1
|
Zeng J, Pan Y, Chaker SC, Torres-Guzman R, Lineaweaver WC, Qi F. Neural and Inflammatory Interactions in Wound Healing. Ann Plast Surg 2024; 93:S91-S97. [PMID: 39101856 DOI: 10.1097/sap.0000000000003933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
ABSTRACT The skin is an intricate network of both neurons and immunocytes, where emerging evidence has indicated that the regulation of neural-inflammatory processes may play a crucial role in mediating wound healing. Disease associated abnormal immunological dysfunction and peripheral neuropathy are implicated in the pathogenesis of wound healing impairment. However, the mechanisms through which neural-inflammatory interactions modulate wound healing remain ambiguous. Understanding the underlying mechanisms may provide novel insights to develop therapeutic devices, which could manipulate neural-inflammatory crosstalk to aid wound healing. This review aims to comprehensively illustrate the neural-inflammatory interactions during different stages of the repair process. Numerous mediators including neuropeptides secreted by the sensory and autonomic nerve fibers and cytokines produced by immunocytes play an essential part during the distinct phases of wound healing.
Collapse
Affiliation(s)
- Junhao Zeng
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Pan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ricardo Torres-Guzman
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Zhang Z, Yang L, Li Y, Sun D, Chen R, Dou S, Liu T, Zhang S, Zhou Q, Xie L. Interference of sympathetic overactivation restores limbal stem/progenitor cells function and accelerates corneal epithelial wound healing in diabetic mice. Biomed Pharmacother 2023; 161:114523. [PMID: 36931034 DOI: 10.1016/j.biopha.2023.114523] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Diabetic keratopathy (DK), the diabetic complication in the cornea, is characterized by the delayed epithelial regeneration and sensory nerve degeneration. The involvement of limbal stem/progenitor cells (LSPCs) dysfunction has been reported, however the pathogenic mechanisms remain unclear. Here, we confirmed the dysfunction of LSPCs in diabetic mouse and human corneas. The sympathetic nerve in the cornea was adjacent to LSPCs, and the sympathetic overactivation was found in diabetic mice. Surgical and pharmacological ablation of sympathetic nerves rescued the LSPCs function and promoted corneal epithelial regeneration in diabetic mice. In contrast, both topical norepinephrine (NE) application and chemogenetic sympathetic overactivation directly impaired the stemness and proliferation characteristics of LSPCs, as well as the normal epithelial regeneration. Moreover, we identified that β2-adrenoceptor (Adrb2) was the predominant adrenergic receptor expressed in LSPCs by corneal limbal single-cell sequencing and real time PCR (RT-PCR) analysis of sorted LSPCs. The Adrb2 knockout mice exhibited the enhancement of epithelial regeneration and LSPCs function, compared with the wild-type mice. Similarly, topical application of the Adrb2 specific antagonist ICI 118, 551 effectively accelerated diabetic corneal epithelial regeneration with the restored LSPCs function. Mechanistically, sonic hedgehog (Shh) activity mediated the downstream effects of NE-Adrb2 signaling pathway in regulating LSPCs and epithelial regeneration. Taken together, our data revealed the involvement of sympathetic overactivation in the impairment of diabetic LSPCs function and corneal epithelial regeneration through the NE-Adrb2-Shh signaling pathway. The interference of sympathetic overactivation may provide novel treatment strategies for diabetic keratopathy.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Di Sun
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Rong Chen
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Ting Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Sai Zhang
- School of Ophthalmology, Shandong First Medical University, Jinan, China
| | - Qingjun Zhou
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| | - Lixin Xie
- Medical College of Qingdao University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China; School of Ophthalmology, Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Sympathetic System in Wound Healing: Multistage Control in Normal and Diabetic Skin. Int J Mol Sci 2023; 24:ijms24032045. [PMID: 36768369 PMCID: PMC9916402 DOI: 10.3390/ijms24032045] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
In this review, we discuss sympathetic regulation in normal and diabetic wound healing. Experimental denervation studies have confirmed that sympathetic nerve endings in skin have an important and complex role in wound healing. Vasoconstrictor neurons secrete norepinephrine (NE) and neuropeptide Y (NPY). Both mediators decrease blood flow and interact with inflammatory cells and keratinocytes. NE acts in an ambiguous way depending on receptor type. Beta2-adrenoceptors could be activated near sympathetic endings; they suppress inflammation and re-epithelialization. Alpha1- and alpha2-adrenoceptors induce inflammation and activate keratinocytes. Sudomotor neurons secrete acetylcholine (ACh) and vasoactive intestinal peptide (VIP). Both induce vasodilatation, angiogenesis, inflammation, keratinocytes proliferation and migration. In healthy skin, all effects are important for successful healing. In treatment of diabetic ulcers, mediator balance could be shifted in different ways. Beta2-adrenoceptors blockade and nicotinic ACh receptors activation are the most promising directions in treatment of diabetic ulcers with neuropathy, but they require further research.
