1
|
Susceptibility to malaria in fulani, Bariba, Otamari and gando individuals living in sympatry in Benin: Role of opsonizing antibodies to Plasmodium falciparum merozoites. Heliyon 2023; 9:e13092. [PMID: 36711279 PMCID: PMC9879790 DOI: 10.1016/j.heliyon.2023.e13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/17/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Objectives Fulani in Africa are known to be less susceptible to Plasmodium falciparum (Pf) malaria. This study explored a potential involvement of antibody-mediated merozoite phagocytosis mechanism in this natural protection against malaria. Methods Before the start of the malaria transmission season (MTS) in Benin, the functionality of antibodies against Pf merozoites was determined by the opsonic phagocytosis (OP) assay in plasma samples from Fulani, Bariba, Otamari and Gando groups. These individuals were actively followed-up for malaria detection from the beginning to the end of MTS. Anti-GLURP Immunoglobulin G antibody quantification, malaria Rapid Diagnostic Test (RDT) and spleen palpation were performed before and after MTS. Results In Bariba, Otamari and Gando, but not in Fulani, plasma from adults promoted higher levels of OP than the children (P = 0.003; P = 0.012; P = 0.031 and P = 0.122). A high proportion of Fulani children had higher OP and anti-GLURP (P < 0.0001) antibody levels as compared to non-Fulani children; whereas this was not observed for Fulani adults (P = 0.223). High OP levels before MTS were significantly related to negative RDT after MTS (P = 0.011). Conclusion Our results highlight the ability of opsonizing antibodies to potentially enhance natural protection of young Fulani individuals against Pf malaria in Benin.
Collapse
|
2
|
Singh SK, Naghizadeh M, Plieskatt J, Singh S, Theisen M. Cloning and Recombinant Protein Expression in Lactococcus lactis. Methods Mol Biol 2023; 2652:3-20. [PMID: 37093467 DOI: 10.1007/978-1-0716-3147-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Lactococcus lactis, a Gram-positive bacteria, is an ideal expression host for the overproduction of heterologous proteins in a properly folded and functional form. L. lactis has been identified as an efficient cell factory, generally recognized as safe (GRAS), has a long history of safe use in food production, and is known to have probiotic properties. Key desirable features of L. lactis include the following: (1) rapid growth to high cell densities, not requiring aeration which facilitates large-scale fermentation; (2) its Gram-positive nature precludes the presence of contaminating endotoxins; (3) the capacity to secrete stable recombinant protein into the growth medium with few proteases resulting in a properly folded, full-length protein; and (4) the availability of diverse expression vectors facilitating various cloning options. We have previously described production of several recombinant proteins with varying degrees of predicted structural complexities using the L. lactis pH-dependent P170 promoter. The purpose of this chapter is to provide a detailed protocol for facilitating wider application of L. lactis as a reliable platform for expression of heterologous recombinant proteins in soluble form. Here, we present details of the various steps involved such as cloning of the target gene in appropriate expression plasmid vector, determination of the expression levels of the heterologous protein, and initial purification of the expressed soluble recombinant protein of interest.
Collapse
Affiliation(s)
- Susheel K Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Mohammad Naghizadeh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jordan Plieskatt
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Subhash Singh
- Biotherapeutic and Vaccine Research Division, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dassah S, Adu B, Tiendrebeogo RW, Singh SK, Arthur FKN, Sirima SB, Theisen M. GMZ2 Vaccine-Induced Antibody Responses, Naturally Acquired Immunity and the Incidence of Malaria in Burkinabe Children. Front Immunol 2022; 13:899223. [PMID: 35720297 PMCID: PMC9200992 DOI: 10.3389/fimmu.2022.899223] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
GMZ2 is a malaria vaccine candidate evaluated in a phase 2b multi-centre trial. Here we assessed antibody responses and the association of naturally acquired immunity with incidence of malaria in one of the trial sites, Banfora in Burkina Faso. The analysis included 453 (GMZ2 = 230, rabies = 223) children aged 12-60 months old. Children were followed-up for clinical malaria episodes for 12 months after final vaccine administration. Antibody levels against GMZ2 and eleven non-GMZ2 antigens were measured on days 0 and 84 (one month after final vaccine dose). Vaccine efficacy (VE) differed by age group (interaction, (12-35 months compared to 36-60 months), p = 0.0615). During the twelve months of follow-up, VE was 1% (95% confidence interval [CI] -17%, 17%) and 23% ([CI] 3%, 40%) in the 12 - 35 and 36 - 60 months old children, respectively. In the GMZ2 group, day 84 anti-GMZ2 IgG levels were associated with reduced incidence of febrile malaria during the follow up periods of 1-6 months (hazard ratio (HR) = 0.87, 95%CI = (0.77, 0.98)) and 7-12 months (HR = 0.84, 95%CI = (0.71, 0.98)) in the 36-60 months old but not in 12-35 months old children. Multivariate analysis involving day 84 IgG levels to eleven non-vaccine antigens, identified MSP3-K1 and GLURP-R2 to be associated with reduced incidence of malaria during the 12 months of follow up. The inclusion of these antigens might improve GMZ2 vaccine efficacy.
Collapse
Affiliation(s)
- Sylvester Dassah
- Navrongo Health Research Centre, Navrongo, Ghana.,Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Régis W Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sodiomon B Sirima
- Groupe de Recherche Action en Senté (GRAS), Ouagadougou, Burkina Faso
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology, and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Alves KCS, Guimarães JM, Almeida MEMD, Mariúba LAM. Plasmodium falciparum merozoite surface protein 3 as a vaccine candidate: a brief review. Rev Inst Med Trop Sao Paulo 2022; 64:e23. [PMID: 35293561 PMCID: PMC8916589 DOI: 10.1590/s1678-9946202264023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the many efforts of researchers around the world, there is currently no effective vaccine for malaria. Numerous studies have been developed to find vaccine antigens that are immunogenic and safe. Among antigen candidates, Plasmodium falciparum merozoite surface protein 3 (MSP3) has stood out in a number of these studies for its ability to induce a consistent and protective immune response, also being safe for use in humans. This review presents the main studies that explored MSP3 as a vaccine candidate over the last few decades. MSP3 formulations were tested in animals and humans and the most advanced candidate formulations are MSP3-LSP, a combination of MSP3 and LSP1, and GMZ2 (a vaccine based on the recombinant protein fusion GLURP and MSP3) which is currently being tested in phase II clinical studies. This brief review highlights the history and the main formulations of MSP3-based vaccines approaches against P. falciparum .
