we highlight some areas to which ecoimmunology is likely to contribute in the near future.
Collapse
Affiliation(s)
- Patrick M Brock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Courtney C Murdock
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Lynn B Martin
- *Department of Infectious Disease Epidemiology, Imperial College London, London, UK; Center for Infectious Disease Dynamics, Penn State University, PA, USA; Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
34
|
Cox RM, Lovern MB, Calsbeek R. Experimentally decoupling reproductive investment from energy storage to test the functional basis of a life-history trade-off. J Anim Ecol 2014; 83:888-98. [PMID: 24724820 DOI: 10.1111/1365-2656.12228] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
Abstract
The ubiquitous life-history trade-off between reproduction and survival has long been hypothesized to reflect underlying energy-allocation trade-offs between reproductive investment and processes related to self-maintenance. Although recent work has questioned whether energy-allocation models provide sufficient explanations for the survival cost of reproduction, direct tests of this hypothesis are rare, especially in wild populations. This hypothesis was tested in a wild population of brown anole lizards (Anolis sagrei) using a two-step experiment. First, stepwise variation in reproductive investment was created using unilateral and bilateral ovariectomy (OVX) along with intact (SHAM) control. Next, this manipulation was decoupled from its downstream effects on energy storage by surgically ablating the abdominal fat stores from half of the females in each reproductive treatment. As predicted, unilateral OVX (intermediate reproductive investment) induced levels of growth, body condition, fat storage and breeding-season survival that were intermediate between the high levels of bilateral OVX (no reproductive investment) and the low levels of SHAM (full reproductive investment). Ablation of abdominal fat bodies had a strong and persistent effect on energy stores, but it did not influence post-breeding survival in any of the three reproductive treatments. This suggests that the energetic savings of reduced reproductive investment do not directly enhance post-breeding survival, with the caveat that only one aspect of energy storage was manipulated and OVX itself had no overall effect on post-breeding survival. This study supports the emerging view that simple energy-allocation models may often be insufficient as explanations for the life-history trade-off between reproduction and survival.
Collapse
Affiliation(s)
- Robert M Cox
- Department of Biology, University of Virginia, Charlottesville, VA, 22904, USA
| | - Matthew B Lovern
- Department of Zoology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ryan Calsbeek
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
35
|
Rodríguez A, Broggi J, Alcaide M, Negro JJ, Figuerola J. Determinants and short-term physiological consequences of PHA immune response in lesser kestrel nestlings. ACTA ACUST UNITED AC 2014; 321:376-86. [PMID: 24807828 DOI: 10.1002/jez.1868] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 04/07/2014] [Accepted: 04/11/2014] [Indexed: 02/03/2023]
Abstract
Individual immune responses are likely affected by genetic, physiological, and environmental determinants. We studied the determinants and short-term consequences of Phytohaemagglutinin (PHA) induced immune response, a commonly used immune challenge eliciting both innate and acquired immunity, on lesser kestrel (Falco naumanni) nestlings in semi-captivity conditions and with a homogeneous diet composition. We conducted a repeated measures analyses of a set of blood parameters (carotenoids, triglycerides, β-hydroxybutyrate, cholesterol, uric acid, urea, total proteins, and total antioxidant capacity), metabolic (resting metabolic rate), genotypic (MHC class II B heterozygosity), and biometric (body mass) variables. PHA challenge did not affect the studied physiological parameters on a short-term basis (<12 hr), except plasma concentrations of triglycerides and carotenoids, which decreased and increased, respectively. Uric acid was the only physiological parameter correlated with the PHA induced immune response (skin swelling), but the change of body mass, cholesterol, total antioxidant capacity, and triglycerides between sessions (i.e., post-pre treatment) were also positively correlated to PHA response. No relationships were detected between MHC gene heterozygosity or resting metabolic rate and PHA response. Our results indicate that PHA response in lesser kestrel nestlings growing in optimal conditions does not imply a severe energetic cost 12 hr after challenge, but is condition-dependent as a rapid mobilization of carotenoids and decrease of triglycerides is elicited on a short-term basis.