Collapse
|
4
|
Cutaneous innervation in impaired diabetic wound healing. Transl Res 2021; 236:87-108. [PMID: 34029747 PMCID: PMC8380642 DOI: 10.1016/j.trsl.2021.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes is associated with several potential comorbidities, among them impaired wound healing, chronic ulcerations, and the requirement for lower extremity amputation. Disease-associated abnormal cellular responses, infection, immunological and microvascular dysfunction, and peripheral neuropathy are implicated in the pathogenesis of the wound healing impairment and the diabetic foot ulcer. The skin houses a dense network of sensory nerve afferents and nerve-derived modulators, which communicate with epidermal keratinocytes and dermal fibroblasts bidirectionally to effect normal wound healing after trauma. However, the mechanisms through which cutaneous innervation modulates wound healing are poorly understood, especially in humans. Better understanding of these mechanisms may provide the basis for targeted treatments for chronic diabetic wounds. This review provides an overview of wound healing pathophysiology with a focus on neural involvement in normal and diabetic wound healing, as well as future therapeutic perspectives to address the unmet needs of diabetic patients with chronic wounds.
Collapse
|
5
|
Ge S, Khachemoune A. The Importance of Cutaneous Innervation in Wound Healing: From Animal Studies to Clinical Applications. INT J LOW EXTR WOUND 2021:15347346211045022. [PMID: 34533075 DOI: 10.1177/15347346211045022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The skin is a neuroimmunoendocrine organ that regularly undergoes injury and repair. The complex process of wound healing relies heavily on the cutaneous nervous system. Despite the observation that wound healing deficiencies cause significant morbidity and mortality for patients with nervous dysfunction across many disciplinaries, the role of cutaneous innervation in wound repair has not been well elucidated. In a previous article, we learned the basics of cutaneous neuroanatomy and the important neuropeptides involved in the wound healing process. Currently, we aim to synthesize the basics with observations from animal models and human studies for a more comprehensive understanding of nervous system involvement in cutaneous wound healing. We have demonstrated in this review, the importance of the cutaneous nervous system in each phase of wound healing through basic science research, animal experiments, and human studies.
Collapse
Affiliation(s)
| | - Amor Khachemoune
- Veterans Affairs Medical Center, Brooklyn, NY, USA.,SUNY Downstate, Brooklyn, NY, USA
| |
Collapse
|
6
|
Xu X, Cai X, Liu X, Guo SW. Possible involvement of neuropeptide and neurotransmitter receptors in Adenomyosis. Reprod Biol Endocrinol 2021; 19:25. [PMID: 33602248 PMCID: PMC7893711 DOI: 10.1186/s12958-021-00711-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/11/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Accumulating data indicate that sensory nerve derived neuropeptides such as substance P and calcitonin gene related-protein (CGRP) can accelerate the progression of endometriosis via their respective receptors, so can agonists to their respective receptors receptor 1 (NK1R), receptor activity modifying protein 1 (RAMP-1) and calcitonin receptor-like receptor (CRLR). Adrenergic β2 receptor (ADRB2) agonists also can facilitate lesional progression. In contrast, women with endometriosis appear to have depressed vagal activity, concordant with reduced expression of α7 nicotinic acetylcholine receptor (α7nAChR). The roles of these receptors in adenomyosis are completely unknown. METHODS Adenomyotic tissue samples from 30 women with adenomyosis and control endometrial tissue samples from 24 women without adenomyosis were collected and subjected to immunohistochemistry analysis of RAMP1, CRLR, NK1R, ADRB2 and α7nAChR, along with their demographic and clinical information. The extent of tissue fibrosis was evaluated by Masson trichrome staining. RESULTS We found that the staining levels of NK1R, CRLR, RAMP1 and ADRB2 were all significantly elevated in adenomyotic lesions as compared with control endometrium. In contrast, α7nAChR staining levels were significantly reduced. The severity of dysmenorrhea correlated positively with lesional ADRB2 staining levels. CONCLUSIONS Our results suggest that SP, CGRP and noradrenaline may promote, while acetylcholine may stall, the progression of adenomyosis through their respective receptors on adenomyotic lesions. Additionally, through the activation of the hypothalamic-pituitary-adrenal (HPA)-sympatho-adrenal-medullary (SAM) axes and the lesional overexpression of ADRB2, adenomyosis-associated dysmenorrhea and adenomyotic lesions may be mutually promotional, forming a viscous feed-forward cycle.