Collapse
Affiliation(s)
| | | | | | - Luís André Morais Mariúba
- Instituto Leônidas e Maria Deane, Brazil; Universidade Federal do Amazonas, Brazil; Instituto Oswaldo Cruz, Brazil; Universidade Federal do Amazonas, Brazil
| |
Collapse
|
5
|
Cunha JA, Carvalho LJM, Bianco-Junior C, Andrade MCR, Pratt-Riccio LR, Riccio EKP, Pelajo-Machado M, da Silva IJ, Druilhe P, Daniel-Ribeiro CT. Increased Plasmodium falciparum Parasitemia in Non-splenectomized Saimiri sciureus Monkeys Treated with Clodronate Liposomes. Front Cell Infect Microbiol 2017; 7:408. [PMID: 28983468 PMCID: PMC5613086 DOI: 10.3389/fcimb.2017.00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/04/2017] [Indexed: 11/25/2022] Open
Abstract
A major constraint in the study of Plasmodium falciparum malaria, including vaccine development, lies on the parasite's strict human host specificity and therefore the shortage of animal experimental models able to harbor human plasmodia. The best experimental models are neo-tropical primates of the genus Saimiri and Aotus, but they require splenectomy to reduce innate defenses for achieving high and consistent parasitemias, an important limitation. Clodronate-liposomes (CL) have been successfully used to deplete monocytes/macrophages in several experimental models. We investigated whether a reduction in the numbers of phagocytic cells by CL would improve the development of P. falciparum parasitemia in non-splenectomized Saimiri sciureus monkeys. Depletion of S. sciureus splenocytes after in vitro incubation with CL was quantified using anti-CD14 antibodies and flow cytometry. Non-infected and P. falciparum-infected S. sciureus were injected intravenously twice a week with either CL at either 0.5 or 1 mL (5 mg/mL) or phosphate buffered saline (PBS). Animals were monitored during infection and treated with mefloquine. After treatment and euthanasia, spleen and liver were collected for histological analysis. In vitro CL depleted S. sciureus splenic monocyte/macrophage population in a dose- and time-dependent manner. In vivo, half of P. falciparum-infected S. sciureus treated with CL 0.5 mL, and two-thirds of those treated with CL 1 mL developed high parasitemias requiring mefloquine treatment, whereas all control animals were able to self-control parasitemia without the need for antimalarial treatment. CL-treated infected S. sciureus showed a marked decrease in the degree of splenomegaly despite higher parasitemias, compared to PBS-treated animals. Histological evidence of partial monocyte/macrophage depletion, decreased hemozoin phagocytosis and decreased iron recycling was observed in both the spleen and liver of CL-treated infected S. sciureus. CL is capable of promoting higher parasitemia in P. falciparum-infected S. sciureus, associated with evidence of partial macrophage depletion in the spleen and liver. Macrophage depletion by CL is therefore a practical and viable alternative to surgical splenectomy in this experimental model.
Collapse
Affiliation(s)
- Janaiara A Cunha
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| | - Leonardo J M Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| | - Cesare Bianco-Junior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| | - Márcia C R Andrade
- Instituto de Ciência e Tecnologia em Biomodelos, FiocruzRio de Janeiro, Brazil
| | - Lilian R Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| | - Evelyn K P Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| | | | - Igor J da Silva
- Laboratório de Patologia, Instituto Oswaldo Cruz, FiocruzRio de Janeiro, Brazil
| | - Pierre Druilhe
- Vac4All Initiative, Pepinière Paris Biotech SantéParis, France
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz)Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Theisen M, Adu B, Mordmüller B, Singh S. The GMZ2 malaria vaccine: from concept to efficacy in humans. Expert Rev Vaccines 2017; 16:907-917. [PMID: 28699823 DOI: 10.1080/14760584.2017.1355246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION GMZ2 is a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of Plasmodium falciparum, and is designed with the aim of mimicking naturally acquired anti-malarial immunity. The rationale for combining these two antigens is based on a series of immune epidemiological studies from geographically diverse malaria endemic regions; functional in vitro studies; and pre-clinical studies in rodents and New World monkeys. GMZ2 adjuvanted with alhydrogel® (alum) was well tolerated and immunogenic in three phase 1 studies. The recently concluded phase 2 trial of GMZ2/alum, involving 1849 participants 12 to 60 month of age in four countries in West, Central and Eastern Africa, showed that GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects for clinical development of GMZ2 sub-unit vaccine. We will focus on discovery, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production, pre-clinical and clinical studies. Expert commentary: GMZ2 is well tolerated and has some, albeit modest, efficacy in the target population. More immunogenic formulations should be developed.
Collapse
Affiliation(s)
- Michael Theisen
- a Department for Congenital Disorders , Statens Serum Institut , Copenhagen , Denmark.,b Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology , University of Copenhagen , Copenhagen , Denmark.,c Department of Infectious Diseases , Copenhagen University Hospital , Rigshospitalet , Denmark
| | - Bright Adu
- d Noguchi Memorial Institute for Medical Research , University of Ghana , Legon , Ghana
| | - Benjamin Mordmüller
- e Institute of Tropical Medicine and Center for Infection Research, partner site Tübingen , University of Tübingen , Tübingen , Germany
| | - Subhash Singh
- f Indian Institute of Integrative Medicine , Jammu , India
| |
Collapse
|
7
|
The Aotus nancymaae erythrocyte proteome and its importance for biomedical research. J Proteomics 2016; 152:131-137. [PMID: 27989940 DOI: 10.1016/j.jprot.2016.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022]
Abstract
The Aotus nancymaae species has been of great importance in researching the biology and pathogenesis of malaria, particularly for studying Plasmodium molecules for including them in effective vaccines against such microorganism. In spite of the forgoing, there has been no report to date describing the biology of parasite target cells in primates or their biomedical importance. This study was thus designed to analyse A. nancymaae erythrocyte protein composition using MS data collected during a previous study aimed at characterising the Plasmodium vivax proteome and published in the pertinent literature. Most peptides identified were similar to those belonging to 1189 Homo sapiens molecules; >95% of them had orthologues in New World primates. GO terms revealed a correlation between categories having the greatest amount of proteins and vital cell function. Integral membrane molecules were also identified which could be possible receptors facilitating interaction with Plasmodium species. The A. nancymaae erythrocyte proteome is described here for the first time, as a starting point for more in-depth/extensive studies. The data reported represents a source of invaluable information for laboratories interested in carrying out basic and applied biomedical investigation studies which involve using this primate. SIGNIFICANCE An understanding of the proteomics characteristics of A. nancymaae erythrocytes represents a fascinating area for research regarding the study of the pathogenesis of malaria since these are the main target for Plasmodium invasion. However, and even though Aotus is one of the non-human primate models considered most appropriate for biomedical research, knowledge of its proteome, particularly its erythrocytes, remains unknown. According to the above and bearing in mind the lack of information about the A. nancymaae species genome and transcriptome, this study involved a search for primate proteins for comparing their MS/MS spectra with the available information for Homo sapiens. The great similarity found between the primate's molecules and those for humans supported the use of the monkeys or their cells for continuing assays involved in studying malaria. Integral membrane receptors used by Plasmodium for invading cells were also found; this required timely characterisation for evaluating their therapeutic role. The list of erythrocyte protein composition reported here represents a useful source of basic knowledge for advancing biomedical investigation in this field.