Collapse
Affiliation(s)
- Airam Rodríguez
- Department of Evolutionary Ecology, Estación Biológica de Doñana (CSIC), Seville, Spain; Department of Research, Phillip Island Nature Parks, Cowes, Victoria, Australia
| | | | | | | | | |
Collapse
|
36
|
Edwards D, Haring M, Gilchrist H, Schulte-Hostedde A. Do social mating systems limit maternal immune investment in shorebirds? CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Across mating systems, females differ in the amount of resources they invest in offspring. For example, polyandrous females invest in acquiring multiple matings rather than providing parental care. We examined how the amount of maternal immune investment, measured as immunoglobulin Y and lysozyme activity in eggs, was influenced by female role across three social mating systems (polyandry, polygyny, and monogamy) in shorebirds. We predicted that polyandry should impose the greatest costs on the ability to provision eggs and monogamy, where females receive benefits from biparentality, the least. Contrary to our predictions, levels of maternally derived egg immune constituents were consistently high across measures in the polyandrous species and low in the monogamous species. Our results may support a link with pace-of-life where developmental costs are greater than the energetic costs of provisioning eggs, and (or) a role for sexual selection acting on maternal immune investment.
Collapse
Affiliation(s)
- D.B. Edwards
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - M. Haring
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - H.G. Gilchrist
- Environment Canada, Canadian Wildlife Service, National Wildlife Research Centre, Carleton University, Ottawa, ON K1A 0H3, Canada
| | - A.I. Schulte-Hostedde
- Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
37
|
Bashir-Tanoli S, Tinsley MC. Immune response costs are associated with changes in resource acquisition and not resource reallocation. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12236] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Matthew C. Tinsley
- Biological and Environmental Sciences; University of Stirling; Stirling FK9 4LA UK
| |
Collapse
|
38
|
Belloni V, Sorci G, Paccagnini E, Guerreiro R, Bellenger J, Faivre B. Disrupting immune regulation incurs transient costs in male reproductive function. PLoS One 2014; 9:e84606. [PMID: 24400103 PMCID: PMC3882243 DOI: 10.1371/journal.pone.0084606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022] Open
Abstract
Background Immune protection against pathogenic organisms has been shown to incur costs. Previous studies investigating the cost of immunity have mostly focused on the metabolic requirements of immune maintenance and activation. In addition to these metabolic costs, the immune system can induce damage to the host if the immune response is mis-targeted or over-expressed. Given its non-specific nature, an over-expressed inflammatory response is often associated with substantial damage for the host. Here, we investigated the cost of an over-expressed inflammatory response in the reproductive function of male mice. Methodology/Principal Findings We experimentally blocked the receptors of an anti-inflammatory cytokine (IL-10) in male mice exposed to a mild inflammatory challenge, with each treatment having an appropriate control group. The experiment was conducted on two age classes, young (3 month old) and old (15 month old) mice, to assess any age-related difference in the cost of a disrupted immune regulation. We found that the concomitant exposure to an inflammatory insult and the blockade of IL-10 induced a reduction in testis mass, compared to the three other groups. The frequency of abnormal sperm morphology was also higher in the group of mice exposed to the inflammatory challenge but did not depend on the blockade of the IL-10. Conclusions Our results provide evidence that immune regulation confers protection against the risk of inflammation-induced infertility during infection. They also suggest that disruption of the effectors involved in the regulation of the inflammatory response can have serious fitness consequences even under mild inflammatory insult and benign environmental conditions.
Collapse
Affiliation(s)
- Virginia Belloni
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
- Department Tropical Medicine, University of Tulane, New Orleans, Louisiana, United States of America
- * E-mail:
| | - Gabriele Sorci
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| | | | - Romain Guerreiro
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| | - Jérôme Bellenger
- Lipides Nutrition Cancer, INSERM UMR 866, Université de Bourgogne, Dijon, France
| | - Bruno Faivre
- Biogéosciences, CNRS UMR 6282, Université de Bourgogne, Dijon, France
| |
Collapse
|
39
|
Abstract
Co-infection of individual hosts by multiple parasite species is a pattern that is very commonly observed in natural populations. Understanding the processes that generate these patterns poses a challenge. For example, it is difficult to discern the relative roles of exposure and susceptibility in generating the mixture and density of parasites within hosts. Yet discern them we must, if we are to design and deliver successful medical interventions for co-infected populations. Here, we synthesise an emergent understanding of how processes operate and interact to generate patterns of co-infection. We consider within-host communities (or infracommunities) generally, that is including not only classical parasites but also the microbiota that are so abundant on mucosal surfaces and which are increasingly understood to be so influential on host biology. We focus on communities that include a helminth, but we expect similar inferences to pertain to other taxa. We suggest that, thanks to recent research at both the within-host (e.g. immunological) and between-host (e.g. epidemiological) scales, researchers are poised to reveal the processes that generate the observed distribution of parasite communities among hosts. Progress will be facilitated by using new technologies as well as statistical and experimental tools to test competing hypotheses about processes that might generate patterns in co-infection data. By understanding the multiple interactions that underlie patterns of co-infection, we will be able to understand and intelligently predict how a suite of co-infections (and thus the host that bears them) will together respond to medical interventions as well as other environmental changes. The challenge for us all is to become scholars of co-infections.