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Obstetrics and Gynecology, Ningbo No. 7 Hospital, Ningbo, Zhejiang, 315200, China
| | - Xianjun Cai
- Department of Obstetrics and Gynecology, Ningbo No. 7 Hospital, Ningbo, Zhejiang, 315200, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Reduced vagal tone in women with endometriosis and auricular vagus nerve stimulation as a potential therapeutic approach. Sci Rep 2021; 11:1345. [PMID: 33446725 PMCID: PMC7809474 DOI: 10.1038/s41598-020-79750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Sensory and sympathetic nerves have been shown to promote the progression of endometriosis through the release of neuromediators and the lesional activation of respective receptors. The role of vagus nerves (VN) in lesional progression, however, is completely unclear, despite the signs suggestive of increased sympathetic tone in women with endometriosis. This study was undertaken to investigate whether VN plays any role in the progression of endometriosis. We recruited 45 patients with endometriosis and 42 healthy women, who were given electrocardiogram test and their heart rate variability was evaluated. In addition, three prospective, and randomized mouse experiments were conducted that evaluated, respectively, the effect of vagotomy, the effect of VN stimulation (VNS), and the therapeutic potential of VNS after the endometriosis was well established. All lesions were excised, weighed, and processed for immunohistochemistry and histochemistry analysis of select markers for lesional progression and fibrosis. We found that endometriosis patients exhibited reduced vagal activity as compared with controls, indicative of disrupted autonomic balance. Vagotomy increased while VNS decreased the lesion weight as compared with control mice, concomitant with more progressive and retarded lesion development and fibrogenesis, respectively. In addition, VNS demonstrated promising therapeutic effect, as evidenced by significantly reduced lesion weight, more attenuated lesional progression concomitant with improved hyperalgesia. Taken together, our data indicate that VN activity may play a dampening role in the progression of endometriosis. Consequently, boosting the VN activity may have therapeutic potentials for patients with endometriosis.
Collapse
|
8
|
The Cutaneous Wound Innate Immunological Microenvironment. Int J Mol Sci 2020; 21:ijms21228748. [PMID: 33228152 PMCID: PMC7699544 DOI: 10.3390/ijms21228748] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
The skin represents the first line of defense and innate immune protection against pathogens. Skin normally provides a physical barrier to prevent infection by pathogens; however, wounds, microinjuries, and minor barrier impediments can present open avenues for invasion through the skin. Accordingly, wound repair and protection from invading pathogens are essential processes in successful skin barrier regeneration. To repair and protect wounds, skin promotes the development of a specific and complex immunological microenvironment within and surrounding the disrupted tissue. This immune microenvironment includes both innate and adaptive processes, including immune cell recruitment to the wound and secretion of extracellular factors that can act directly to promote wound closure and wound antimicrobial defense. Recent work has shown that this immune microenvironment also varies according to the specific context of the wound: the microbiome, neuroimmune signaling, environmental effects, and age play roles in altering the innate immune response to wounding. This review will focus on the role of these factors in shaping the cutaneous microenvironment and how this ultimately impacts the immune response to wounding.