Collapse
|
8
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
9
|
Sawaswong V, Simpalipan P, Siripoon N, Harnyuttanakorn P, Pattaradilokrat S. Allelic Diversity and Geographical Distribution of the Gene Encoding Plasmodium falciparum Merozoite Surface Protein-3 in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:177-87. [PMID: 25925176 PMCID: PMC4416369 DOI: 10.3347/kjp.2015.53.2.177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
Merozoite surface proteins (MSPs) of malaria parasites play critical roles during the erythrocyte invasion and so are potential candidates for malaria vaccine development. However, because MSPs are often under strong immune selection, they can exhibit extensive genetic diversity. The gene encoding the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum displays 2 allelic types, K1 and 3D7. In Thailand, the allelic frequency of the P. falciparummsp-3 gene was evaluated in a single P. falciparum population in Tak at the Thailand and Myanmar border. However, no study has yet looked at the extent of genetic diversity of the msp-3 gene in P. falciparum populations in other localities. Here, we genotyped the msp-3 alleles of 63 P. falciparum samples collected from 5 geographical populations along the borders of Thailand with 3 neighboring countries (Myanmar, Laos, and Cambodia). Our study indicated that the K1 and 3D7 alleles coexisted, but at different proportions in different Thai P. falciparum populations. K1 was more prevalent in populations at the Thailand-Myanmar and Thailand-Cambodia borders, whilst 3D7 was more prevalent at the Thailand-Laos border. Global analysis of the msp-3 allele frequencies revealed that proportions of K1 and 3D7 alleles of msp-3 also varied in different continents, suggesting the divergence of malaria parasite populations. In conclusion, the variation in the msp-3 allelic patterns of P. falciparum in Thailand provides fundamental knowledge for inferring the P. falciparum population structure and for the best design of msp-3 based malaria vaccines.
Collapse
Affiliation(s)
- Vorthon Sawaswong
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phumin Simpalipan
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Napaporn Siripoon
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
10
|
Riccio EKP, Pratt-Riccio LR, Bianco-Júnior C, Sanchez V, Totino PRR, Carvalho LJM, Daniel-Ribeiro CT. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malar J 2015; 14:166. [PMID: 25927834 PMCID: PMC4416248 DOI: 10.1186/s12936-015-0688-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/10/2015] [Indexed: 02/07/2023] Open
Abstract
Background The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Methods Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. Results The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed after 6–12 hrs of culture, except for LTA in PBMC, whose expression was best analysed after 24 hrs of culture. Conclusions Real-time PCR facilitates the analysis of a large number of cytokines altered during malaria infection, and this technique is considered the best tool for the evaluation of the cellular immune response in S. sciureus.
Collapse
Affiliation(s)
- Evelyn K P Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Lilian R Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Cesare Bianco-Júnior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Violette Sanchez
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil. .,Present address: Research Department, Sanofi Pasteur, Lyon, France.
| | - Paulo R R Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Leonardo J M Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
11
|
Alves FA, Pelajo-Machado M, Totino PRR, Souza MT, Gonçalves EC, Schneider MPC, Muniz JAPC, Krieger MA, Andrade MCR, Daniel-Ribeiro CT, Carvalho LJM. Splenic architecture disruption and parasite-induced splenocyte activation and anergy in Plasmodium falciparum-infected Saimiri sciureus monkeys. Malar J 2015; 14:128. [PMID: 25890318 PMCID: PMC4377215 DOI: 10.1186/s12936-015-0641-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/06/2015] [Indexed: 11/15/2022] Open
Abstract
Background The understanding of the mechanisms of immunity in malaria is crucial for the rational development of interventions such as vaccines. During blood stage infection, the spleen is considered to play critical roles in both immunity and immunopathology of Plasmodium falciparum infections. Methods Saimiri sciureus monkeys were inoculated with blood stages of P. falciparum (FUP strain) and spleens removed during acute disease (days 7 and 13 of infection) and during convalescence (15 days after start of chloroquine treatment). Cytokine (IFNγ, TNFα, IL2, IL6, IL10, and IL12) responses of splenocytes stimulated with P. falciparum-parasitized red blood cells were assessed by real-time PCR using specific Saimiri primers, and histological changes were evaluated using haematoxylin-eosin and Giemsa-stained slides. Results Early during infection (day 7, 1-2% parasitaemia), spleens showed disruption of germinal centre architecture with heavy B-cell activation (centroblasts), and splenocytes showed increased expression of IFNγ, IL6 and IL12 upon in vitro stimuli by P. falciparum-parasitized red blood cells (pRBC). Conversely, 15 days after treatment of blood stage infection with chloroquine, splenocytes showed spontaneous in vitro expression of TNFα, IL2, IL6, IL10, and IL12, but not IFNγ, and stimulation with P. falciparum pRBC blocked the expression of all these cytokines. During the acute phase of infection, splenic disarray with disorganized germinal centres was observed. During convalescence, spleens of the chloroquine-treated animals showed white pulp hyperplasia with extensive lymphocyte activation and persistency of heavily haemozoin-laden macrophages throughout the red pulp. Conclusions Inability to eliminate haemozoin is likely involved in the persistent lymphocyte activation and in the anergic responses of Saimiri splenocytes to P. falciparum pRBC, with important negative impact in immune responses and implications for the design of malaria vaccine.
Collapse
Affiliation(s)
- Francisco A Alves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil. .,Laboratório de Imunobiologia, Universidade Federal do Pará (UFPA), Belém, Brazil.
| | - Marcelo Pelajo-Machado
- Laboratório de Patologia, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Paulo R R Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Mariana T Souza
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| | - Evonnildo C Gonçalves
- Laboratório de Tecnologia Biomolecular, Universidade Federal do Pará (UFPA), Belém, Brazil.
| | | | | | - Marco A Krieger
- Instituto Carlos Chagas de Biologia Molecular, Curitiba, Brazil.
| | - Marcia C R Andrade
- Serviço de Criação de Primatas Não-Humanos, CECAL-Fiocruz, Rio de Janeiro, Brazil.
| | | | - Leonardo J M Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Lokossou AG, Dechavanne C, Bouraïma A, Courtin D, Le Port A, Ladékpo R, Noukpo J, Bonou D, Ahouangninou C, Sabbagh A, Fayomi B, Massougbodji A, Garcia A, Migot-Nabias F. Association of IL-4 and IL-10 maternal haplotypes with immune responses to P. falciparum in mothers and newborns. BMC Infect Dis 2013; 13:215. [PMID: 23668806 PMCID: PMC3679728 DOI: 10.1186/1471-2334-13-215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 05/03/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Particular cytokine gene polymorphisms are involved in the regulation of the antibody production. The consequences of already described IL-4, IL-10 and IL-13 gene polymorphisms on biological parameters and antibody levels were investigated among 576 mothers at delivery and their newborns in the context of P. falciparum placental malaria infection. METHODS The study took place in the semi-rural area of Tori-Bossito, in south-west Benin, where malaria is meso-endemic. Six biallelic polymorphisms were determined by quantitative PCR using TaqMan® Pre-Designed SNP Genotyping Assays, in IL-4 (rs2243250, rs2070874), IL-10 (rs1800896, rs1800871, rs1800872) and IL-13 (rs1800925) genes. Antibody responses directed to P. falciparum MSP-1, MSP-2, MSP-3, GLURP-R0, GLURP-R2 and AMA-1 recombinant proteins were determined by ELISA. RESULTS The maternal IL-4(-590)*T/IL-4(+33)*T haplotype (one or two copies) was associated with favorable maternal condition at delivery (high haemoglobin levels, absence of placental parasites) and one of its component, the IL-4(-590)TT genotype, was related to low IgG levels to MSP-1, MSP-2/3D7 and MSP-2/FC27. Inversely, the maternal IL-10(-1082)AA was positively associated with P. falciparum placenta infection at delivery. As a consequence, the IL-10(-819)*T allele (in CT and TT genotypes) as well as the IL-10(-1082)*A/IL-10(-819)*T/IL-10(-592)*A haplotype (one or two copies) in which it is included, were related to an increased risk for anaemia in newborns. The maternal IL-10(-1082)AA genotype was related to high IgG levels to MSP-2/3D7 and AMA-1 in mothers and newborns, respectively. The IL-13 gene polymorphism was only involved in the newborn's antibody response to AMA-1. CONCLUSION These data revealed that IL-4 and IL-10 maternal gene polymorphisms are likely to play a role in the regulation of biological parameters in pregnant women at delivery (anaemia, P. falciparum placenta infection) and in newborns (anaemia). Moreover, IL-4, IL-10 and IL-13 maternal gene polymorphisms were related to IgG responses to MSP-1, MSP-2/3D7 and MSP-2/FC27 in mothers as well as to AMA-1 in newborns.