Collapse
Affiliation(s)
- Mark E Viney
- School of Biological Sciences, University of Bristol, Woodland Road, UK.
| | | |
Collapse
|
40
|
Cheatsazan H, de Almedia APLG, Russell AF, Bonneaud C. Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus. BMC Ecol 2013; 13:27. [PMID: 23866033 PMCID: PMC3722082 DOI: 10.1186/1472-6785-13-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/20/2013] [Indexed: 11/13/2022] Open
Abstract
Background Batrachochytrium dendrobatidis (Bd), the causative agent of chytridiomycosis, is decimating amphibians worldwide. Unsurprisingly, the majority of studies have therefore concentrated on documenting morbidity and mortality of susceptible species and projecting population consequences as a consequence of this emerging infectious disease. Currently, there is a paucity of studies investigating the sub-lethal costs of Bd in apparently asymptomatic species, particularly in controlled experimental conditions. Here we report the consequences of a single dose of B. dendrobatidis zoospores on captive adult palmate newts (Lissotriton helveticus) for morphological and behavioural traits that associate with reproductive success. Results A single exposure to ~2000 zoospores induced a subclinical Bd infection. One week after inoculation 84% of newts tested positive for Bd, and of those, 98% had apparently lost the infection by the day 30. However, exposed newts suffered significant mass loss compared with control newts, and those experimental newts removing higher levels of Bd lost most mass. We found no evidence to suggest that three secondary sexual characteristics (areas of dorsal crest and rear foot webbing, and length of tail filament) were reduced between experimental versus control newts; in fact, rear foot webbing was 26% more expansive at the end of the experiment in exposed newts. Finally, compared with unexposed controls, exposure to Bd was associated with a 50% earlier initiation of the non-reproductive terrestrial phase. Conclusions Our results suggest that Bd has measureable, but sub-lethal effects, on adult palmate newts, at least under the laboratory conditions presented. We conclude that the effects reported are most likely to be mediated through the initiation of costly immune responses and/or tissue repair mechanisms. Although we found no evidence of hastened secondary sexual trait regression, through reducing individual body condition and potentially, breeding season duration, we predict that Bd exposure might have negative impacts on populations of palmate newts through reducing individual reproductive success and adult recruitment.
Collapse
|
41
|
Brock PM, Hall AJ, Goodman SJ, Cruz M, Acevedo-Whitehouse K. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal. PLoS One 2013; 8:e67132. [PMID: 23840603 PMCID: PMC3695956 DOI: 10.1371/journal.pone.0067132] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 05/19/2013] [Indexed: 11/23/2022] Open
Abstract
Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which could contribute to population declines, especially in times of energy shortage.
Collapse
Affiliation(s)
- Patrick M. Brock
- Institute of Zoology, Zoological Society of London, Regents Park, London, United Kingdom
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
- * E-mail: (PMB); (KAW)
| | - Ailsa J. Hall
- Sea Mammal Research Unit, University of St. Andrews, Fife, United Kingdom
| | - Simon J. Goodman
- Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
| | - Marilyn Cruz
- Galapagos Genetics, Epidemiology and Pathology Laboratory, Galapagos National Park, Puerto Ayora, Ecuador
| | - Karina Acevedo-Whitehouse
- Institute of Zoology, Zoological Society of London, Regents Park, London, United Kingdom
- Unit for Basic and Applied Microbiology, Autonomous University of Queretaro, Queretaro, Mexico
- * E-mail: (PMB); (KAW)
| |
Collapse
|
42
|
Abad-Gómez JM, Gutiérrez JS, Villegas A, Sánchez-Guzmán JM, Navedo JG, Masero JA. Time course and metabolic costs of a humoral immune response in the little ringed plover Charadrius dubius. Physiol Biochem Zool 2013; 86:354-60. [PMID: 23629885 DOI: 10.1086/670733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite host defense against parasites and pathogens being considered a costly life-history trait, relatively few studies have assessed the energetic cost of immune responsiveness. Knowledge of such energetic costs may help to understand the mechanisms by which trade-offs with other demanding activities occur. The time course and associated metabolic costs of mounting a primary and secondary humoral immune response was examined in little ringed plovers Charadrius dubius challenged with sheep red blood cells. As was expected, the injection with this antigen increased the production of specific antibodies significantly, with peaks 6 d postinjection in both primary and secondary responses. At the peak of secondary antibody response, the antibody production was 29% higher than that observed during the primary response, but the difference was nonsignificant. Mounting the primary response did not significantly increase the resting metabolic rate (RMR) of birds, whereas the secondary response did by 21%, suggesting that the latter was more costly in terms of RMR. In spite of the fact that the primary response did not involve an increase in RMR, birds significantly decreased their body mass. This could imply an internal energy reallocation strategy to cope with the induced immune challenge. Last, we found that RMR and antibody production peaks were not coupled, which could help to conciliate the variable results of previous studies. Collectively, the results of this study support the hypothesis that humoral immunity, especially the secondary response, entails energetic costs that may trade-off with other physiological activities.