Collapse
|
9
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
The mouse autonomic nervous system modulates inflammation and epithelial renewal after corneal abrasion through the activation of distinct local macrophages. Mucosal Immunol 2018; 11:1496-1511. [PMID: 29988115 DOI: 10.1038/s41385-018-0031-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 02/04/2023]
Abstract
Inflammation and reepithelialization after corneal abrasion are critical for the rapid restoration of vision and the prevention of microbial infections. However, the endogenous regulatory mechanisms are not completely understood. Here we report that the manipulation of autonomic nervous system (ANS) regulates the inflammation and healing processes. The activation of sympathetic nerves inhibited reepithelialization after corneal abrasion but increased the influx of neutrophils and the release of inflammatory cytokines. Conversely, the activation of parasympathetic nerves promoted reepithelialization and inhibited the influx of neutrophils and the release of inflammatory cytokines. Furthermore, we observed that CD64+CCR2+ macrophages in the cornea preferentially expressed the β-2 adrenergic receptor (AR), whereas CD64+CCR2- macrophages preferentially expressed the α-7 nicotinic acetylcholine receptor (α7nAChR). After abrasion, the topical administration of a β2AR agonist further enhanced the expression of the proinflammatory genes in the CD64+CCR2+ cell subset sorted from injured corneas. In contrast, the topical administration of an α7nAChR agonist further enhanced the expression of the anti-inflammatory genes in the CD64+CCR2- subset. Thus crosstalk between the ANS and local macrophage populations is necessary for the progress of corneal wound repair. Manipulation of ANS inputs to the wounded cornea may represent an alternative approach to the treatment of impaired wound healing.
Collapse
|
11
|
Girard D, Laverdet B, Buhé V, Trouillas M, Ghazi K, Alexaline MM, Egles C, Misery L, Coulomb B, Lataillade JJ, Berthod F, Desmoulière A. Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:59-82. [DOI: 10.1089/ten.teb.2016.0195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothée Girard
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Betty Laverdet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Virginie Buhé
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Marina Trouillas
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Kamélia Ghazi
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Maïa M. Alexaline
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Christophe Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Laurent Misery
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Bernard Coulomb
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Jean-Jacques Lataillade
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
12
|
Ai XY, Liu HJ, Lu C, Liang CL, Sun Y, Chen S, Sun B, Li Y, Liu YR, Zhang Q, Liu XQ, Xiao T, Jing XS, Sun T, Zhou HG, Yang C. Phenytoin silver: a new nanocompound for promoting dermal wound healing via comprehensive pharmacological action. Am J Cancer Res 2017; 7:425-435. [PMID: 28255340 PMCID: PMC5327358 DOI: 10.7150/thno.17073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 11/18/2022] Open
Abstract
Phenytoin, an antiepileptic drug, has been widely used for wound healing. Inspired by previous studies, phenytoin silver (PnAg), a sparingly soluble silver nanocompound, was synthesized which exhibited good therapeutic efficacy in tissue repair with low toxicity (LD50 >5 g/kg). In vivo studies showed that PnAg could accelerate dermal wound healing and strong inflammation control in Sprague-Dawley rats (SD rat) and Bama minipigs. Due to its low solubility, PnAg led to low toxicity and blood enrichment in animals. Furthermore, PnAg could upregulate the promoter activity of Jak, Stat3, and Stat3 downstream proteins. Therefore, PnAg may serve as an effective therapeutic compound for wound healing through regulating the gp130/Jak/Stat3 signaling pathway.
Collapse
|
13
|
Zheng Z, Wan Y, Liu Y, Yang Y, Tang J, Huang W, Cheng B. Sympathetic Denervation Accelerates Wound Contraction but Inhibits Reepithelialization and Pericyte Proliferation in Diabetic Mice. J Diabetes Res 2017; 2017:7614685. [PMID: 29147666 PMCID: PMC5632918 DOI: 10.1155/2017/7614685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/28/2017] [Indexed: 01/13/2023] Open
Abstract
Previous studies focused on the effects of sympathetic denervation with 6-hydroxydopamine (6-OHDA) on nondiabetic wounds, but the effects of 6-OHDA on diabetic wounds have not been previously reported. In this study, treated mice received intraperitoneal 6-OHDA, and control mice received intraperitoneal injections of normal saline. Full-thickness wounds were established on the backs of mice. The wounds were sectioned (four mice per group) for analysis at 2, 5, 7, 10, 14, 17, and 21 days after injury. The wound areas in the control group were larger than those in the treatment group. Histological scores for epidermal and dermal regeneration were reduced in the 6-OHDA-treated group on day 21. The mast cells (MCs) in each field decreased after sympathectomy on days 17 and 21. The expression levels of norepinephrine, epidermal growth factor (EGF), interleukin-1 beta, NG2 proteoglycan, and desmin in the treatment group were less than those in the control group. In conclusion, 6-OHDA delays reepithelialization during wound healing in diabetic mice by decreasing EGF, but increases wound contraction by reducing IL-1β levels and the number of MCs. Besides, 6-OHDA led to reduced pericyte proliferation in diabetic wounds, which might explain the vascular dysfunction after sympathetic nerve loss in diabetic wounds.