Collapse
Affiliation(s)
- Adjimon Gatien Lokossou
- Institut de Recherche pour le Développement, UMR 216 Mère et enfant face aux infections tropicales, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Keh CE, Jha AR, Nzarubara B, Lanar DE, Dutta S, Theisen M, Rosenthal PJ, Dorsey G, Nixon DF, Greenhouse B. Associations between antibodies to a panel of Plasmodium falciparum specific antigens and response to sub-optimal antimalarial therapy in Kampala, Uganda. PLoS One 2012; 7:e52571. [PMID: 23285095 PMCID: PMC3526588 DOI: 10.1371/journal.pone.0052571] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/19/2012] [Indexed: 02/06/2023] Open
Abstract
Background Antibodies are important in the control of blood stage Plasmodium falciparum infection. It is unclear which antibody responses are responsible for, or even associated with protection, partly due to confounding by heterogeneous exposure. Assessment of response to partially effective antimalarial therapy, which requires the host to assist in clearing parasites, offers an opportunity to measure protection independent of exposure. Methods A cohort of children aged 1–10 years in Kampala, Uganda were treated with amodiaquine+sulfadoxine-pyrimethamine for uncomplicated malaria. Serum samples from the time of malaria diagnosis and 14 days later were analyzed for total IgG to 8 P. falciparum antigens using a quantitative indirect ELISA. Associations between antibody levels and risk of treatment failure were estimated using Cox proportional hazard regression. Results Higher levels of antibodies to apical membrane antigen 1 (AMA-1), but to none of the other 7 antigens were significantly associated with protection against treatment failure (HR 0.57 per 10-fold increase in antibody level, CI 0.41–0.79, p = 0.001). Protection increased consistently across the entire range of antibody levels. Conclusions Measurement of antibody levels to AMA-1 at the time of malaria may offer a quantitative biomarker of blood stage immunity to P. falciparum, a tool which is currently lacking.
Collapse
Affiliation(s)
- Chris E. Keh
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Aashish R. Jha
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | | - David E. Lanar
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sheetij Dutta
- Division of Malaria Vaccine Development, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Michael Theisen
- Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Douglas F. Nixon
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
14
|
Jepsen MPG, Röser D, Christiansen M, Olesen Larsen S, Cavanagh DR, Dhanasarnsombut K, Bygbjerg I, Dodoo D, Remarque EJ, Dziegiel M, Jepsen S, Mordmüller B, Theisen M. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure. J Immunol Methods 2012; 384:62-70. [PMID: 22835432 DOI: 10.1016/j.jim.2012.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 01/25/2023]
Abstract
Transfusion transmitted malaria (TTM) in non-endemic countries is reduced by questioning blood donors and screening of donated blood. Conventional screening is performed by Indirect Fluorescence Antibody Test (IFAT). This method is manual and difficult to standardize. Here we study the diagnostic performance of a multiplex assay for detection of antibodies against Plasmodium falciparum in donor blood using IFAT as a comparator. A multiplex assay (MPA) containing the antigens GLURP-R0, GLURP-R2, MSP3, MSP1 hybrid and AMA1 was constructed using xMAP® technology. A discrimination index for exposure to P. falciparum malaria was calculated by comparing travelers with clinical malaria (n=52) and non-exposed blood donors (n=119). The index was evaluated on blood donors with suspected malaria exposure (n=249) and compared to the diagnostic performance of IFAT. At a specificity of 95.8 %, the MPA discrimination index exhibited a diagnostic sensitivity of 90.4 % in travelers hospitalized with malaria. Percent agreement with IFAT was 92.3 %. Screening plasma from blood donors with suspected malaria exposure, we found 4.8 % to be positive by IFAT and 5.2 % by MPA with an agreement of 93.2 %. The calculated index from the MPA exhibits similar diagnostic performance as IFAT for detection of P. falciparum malaria. Combining the antibody response against multiple antigens in a discrimination index increased the sensitivity of the MPA and reduced the readout to a single value.
Collapse
|
15
|
Baumann A, Magris MM, Urbaez ML, Vivas-Martinez S, Durán R, Nieves T, Esen M, Mordmüller BG, Theisen M, Avilan L, Metzger WG. Naturally acquired immune responses to malaria vaccine candidate antigens MSP3 and GLURP in Guahibo and Piaroa indigenous communities of the Venezuelan Amazon. Malar J 2012; 11:46. [PMID: 22335967 PMCID: PMC3296639 DOI: 10.1186/1475-2875-11-46] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/15/2012] [Indexed: 11/10/2022] Open
Abstract
Background Malaria transmission in most of Latin America can be considered as controlled. In such a scenario, parameters of baseline immunity to malaria antigens are of specific interest with respect to future malaria eradication efforts. Methods A cross-sectional study was carried out in two indigenous population groups in Amazonas/Venezuela. Data from the regional malaria documentation system were extracted and participants from the ethnic groups of the Guahibo (n = 180) and Piaroa (n = 295) were investigated for the presence of Plasmodium parasites and naturally acquired antibodies to Plasmodium falciparum antigens in serum. The GMZ2 vaccine candidate proteins MSP3 and GLURP were chosen as serological markers. Results The incidence of P. falciparum in both communities was found to be less than 2%, and none of the participants harboured P. falciparum at the time of the cross-sectional. Nearly a quarter of the participants (111/475; 23,4%) had positive antibody titres to at least one of the antigens. 53/475 participants (11.2%) were positive for MSP3, and 93/475 participants (19.6%) were positive for GLURP. High positive responses were detected in 36/475 participants (7.6%) and 61/475 participants (12.8%) for MSP3 and GLURP, respectively. Guahibo participants had significantly higher antibody titres than Piaroa participants. Conclusions Considering the low incidence of P. falciparum, submicroscopical infections may explain the comparatively high anti-P. falciparum antibody concentrations.
Collapse
Affiliation(s)
- Andreas Baumann
- Institut für Tropenmedizin, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Valencia SH, Rodríguez DC, Acero DL, Ocampo V, Arévalo-Herrera M. Platform for Plasmodium vivax vaccine discovery and development. Mem Inst Oswaldo Cruz 2011; 106 Suppl 1:179-92. [PMID: 21881773 PMCID: PMC4832982 DOI: 10.1590/s0074-02762011000900023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/15/2011] [Indexed: 01/17/2023] Open
Abstract
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development.