Collapse
Affiliation(s)
- José M Abad-Gómez
- Conservation Biology Research Group, Zoology, University of Extremadura, Badajoz, Spain.
| | | | | | | | | | | |
Collapse
|
43
|
Guerreiro R, Besson AA, Bellenger J, Ragot K, Lizard G, Faivre B, Sorci G. Correlational selection on pro- and anti-inflammatory effectors. Evolution 2013; 66:3615-23. [PMID: 23002997 DOI: 10.1111/j.1558-5646.2012.01708.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parasites impose a permanent threat for hosts. As a consequence, immune defenses are important for host fitness. However, the immune response can also produce self-damage and impair host fitness if not properly regulated. Effectors that up- and downregulate the immune response should, therefore, evolve in concert, and be under the action of correlational selection. To address this issue, we assessed the shape of the selection operating on pro- and anti-inflammatory effectors following an inflammatory challenge in laboratory mice.We found that selection acts on the combination of these two traits as individuals that produced large amount of pro-inflammatory cytokines could achieve relatively high fitness (survival) only if also producing a large amount of anti-inflammatory effectors. To our knowledge, this is the first study providing evidence for correlational selection on immunity.
Collapse
Affiliation(s)
- Romain Guerreiro
- Biogéosciences, CNRS UMR 6282, Universite´ de Bourgogne, 6 Bd Gabriel, 21000 Dijon, France.
| | | | | | | | | | | | | |
Collapse
|
44
|
Immune evasion, immunopathology and the regulation of the immune system. Pathogens 2013; 2:71-91. [PMID: 25436882 PMCID: PMC4235712 DOI: 10.3390/pathogens2010071] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/26/2022] Open
Abstract
Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths) that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.
Collapse
|
45
|
Meylan S, Richard M, Bauer S, Haussy C, Miles D. Costs of Mounting an Immune Response during Pregnancy in a Lizard. Physiol Biochem Zool 2013; 86:127-36. [DOI: 10.1086/668637] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Knowles SCL, Fenton A, Pedersen AB. Epidemiology and fitness effects of wood mouse herpesvirus in a natural host population. J Gen Virol 2012; 93:2447-2456. [PMID: 22915692 PMCID: PMC3542127 DOI: 10.1099/vir.0.044826-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/16/2012] [Indexed: 11/18/2022] Open
Abstract
Rodent gammaherpesviruses have become important models for understanding human herpesvirus diseases. In particular, interactions between murid herpesvirus 4 and Mus musculus (a non-natural host species) have been extensively studied under controlled laboratory conditions. However, several fundamental aspects of murine gammaherpesvirus biology are not well understood, including how these viruses are transmitted from host to host, and their impacts on host fitness under natural conditions. Here, we investigate the epidemiology of a gammaherpesvirus in free-living wood mice (Apodemus sylvaticus) and bank voles (Myodes glareolus) in a 2-year longitudinal study. Wood mouse herpesvirus (WMHV) was the only herpesvirus detected and occurred frequently in wood mice and also less commonly in bank voles. Strikingly, WMHV infection probability was highest in reproductively active, heavy male mice. Infection risk also showed a repeatable seasonal pattern, peaking in spring and declining through the summer. We show that this seasonal decline can be at least partly attributed to reduced recapture of WMHV-infected adults. These results suggest that male reproductive behaviours could provide an important natural route of transmission for these viruses. They also suggest that gammaherpesvirus infection may have significant detrimental effects in wild hosts, questioning the view that these viruses have limited impacts in natural, co-evolved host species.