Collapse
Affiliation(s)
- Zhifang Zheng
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Yu Wan
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Yishu Liu
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- The Graduate School of Third Military Medical University, Chongqing, China
| | - Yu Yang
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jianbing Tang
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Wenhua Huang
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
| | - Biao Cheng
- The Graduate School of Southern Medical University, Guangzhou, China
- Department of Plastic Surgery, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- Department of Anatomy, School of Basic Medicine Sciences, Southern Medical University, Guangzhou, China
- The Graduate School of Third Military Medical University, Chongqing, China
- Center of Wound Treatment, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, China
- The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, Guangzhou, China
| |
Collapse
|
14
|
Darby IA, Zakuan N, Billet F, Desmoulière A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 2016; 73:1145-57. [PMID: 26681260 PMCID: PMC11108523 DOI: 10.1007/s00018-015-2110-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Myofibroblasts are characterized by their expression of α-smooth muscle actin, their enhanced contractility when compared to normal fibroblasts and their increased synthetic activity of extracellular matrix proteins. Myofibroblasts play an important role in normal tissue repair processes, particularly in the skin where they were first described. During normal tissue repair, they appear transiently and are then lost via apoptosis. However, the chronic presence and continued activity of myofibroblasts characterize many fibrotic pathologies, in the skin and internal organs including the liver, kidney and lung. More recently, it has become clear that myofibroblasts also play a role in many types of cancer as stromal or cancer-associated myofibroblast. The fact that myofibroblasts are now known to be key players in many pathologies makes understanding their functions, origin and the regulation of their differentiation important to enable them to be regulated in normal physiology and targeted in fibrosis, scarring and cancer.
Collapse
Affiliation(s)
- Ian A Darby
- School of Medical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia.
| | - Noraina Zakuan
- School of Medical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Fabrice Billet
- Department of Physiology, Faculty of Pharmacy, University of Limoges, 2 rue du Dr. Marcland, 87025, Limoges Cedex, France
- EA 6309 Myelin Maintenance and Peripheral Neuropathies, University of Limoges, 87000, Limoges, France
| | - Alexis Desmoulière
- Department of Physiology, Faculty of Pharmacy, University of Limoges, 2 rue du Dr. Marcland, 87025, Limoges Cedex, France.
- EA 6309 Myelin Maintenance and Peripheral Neuropathies, University of Limoges, 87000, Limoges, France.
| |
Collapse
|
15
|
Freitas JOGD, Quieregatto PR, Hochman B, Lapin GAF, Mella SMB, Maximino JR, Chadi G, Ferreira LM. Does dexamethasone act in neuropeptides SP and CGRP in neurogenic inflammation of the skin? An experimental study. Acta Cir Bras 2015; 30:523-8. [PMID: 26352331 DOI: 10.1590/s0102-865020150080000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE To investigate the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) after subcutaneous injection of dexamethasone prior to skin incision in rats. METHODS Twenty seven Wistar-EPM-1 rats were randomly divided into three groups. The sham group (SG) of rats was injected with 0.9 % saline. The second group (Dexa) was injected with 1.0 mg/kg dexamethasone, and the third group (Dexa+) was injected with 10.0 mg/kg dexamethasone. In all groups, the three subcutaneous injections were performed 30 minutes prior to the surgical skin incision and tissue collection. SP and CGRP (15 kDa pro-CGRP and 5 kDa CGRP) were quantified by Western Blotting. RESULTS No statistically significant differences (p>0.05) were found in pro-CGRP, CGRP and SP values in all three groups. CONCLUSION The anti-inflammatory effect of dexamethasone did not occur when the substance P and calcitonin gene-related peptide levels were altered during the neurogenic inflammation process of skin wound healing in rats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gerson Chadi
- Neuroregeneration Center, School of Medicine, USP, São Paulo, SP, BR
| | | |
Collapse
|
16
|
Mesquita CJGD, Guimarães SB, Leite Filho JAD, Maciel FS, Rocha JLDC, Leite JAD. Effect of propranolol on capsular reaction around silicone implants in guinea pigs. Acta Cir Bras 2015; 30:24-33. [PMID: 25627268 DOI: 10.1590/s0102-86502015001000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/18/2014] [Indexed: 03/20/2023] Open
Abstract
PURPOSE To evaluate the effect of propranolol on capsular architecture around silicone implants by measuring the inflammation, capsular thickness, and collagen fiber density, using a guinea pig experimental model. METHODS Thirty six adult male guinea pigs randomly divided into two groups (n=18) were used. Each one received a silicone implant with textured-surface. The capsular tissue around implants from untreated or treated animals with the beta-adrenoceptor antagonist propranolol (10 mg/kg, dissolved in daily water) were analyzed for inflammation by histological scoring, capsular thickness by computerized histometry, and collagen fibers type I and Type III density by picrosirius polarization at different time points (7, 14 or 21 days after silicone implantation). RESULTS Propranolol treatment reduced inflammation and impaired capsular thickness and delayed collagen maturation around the textured implant. CONCLUSION Propranolol reduces the risk of developing capsular contracture around silicone implants with textured surface.