Collapse
|
17
|
Alves FA, Souza MT, Gonçalves EC, Schneider MPC, Marinho AM, Muniz JAPC, Fragoso SP, Krieger MA, Goldenberg S, Daniel-Ribeiro CT, Carvalho LJM. DNA sequencing of 13 cytokine gene fragments of Aotus infulatus and Saimiri sciureus, two non-human primate models for malaria. Cytokine 2010; 52:151-5. [PMID: 20943414 DOI: 10.1016/j.cyto.2010.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/21/2010] [Accepted: 09/15/2010] [Indexed: 11/25/2022]
Abstract
Aotus and Saimiri are non-human primate models recommended by the World Health Organization for experimental studies in malaria, especially for vaccine pre-clinical trials. However, research using these primates is hindered by the lack of specific reagents to evaluate immune responses to infection or vaccination. As a step toward developing molecular tools for cytokine expression studies in these species, primer pairs for 18 cytokine gene fragments were designed based on human DNA sequences and used to amplify the corresponding genes in Aotus infulatus and Saimiri sciureus genomic DNA samples. IFNγ, TNFα, LTA, IL2, IL3, IL4, IL5, IL6, IL10, IL12, IL13, CSF2 and TGFβ2 gene fragments were amplified and sequenced. Primer pairs for IL8, IL17, IL18, IL27 and MIF failed to generate amplification products. When compared to the available corresponding human and non-human primate sequences, most--except IL3 and IL4--showed identity degrees above 90%. Small variations in sequence can help to explain the failure to amplify certain genes or the amplification only at lower annealing temperatures as compared to human DNA samples for several primer pairs. The sequences made available provide the basis for designing molecular tools such as primers for real time PCR specific for A. infulatus and/or S. sciureus. The nucleotide sequences reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned accession numbers DQ985386 to DQ985389, DQ989356 to DQ989369, FJ89020 to FJ89024, and FJ89029.
Collapse
Affiliation(s)
- F A Alves
- Laboratory of Malaria Research, Laboratory for Malaria Research, Instituto Oswaldo Cruz and Center for Malaria Research and Training (CPD-Mal), FIOCRUZ and SVS, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Obando-Martinez AZ, Curtidor H, Vanegas M, Arévalo-Pinzón G, Patarroyo MA, Patarroyo ME. Conserved regions from Plasmodium falciparum MSP11 specifically interact with host cells and have a potential role during merozoite invasion of red blood cells. J Cell Biochem 2010; 110:882-92. [DOI: 10.1002/jcb.22600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Acquisition of antibodies to merozoite surface protein 3 among residents of Korogwe, north eastern Tanzania. BMC Infect Dis 2010; 10:55. [PMID: 20205959 PMCID: PMC2841183 DOI: 10.1186/1471-2334-10-55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 03/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A polymorphic malaria parasite antigen, merozoite surface protein 3 (MSP3), is among the blood stage malaria vaccine candidates. It is believed to induce immunity through cytophilic antibodies that disrupt the process of erythrocytes invasion by merozoites. This study aimed at assessing natural acquisition of antibodies to MSP3 in individuals living in an area with different malaria transmission intensity in preparation for malaria vaccine trials. METHODS The study was conducted in individuals aged 0-19 years from villages located in lowland, intermediate and highland strata in Korogwe district, northeastern Tanzania. Blood samples from 492 study participants were collected between May and June 2006 for malaria diagnosis and immunological investigations. Reactivity of MSP3 to different types of antibodies (immunoglobulin M, G and IgG subclass 1 and 3) were analysed by Enzyme Linked ImmunoSorbent Assay (ELISA). RESULTS Malaria parasite prevalence was higher in the lowland (50%) compared to the intermediate (23.1%) and highland (9.8%) strata. Immunogloblin G subclasses 1 and 3 (IgG1 & IgG3), total IgG and IgM were found to increase with increasing age. IgG3 levels were significantly higher than IgG1 (p < 0.001). Furthermore, Plasmodium falciparum infection was associated with higher IgG3 levels (p = 0.008). Adjusting by strata and age in individuals who had positive blood smears, both IgG and IgM were associated with parasite density, whereby IgG levels decreased by 0.227 (95%CI: 0.064 - 0.391; p = 0.007) while IgM levels decreased by 0.165 (95%CI: 0.044 - 0.286; p = 0.008). CONCLUSION Individuals with higher levels of IgG3 might be partially protected from malaria infection. Higher levels of total IgG and IgM in highlands might be due to low exposure to malaria infection, recent infection or presence of cross-reactive antigens. Further studies of longitudinal nature are recommended. Data obtained from this study were used in selection of one village (Kwashemshi) for conducting MSP3 phase 1b malaria vaccine trial in Korogwe.
Collapse
|
20
|
Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0213-9626(10)70007-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Nebie I, Diarra A, Ouedraogo A, Tiono AB, Konate AT, Gansane A, Soulama I, Cousens S, Leroy O, Sirima SB. Humoral and cell-mediated immunity to MSP3 peptides in adults immunized with MSP3 in malaria endemic area, Burkina Faso. Parasite Immunol 2009; 31:474-80. [PMID: 19646212 PMCID: PMC2759983 DOI: 10.1111/j.1365-3024.2009.01130.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We performed a single-blind, randomized phase 1 trial of the long synthetic peptide (LSP) of merozoite surface protein-3 (MSP3) in adults living in Burkina Faso. Thirty eligible volunteers were randomized to receive either the MSP3-LSP candidate vaccine or tetanus toxoid vaccine as a control. A dose of each vaccine was administered on days 0, 28 and 112 and the vaccine was formulated with aluminium hydroxide. Humoral immune responses were assessed by ELISA at days 0, 28, 56, 112, 140, 252 and 365 and cell-mediated immune responses by lymphoproliferation assay and by ELISA on days 0, 56 and 140. IgG responses to four peptides of MSP3 were similar in both vaccine groups. Higher IgG concentrations were recorded after the beginning of malaria high transmission season in both vaccine groups. The lymphocyte proliferation and the production of IFN-γ in response to stimulation with the four overlapping peptides increased following vaccination in the MSP3-LSP vaccine group, but did not change appreciably in the control group. In contrast to natural infection, MSP3-LSP did not boost humoral responses to the four overlapping peptides of MSP3 to any detectable degree in our semi-immune adult. MSP3-LSP may be more immunogenic in young children with little or no acquired immunity.
Collapse
Affiliation(s)
- I Nebie
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso, West Africa.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Plasmodium falciparum merozoite surface protein 1 (MSP-1)-MSP-3 chimeric protein: immunogenicity determined with human-compatible adjuvants and induction of protective immune response. Infect Immun 2009; 78:872-83. [PMID: 19933832 DOI: 10.1128/iai.00427-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric gene, MSP-Fu(24), was constructed by genetically coupling immunodominant, conserved regions of the two leading malaria vaccine candidates, Plasmodium falciparum merozoite surface protein 1 (C-terminal 19-kDa region [PfMSP-1(19)]) and merozoite surface protein 3 (11-kDa conserved region [PfMSP-3(11)]). The recombinant MSP-Fu(24) protein was produced in Escherichia coli cells and purified to homogeneity by a two-step purification process with a yield of approximately 30 mg/liter. Analyses of conformational properties of MSP-Fu(24) using PfMSP-1(19)-specific monoclonal antibody showed that the conformational epitopes of PfMSP-1(19) that may be critical for the generation of the antiparasitic immune response remained intact in the fusion protein. Recombinant MSP-Fu(24) was highly immunogenic in mice and in rabbits when formulated with two different human-compatible adjuvants and induced an immune response against both PfMSP-1(19) and PfMSP-3(11). Purified anti-MSP-Fu(24) antibodies showed invasion inhibition of P. falciparum 3D7 and FCR parasites, and this effect was found to be dependent on antibodies specific for the PfMSP-1(19) component. The protective potential of MSP-Fu(24) was demonstrated by in vitro parasite growth inhibition using an antibody-dependent cell inhibition (ADCI) assay with anti-MSP-Fu(24) antibodies. Overall, the antiparasitic activity was mediated by a combination of growth-inhibitory antibodies generated by both the PfMSP-1(19) and PfMSP-3(11) components of the MSP-Fu(24) protein. The antiparasitic activities elicited by anti-MSP-Fu(24) antibodies were comparable to those elicited by antibodies generated with immunization with a physical mixture of two component antigens, PfMSP-1(19) and PfMSP-3(11). The fusion protein induces a protective immune response with human-compatible adjuvants and may form a part of a multicomponent malaria vaccine.