Collapse
Affiliation(s)
- Sarah C. L. Knowles
- Centre for Immunity, Infection and Evolution (CIIE), Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Andy Fenton
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK
| | - Amy B. Pedersen
- Centre for Immunity, Infection and Evolution (CIIE), Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| |
Collapse
|
47
|
Bonneaud C, Balenger SL, Hill GE, Russell AF. Experimental evidence for distinct costs of pathogenesis and immunity against a natural pathogen in a wild bird. Mol Ecol 2012; 21:4787-96. [PMID: 22924889 DOI: 10.1111/j.1365-294x.2012.05736.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022]
Abstract
Protective immunity is expected to evolve when the costs of mounting an immune response are less than those of harbouring pathogens. Estimating the costs of immunity vs. pathogenesis in natural systems is challenging, however, because they are typically closely linked. Here we attempt to disentangle the relative cost of each using experimental infections in a natural host-parasite system in which hosts (house finches, Carpodacus mexicanus) differ in resistance to a bacterium (Mycoplasma gallisepticum, MG), depending on whether they originate from co-evolved or unexposed populations. Experimental infection with a 2007-strain of MG caused finches from co-evolved populations to lose significantly more mass relative to controls, than those from unexposed populations. In addition, infected co-evolved finches that lost the most mass harboured the least amounts of MG, whereas the reverse was true in finches from unexposed populations. Finally, within co-evolved populations, individuals that displayed transcriptional evidence of higher protective immune activity, as indicated by changes in the expression of candidate immune and immune-related genes in a direction consistent with increased resistance to MG, showed greater mass loss and lower MG load. Thus, mass loss appeared to reflect the costs of immunity vs. pathogenesis in co-evolved and unexposed populations, respectively. Our results suggest that resistance can evolve even when the short-term energetic costs of protective immunity exceed those of pathogenesis, providing the longer-term fitness costs of infection are sufficiently high.
Collapse
Affiliation(s)
- Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS USR 2936, Moulis, 09200, France.
| | | | | | | |
Collapse
|
48
|
Morrill A, Forbes MR. Random parasite encounters coupled with condition-linked immunity of hosts generate parasite aggregation. Int J Parasitol 2012; 42:701-6. [DOI: 10.1016/j.ijpara.2012.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/04/2012] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
|
49
|
Hasselquist D, Nilsson JÅ. Physiological mechanisms mediating costs of immune responses: what can we learn from studies of birds? Anim Behav 2012. [DOI: 10.1016/j.anbehav.2012.03.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
No evidence for a trade-off between reproductive investment and immunity in a rodent. PLoS One 2012; 7:e37182. [PMID: 22649512 PMCID: PMC3359356 DOI: 10.1371/journal.pone.0037182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
Life history theory assumes there are trade-offs between competing functions such as reproduction and immunity. Although well studied in birds, studies of the trade-offs between reproduction and immunity in small mammals are scarce. Here we examined whether reduced immunity is a consequence of reproductive effort in lactating Brandt's voles (Lasiopodomys brandtii). Specifically, we tested the effects of lactation on immune function (Experiment I). The results showed that food intake and resting metabolic rate (RMR) were higher in lactating voles (6≤ litter size ≤8) than that in non-reproductive voles. Contrary to our expectation, lactating voles also had higher levels of serum total Immunoglobulin G (IgG) and anti-keyhole limpet hemocyanin (KLH) IgG and no change in phytohemagglutinin (PHA) response and anti-KLH Immunoglobulin M (IgM) compared with non-reproductive voles, suggesting improved rather than reduced immune function. To further test the effect of differences in reproductive investment on immunity, we compared the responses between natural large (n≥8) and small litter size (n≤6) (Experiment II) and manipulated large (11-13) and small litter size (2-3) (Experiment III). During peak lactation, acquired immunity (PHA response, anti-KLH IgG and anti-KLH IgM) was not significantly different between voles raising large or small litters in both experiments, despite the measured difference in reproductive investment (greater litter size, litter mass, RMR and food intake in the voles raising larger litters). Total IgG was higher in voles with natural large litter size than those with natural small litter size, but decreased in the enlarged litter size group compared with control and reduced group. Our results showed that immune function is not suppressed to compensate the high energy demands during lactation in Brandt's voles and contrasting the situation in birds, is unlikely to be an important aspect mediating the trade-off between reproduction and survival.
Collapse
|