Collapse
|
17
|
Lee A, Derricks K, Minns M, Ji S, Chi C, Nugent MA, Trinkaus-Randall V. Hypoxia-induced changes in Ca(2+) mobilization and protein phosphorylation implicated in impaired wound healing. Am J Physiol Cell Physiol 2014; 306:C972-85. [PMID: 24671101 DOI: 10.1152/ajpcell.00110.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The process of wound healing must be tightly regulated to achieve successful restoration of injured tissue. Previously, we demonstrated that when corneal epithelium is injured, nucleotides and neuronal factors are released to the extracellular milieu, generating a Ca(2+) wave from the origin of the wound to neighboring cells. In the present study we sought to determine how the communication between epithelial cells in the presence or absence of neuronal wound media is affected by hypoxia. A signal-sorting algorithm was developed to determine the dynamics of Ca(2+) signaling between neuronal and epithelial cells. The cross talk between activated corneal epithelial cells in response to neuronal wound media demonstrated that injury-induced Ca(2+) dynamic patterns were altered in response to decreased O2 levels. These alterations were associated with an overall decrease in ATP and changes in purinergic receptor-mediated Ca(2+) mobilization and localization of N-methyl-d-aspartate receptors. In addition, we used the cornea in an organ culture wound model to examine how hypoxia impedes reepithelialization after injury. There was a change in the recruitment of paxillin to the cell membrane and deposition of fibronectin along the basal lamina, both factors in cell migration. Our results provide evidence that complex Ca(2+)-mediated signaling occurs between sensory neurons and epithelial cells after injury and is critical to wound healing. Information revealed by these studies will contribute to an enhanced understanding of wound repair under compromised conditions and provide insight into ways to effectively stimulate proper epithelial repair.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Kelsey Derricks
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Martin Minns
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and
| | - Sophina Ji
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Cheryl Chi
- Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Matthew A Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| | - Vickery Trinkaus-Randall
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts; and Department of Ophthalmology, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
18
|
Raut SB, Nerlekar SR, Pawar S, Patil AN. An evaluation of the effects of nonselective and cardioselective β-blockers on wound healing in Sprague Dawley rats. Indian J Pharmacol 2013; 44:629-33. [PMID: 23112427 PMCID: PMC3480798 DOI: 10.4103/0253-7613.100399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/31/2012] [Accepted: 07/01/2012] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES To investigate the effect of a nonselective β-blocker (propranolol) and cardioselective β-blocker (metoprolol) on wound healing in rats using incision and excision wound models and to compare the effect of these drugs on wound healing. MATERIALS AND METHODS Propranolol and metoprolol were given orally. Sprague Dawley rats of either sex were used. Incision and excision wound models were used to evaluate the wound-healing activity. Effects of metoprolol and propranolol on tensile strength, period of epithelialization, and hydroxyproline content were observed. Histological analysis was done to see collagen deposition and inflammatory infiltrate. STATISTICAL ANALYSIS USED The data was subjected to analysis of variance (ANOVA) followed by Scheffe's test. P < 0.05 was considered to be statistically significant. Statistical analysis was done using SPSS software version 15.0. RESULTS Administration of propranolol or metoprolol was shown to decrease tensile strength, delay wound contraction and re-epithelialization, increase inflammatory infiltrate, and reduce collagen density and hydroxyproline levels. CONCLUSIONS The results suggest that nonselective and cardioselective β-blockers delay wound healing and these effects are mediated by β1-receptors.