Collapse
|
23
|
Zanini GM, De Moura Carvalho LJ, Brahimi K, De Souza-Passos LF, Guimarães SJ, Da Silva Machado E, Bianco-Junior C, Riccio EKP, De Sousa MA, Alecrim MDGC, Leite N, Druilhe P, Daniel-Ribeiro CT. Sera of patients with systemic lupus erythematosus react with plasmodial antigens and can inhibit thein vitrogrowth ofPlasmodium falciparum. Autoimmunity 2009; 42:545-52. [DOI: 10.1080/08916930903039810] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Tsai CW, Duggan PF, Jin AJ, MacDonald NJ, Kotova S, Lebowitz J, Hurt DE, Shimp RL, Lambert L, Miller LH, Long CA, Saul A, Narum DL. Characterization of a protective Escherichia coli-expressed Plasmodium falciparum merozoite surface protein 3 indicates a non-linear, multi-domain structure. Mol Biochem Parasitol 2009; 164:45-56. [PMID: 19073223 PMCID: PMC3633458 DOI: 10.1016/j.molbiopara.2008.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 09/09/2008] [Accepted: 11/07/2008] [Indexed: 11/25/2022]
Abstract
Immunization with a recombinant yeast-expressed Plasmodium falciparum merozoite surface protein 3 (MSP3) protected Aotus nancymai monkeys against a virulent challenge infection. Unfortunately, the production process for this yeast-expressed material was not optimal for human trials. In an effort to produce a recombinant MSP3 protein in a scaleable manner, we expressed and purified near-full-length MSP3 in Escherichia coli (EcMSP3). Purified EcMSP3 formed non-globular dimers as determined by analytical size-exclusion HPLC with in-line multi-angle light scatter and quasi-elastic light scatter detection and velocity sedimentation (R(h) 7.6+/-0.2nm and 6.9nm, respectively). Evaluation by high-resolution atomic force microscopy revealed non-linear asymmetric structures, with beaded domains and flexible loops that were recognized predominantly as dimers, although monomers and larger multimers were observed. The beaded substructure corresponds to predicted structural domains, which explains the velocity sedimentation results and improves the conceptual model of the protein. Vaccination with EcMSP3 in Freund's adjuvant-induced antibodies that recognized native MSP3 in parasitized erythrocytes by an immunofluorescence assay and gave delayed time to treatment in a group of Aotus monkeys in a virulent challenge infection with the FVO strain of P. falciparum. Three of the seven monkeys vaccinated with EcMSP3 had low peak parasitemias. EcMSP3, which likely mimics the native MSP3 structure located on the merozoite surface, is a viable candidate for inclusion in a multi-component malaria vaccine.
Collapse
Affiliation(s)
- Chiawei W. Tsai
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Peter F. Duggan
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Albert J. Jin
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nicholas J. MacDonald
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Svetlana Kotova
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jacob Lebowitz
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| | - Darrell E. Hurt
- Bioinformatics and Scientific IT Program, Office of Technology Information Systems, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, United States
| | - Richard L. Shimp
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Lynn Lambert
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Louis H. Miller
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Carole A. Long
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - Allan Saul
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| | - David L. Narum
- Malaria Vaccine Development Branch, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD 20852, United States
| |
Collapse
|
25
|
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate Molecular Interactions of P. falciparum Merozoite Proteins Involved in Invasion of Red Blood Cells and Their Implications for Vaccine Design. Chem Rev 2008; 108:3656-705. [DOI: 10.1021/cr068407v] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Gladys Cifuentes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | - Claudia Reyes
- Fundación Instituto de Inmunología de Colombia, Carrera 50 No. 26-00, Bogotá, Colombia
| | | |
Collapse
|
26
|
Enevold A, Nkya WMMM, Theisen M, Vestergaard LS, Jensen AT, Staalsoe T, Theander TG, Bygbjerg IC, Alifrangis M. Potential impact of host immunity on malaria treatment outcome in Tanzanian children infected with Plasmodium falciparum. Malar J 2007; 6:153. [PMID: 18021388 PMCID: PMC2206045 DOI: 10.1186/1475-2875-6-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/16/2007] [Indexed: 11/25/2022] Open
Abstract
Background In malaria endemic areas children may recover from malaria after chemotherapy in spite of harbouring genotypically drug-resistant Plasmodium falciparum. This phenomenon suggests that there is a synergy between drug treatment and acquired immunity. This hypothesis was examined in an area of moderately intense transmission of P. falciparum in Tanzania during a drug trail with sulphadoxine-pyrimethamine (SP) or amodiaquine (AQ). Methods One hundred children with uncomplicated malaria were treated with either SP or AQ and followed for 28 days. Mutations in parasite genes related to SP and AQ-resistance as well as human sickle cell trait and alpha-thalassaemia were determined using PCR and sequence-specific oligonucleotide probes and enzyme-linked immunosorbent assay (SSOP-ELISA), and IgG antibody responses to a panel of P. falciparum antigens were assessed and related to treatment outcome. Results Parasitological or clinical treatment failure (TF) was observed in 68% and 38% of children receiving SP or AQ, respectively. In those with adequate clinical and parasitological response (ACPR) compared to children with TF, and for both treatment regimens, prevalence and levels of anti-Glutamate-rich Protein (GLURP)-specific IgG antibodies were significantly higher (P < 0.001), while prevalence of parasite haplotypes associated with SP and AQ resistance was lower (P = 0.02 and P = 0.07, respectively). Interestingly, anti-GLURP-IgG antibodies were more strongly associated with treatment outcome than parasite resistant haplotypes, while the IgG responses to none of the other 11 malaria antigens were not significantly associated with ACPR. Conclusion These findings suggest that GLURP-specific IgG antibodies in this setting contribute to clearance of drug-resistant infections and support the hypothesis that acquired immunity enhances the clinical efficacy of drug therapy. The results should be confirmed in larger scale with greater sample size and with variation in transmission intensity.
Collapse
Affiliation(s)
- Anders Enevold
- Centre for Medical Parasitology, Institute of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Giersing BK, Dubovsky F, Saul A, Denamur F, Minor P, Meade B. Potency assay design for adjuvanted recombinant proteins as malaria vaccines. Vaccine 2006; 24:4264-70. [PMID: 16767804 DOI: 10.1016/j.vaccine.2006.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many licensed vaccines are composed of live, attenuated or inactivated whole-cell microorganisms, or they comprise purified components from whole-cell extracts or culture supernatants. For some diseases, pathology is fairly well understood, and there may be known correlates of protection that provide obvious parameters for assessment of vaccine potency. However, this is not always the case, and some effective vaccines are routinely used even though the mechanisms or correlates of protection are unknown. Some more modern vaccine approaches employ purified recombinant proteins, based on molecules that appear on the surface of the pathogen. This is one of the strategies that has been adopted in the quest to develop a malaria vaccine. Use of these parasite antigens as vaccine candidates is supported by substantial epidemiological data, and some have demonstrated the ability to elicit protective responses in animal models of malaria infection. However, there is as yet no immunological correlate of protection and no functional assays or animal models that have demonstrated the ability to predict efficacy in humans. There is little precedence for the most appropriate and practical method for assessing potency of vaccines based on these recombinant molecules for malaria vaccines. This is likely because the majority of malaria vaccine candidates have only recently entered clinical evaluation. The PATH Malaria Vaccine Initiative (MVI) convened a panel with expertise in potency assay design from industry, governmental institutions, and regulatory bodies to discuss and review the rationale, available methods, and best approaches for assessing the potency of recombinant proteins, specifically for their use as malarial vaccines. The aim of this meeting was to produce a discussion document on the practical potency assessment of recombinant protein malaria vaccines, focusing on early phase potency assay development.
Collapse
|
28
|
Rosa DS, Iwai LK, Tzelepis F, Bargieri DY, Medeiros MA, Soares IS, Sidney J, Sette A, Kalil J, Mello LE, Cunha-Neto E, Rodrigues MM. Immunogenicity of a recombinant protein containing the Plasmodium vivax vaccine candidate MSP1(19) and two human CD4+ T-cell epitopes administered to non-human primates (Callithrix jacchus jacchus). Microbes Infect 2006; 8:2130-7. [PMID: 16797207 DOI: 10.1016/j.micinf.2006.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 03/29/2006] [Accepted: 03/30/2006] [Indexed: 10/24/2022]
Abstract
One of the most promising vaccine candidates against the erythrocytic forms of malaria is the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)). As part of our studies aimed at the development of a Plasmodium vivax malaria vaccine, we characterized the immunogenic properties of a new bacterial recombinant protein containing the P. vivax MSP1(19) and two helper T-cell epitopes, the synthetic universal pan allelic DR epitope (PADRE) and a new internal MSP1 P. vivax epitope (DYDVVYLKPLAGMYK). We found that the recognition of His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE was as good as the recognition of His6MSP1(19) indicating that the presence of the T-cell epitopes PADRE and DYDVVYLKPLAGMYK did not modify the MSP1(19) epitopes recognized by human IgG. The recombinant protein His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE proved to be highly immunogenic in marmosets (Callithrix jacchus jacchus) when administered in incomplete Freund's adjuvant. However, when administered in other adjuvant formulations such as Quil A, CpG ODN 2006 or MPL/TDM, antibody titers to MSP1(19) were significantly lower. Among these three adjuvants, Quil A proved to be the most efficient one generating antibody titers significantly higher than the others. These results indicated that under the circumstances evaluated, adjuvants were key for the immunogenicity of the recombinant protein His6MSP1(19)-DYDVVYLKPLAGMYK-PADRE.
Collapse
Affiliation(s)
- Daniela S Rosa
- CINTERGEN, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Botucatu 862, 6th floor, São Paulo, SP 04023-062, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Audran R, Cachat M, Lurati F, Soe S, Leroy O, Corradin G, Druilhe P, Spertini F. Phase I malaria vaccine trial with a long synthetic peptide derived from the merozoite surface protein 3 antigen. Infect Immun 2005; 73:8017-26. [PMID: 16299295 PMCID: PMC1307056 DOI: 10.1128/iai.73.12.8017-8026.2005] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 08/15/2004] [Accepted: 08/17/2005] [Indexed: 11/20/2022] Open
Abstract
The C-terminal conserved region of Plasmodium falciparum merozoite surface protein 3 (MSP3) is the trigger antigen of a protective immune response mediated by cytophilic antibodies. In an open, randomized, two-adjuvant (Montanide ISA 720, aluminum hydroxide) phase I clinical trial we evaluated the safety and immunogenicity of increasing doses of a long synthetic peptide construct spanning the conserved region of MSP3 targeted by biologically active antibodies (MSP3-LSP). Thirty-five healthy volunteers were randomized to receive three subcutaneous injections on days 0, 30, and 120. Of the 100 injections given, 10 caused severe local reactions, 62 caused transient mild to moderate local reactions, and 28 caused no reaction. On the basis of preestablished exclusion criteria, use of the Montanide formulation led to withdrawal of five volunteers after the second injection. This led to a reduction in the subsequent vaccine doses in four of the groups. No vaccine-related serious adverse events occurred throughout the trial. After the third injection, volunteers displayed a marked specific anti-MSP3-LSP antibody response (23/30 individuals, compared with 29/34 individuals for plasma from an area where malaria is endemic), an anti-native MSP3 antibody response (19/30 individuals), a T-cell-antigen-specific proliferative response (26/30 individuals), and gamma interferon production (25/30 individuals). In conclusion, the MSP3-LSP vaccine was immunogenic with both adjuvants, although it was unacceptably reactogenic when it was combined with Montanide. The potential usefulness of the candidate vaccine is supported by the induction of a strong cytophilic response (i.e., the type of anti-MSP3 antibodies involved in antibody-dependent, monocyte-mediated protective mechanisms in areas where malaria is endemic).
Collapse
Affiliation(s)
- Régine Audran
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, BH-19, Rue du Bugnon, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rodríguez LE, Curtidor H, Ocampo M, Garcia J, Puentes A, Valbuena J, Vera R, López R, Patarroyo ME. Identifying Plasmodium falciparum merozoite surface antigen 3 (MSP3) protein peptides that bind specifically to erythrocytes and inhibit merozoite invasion. Protein Sci 2005; 14:1778-86. [PMID: 15987906 PMCID: PMC2253348 DOI: 10.1110/ps.041304505] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Receptor-ligand interactions between synthetic peptides and normal human erythrocytes were studied to determine Plasmodium falciparum merozoite surface protein-3 (MSP-3) FC27 strain regions that specifically bind to membrane surface receptors on human erythrocytes. Three MSP-3 protein high activity binding peptides (HABPs) were identified; their binding to erythrocytes became saturable, had nanomolar affinity constants, and became sensitive on being treated with neuraminidase and trypsin but were resistant to chymotrypsin treatment. All of them specifically recognized 45-, 55-, and 72-kDa erythrocyte membrane proteins. They all presented alpha-helix structural elements. All HABPs inhibited in vitro P. falciparum merozoite invasion of erythrocytes by ~55%-85%, suggesting that MSP-3 protein's role in the invasion process probably functions by using mechanisms similar to those described for other MSP family antigens.
Collapse
Affiliation(s)
- Luis E Rodríguez
- Fundación Instituto de Immunologia de Colombia, and Universidad Nacional de Columbia.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Burgess BR, Schuck P, Garboczi DN. Dissection of merozoite surface protein 3, a representative of a family of Plasmodium falciparum surface proteins, reveals an oligomeric and highly elongated molecule. J Biol Chem 2005; 280:37236-45. [PMID: 16135515 DOI: 10.1074/jbc.m506753200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vaccination with the merozoite surface protein 3 (MSP3) of Plasmodium falciparum protects against infection in primates and is under development as a vaccine against malaria in humans. MSP3 is secreted and associates with the parasite membrane but lacks a predicted transmembrane domain or a glycosylphosphatidylinositol anchor. Its role in the invasion of red blood cells is unclear. To study MSP3, we produced recombinant full-length protein and found by size exclusion chromatography that the apparent size of MSP3 was much larger than predicted from its sequence. To investigate this, we used several biophysical techniques to characterize the full-length molecule and four smaller polypeptides. The MSP3 polypeptides contain a large amount of alpha-helix and random coil secondary structure as measured by circular dichroism spectroscopy. The full-length MSP3 forms highly elongated dimers and tetramers as revealed by chemical cross-linking and analytical ultracentrifugation. The dimer is formed through a leucine zipper-like domain located between residues 306 and 362 at the C terminus. Two dimers interact through their C termini to form a tetramer with an apparent association constant of 3 mum. Sedimentation velocity experiments determined that the MSP3 molecules are highly extended in solution (some with f/f(0) > 2). These data, in light of the recent discoveries of three other Plasmodium proteins containing very similar C-terminal sequences, suggest that the members of this newly identified family may adopt highly extended and oligomeric novel structures capable of interacting with a red blood cell at relatively long distances.
Collapse
Affiliation(s)
- Brandt R Burgess
- Structural Biology Section, Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | |
Collapse
|
32
|
Carvalho LJM, Alves FA, Bianco C, Oliveira SG, Zanini GM, Soe S, Druilhe P, Theisen M, Muniz JAPC, Daniel-Ribeiro CT. Immunization of Saimiri sciureus monkeys with a recombinant hybrid protein derived from the Plasmodium falciparum antigen glutamate-rich protein and merozoite surface protein 3 can induce partial protection with Freund and Montanide ISA720 adjuvants. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:242-8. [PMID: 15699417 PMCID: PMC549299 DOI: 10.1128/cdli.12.2.242-248.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immunogenicity and efficacy of a hybrid recombinant protein derived from the N-terminal end of the glutamate-rich protein (GLURP) and the C-terminal portion of the merozoite surface protein 3 (MSP3) of Plasmodium falciparum was evaluated in Saimiri sciureus monkeys. The GLURP/MSP3 hybrid protein, expressed in Lactococcus lactis, was administered in association with alum, Montanide ISA720, or complete or incomplete Freund adjuvant (CFA/IFA) in groups of five animals each. The three formulations were shown to be immunogenic, but the one with alum was shown to be weak compared to the other two, particularly CFA/IFA, which provided very high antibody titers (enzyme-linked immunosorbent assay titers of >3,000,000 and immunofluorescence antibody test titers of 6,400). After a challenge infection with P. falciparum FUP strain, all five monkeys from the GLURP/MSP3-alum group showed a rapid increase in parasitemia, reaching 10% and were treated early. The two monkeys with the highest antibody titers in group GLURP/MSP3-Montanide ISA720 had a delay in the course of parasitemia and were treated late due to a low hematocrit. In the GLURP/MSP3-CFA/IFA group, parasitemia remained below this threshold in four of the five animals and, after it reached a peak, parasitemia started to decrease and monkeys were treated late. When all animals were grouped according to the outcome, a statistically significant association between high antibody titers and partial protection was observed. The challenge infection boosted the antibody titers, and the importance of this event for vaccine efficacy in areas where this parasite is endemic is discussed. In conclusion, these data suggest that GLURP and MSP3 can induce protection against malaria infection if antibodies are induced at properly high titers.
Collapse
Affiliation(s)
- Leonardo J M Carvalho
- Laboratory of Malaria Research, Department of Immunology, Instituto Oswaldo Cruz/Fiocruz, Pavilhão Leonidas Deane, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ-Brazil 21045-900.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pearce JA, Hodder AN, Anders RF. The alanine-rich heptad repeats are intact in the processed form of Plasmodium falciparum MSP3. Exp Parasitol 2005; 108:186-9. [PMID: 15582517 DOI: 10.1016/j.exppara.2004.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Revised: 07/23/2004] [Accepted: 07/26/2004] [Indexed: 11/23/2022]
Abstract
The potential of Plasmodium falciparum merozoite surface protein 3 as a component of an asexual-stage malaria vaccine is currently being assessed. The precursor form of MSP3 undergoes cleavage during schizogony to generate a mature processed form. It is unknown if this cleavage event is necessary for MSP3 function, but it may be an important consideration for assessing and developing MSP3 as an asexual-stage vaccine candidate. We have therefore determined the cleavage site in MSP3 by sequencing the N-terminus of the processed form of MSP3, which was isolated from parasite material. The position of the cleavage site indicates that the processed form of MSP3 retains the three blocks of alanine-rich heptad repeats, which are predicted to provide the structural framework for an intramolecular coiled-coil. The cleavage-site motif has many features in common with the published cleavage sites of MSP1(30), MSP6(36), and MSP7(22), which are all located on the merozoite surface and are implicated in the erythrocyte invasion process. The common cellular location and similar cleavage-site motifs suggest that these merozoite proteins may be cleaved by the same or related proteases.
Collapse
Affiliation(s)
- J Andrew Pearce
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Vic. 3050, Australia
| | | | | |
Collapse
|
34
|
Martinelli A, Cheesman S, Hunt P, Culleton R, Raza A, Mackinnon M, Carter R. A genetic approach to the de novo identification of targets of strain-specific immunity in malaria parasites. Proc Natl Acad Sci U S A 2005; 102:814-9. [PMID: 15640359 PMCID: PMC545519 DOI: 10.1073/pnas.0405097102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Indexed: 11/18/2022] Open
Abstract
Vaccine research in malaria has a high priority. However, identification of specific antigens as candidates for vaccines against asexual blood stages of malaria parasites has been based on largely circumstantial evidence. We describe here how genes encoding target antigens of strain-specific immunity in malaria can be directly located in the parasite's genome without prior information concerning their identity, by the method we call linkage group selection. Two genetically distinct clones of the rodent malaria parasite Plasmodium chabaudi chabaudi, each of which induces an immunity in laboratory mice that is more protective against challenge with itself than with the heterologous strain, were genetically crossed, and the uncloned cross progeny selected in mice that had been made partially immune by infection and drug cure with one or the other parental strain. Proportions of parental alleles in the selected and unselected cross progeny were compared by using quantitative genome-wide molecular markers. A small number, including groups of linked markers forming so-called selection valleys, were markedly reduced under strain-specific immune pressure. A very prominent selection valley was found to contain the gene for merozoite surface protein-1, a major candidate antigen for malaria vaccine development, at the locus at which the strongest reduction under strain-specific immune selection was detected. Closely linked to the merozoite surface protein-1 gene was a gene containing the signature motif of the ring-infected erythrocyte surface antigen family. Another affected locus, unlinked to this selection valley, contained a member of the serine repeat antigen gene family.
Collapse
Affiliation(s)
- Axel Martinelli
- Institute of Immunology and Infection Research, Ashworth Laboratories, King's Buildings, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|