Collapse
Affiliation(s)
- Sanket B Raut
- Department of Pharmacology, L.T.M. Medical College and General Hospital, Sion, Mumbai, India
| | | | | | | |
Collapse
|
19
|
Robles TF, Kane HS. The Attachment System and Physiology in Adulthood: Normative Processes, Individual Differences, and Implications for Health. J Pers 2013; 82:515-27. [DOI: 10.1111/jopy.12052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Micallef L, Vedrenne N, Billet F, Coulomb B, Darby IA, Desmoulière A. The myofibroblast, multiple origins for major roles in normal and pathological tissue repair. FIBROGENESIS & TISSUE REPAIR 2012; 5:S5. [PMID: 23259712 PMCID: PMC3368789 DOI: 10.1186/1755-1536-5-s1-s5] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Myofibroblasts differentiate, invade and repair injured tissues by secreting and organizing the extracellular matrix and by developing contractile forces. When tissues are damaged, tissue homeostasis must be re-established, and repair mechanisms have to rapidly provide harmonious mechanical tissue organization, a process essentially supported by (myo)fibroblasts. Under physiological conditions, the secretory and contractile activities of myofibroblasts are terminated when the repair is complete (scar formation) but the functionality of the tissue is only rarely perfectly restored. At the end of the normal repair process, myofibroblasts disappear by apoptosis but in pathological situations, myofibroblasts likely remain leading to excessive scarring. Myofibroblasts originate from different precursor cells, the major contribution being from local recruitment of connective tissue fibroblasts. However, local mesenchymal stem cells, bone marrow-derived mesenchymal stem cells and cells derived from an epithelial-mesenchymal transition process, may represent alternative sources of myofibroblasts when local fibroblasts are not able to satisfy the requirement for these cells during repair. These diverse cell types probably contribute to the appearance of myofibroblast subpopulations which show specific biological properties and which are important to understand in order to develop new therapeutic strategies for treatment of fibrotic and scarring diseases.
Collapse
Affiliation(s)
- Ludovic Micallef
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| | - Nicolas Vedrenne
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| | - Fabrice Billet
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| | - Bernard Coulomb
- Inserm U970, Réparation Artérielle, PARCC-HEGP, Université Paris Descartes, Paris, F-75015, France
| | - Ian A Darby
- Cancer and Tissue Repair Laboratory, School of Medical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Alexis Desmoulière
- Facultés de Médecine et de Pharmacie, Université de Limoges, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", FR 3503, Limoges F-87025, France
| |
Collapse
|
21
|
Robles TF, Brooks KP, Kane HS, Schetter CD. Attachment, skin deep? Relationships between adult attachment and skin barrier recovery. Int J Psychophysiol 2012; 88:241-52. [PMID: 22546664 DOI: 10.1016/j.ijpsycho.2012.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/02/2012] [Accepted: 04/18/2012] [Indexed: 01/31/2023]
Abstract
This study examined the relationship between individual differences in adult attachment and skin barrier recovery. Dating couples (N = 34) completed a self-report measure of attachment anxiety and avoidance, and during two separate laboratory visits, normal skin barrier function was disrupted using a tape-stripping procedure, followed by a 20 min discussion of personal concerns in one visit and relationship problems in the other, counterbalanced randomly across visits. Skin barrier recovery was assessed by measuring transepidermal water loss up to 2 h after skin disruption. Multilevel modeling showed that skin barrier recovery did not differ between the personal concern or relationship problem discussions. Among women, greater attachment anxiety predicted faster skin barrier recovery across the two visits, while greater attachment avoidance predicted slower skin barrier recovery. Among men, greater attachment anxiety predicted slower skin barrier recovery during the personal concern discussion only. The observed effects remained significant after controlling for transepidermal water loss in undisturbed skin, suggesting that the relationship between attachment security and skin barrier recovery was not due to other skin-related factors like sweating. Cortisol changes, self-reported emotions, stress appraisals, and supportiveness ratings were tested as potential mediators, and none explained the relationships between attachment and skin barrier recovery. These findings are the first to demonstrate associations between individual differences in attachment style and restorative biological processes in the skin, even in a sample of young dating couples in satisfied relationships.
Collapse
Affiliation(s)
- Theodore F Robles
- Department of Psychology, University of California, Los Angeles, CA 90095-1563, USA.
| | | | | | | |
Collapse
|
22
|
Backman LJ, Andersson G, Fong G, Alfredson H, Scott A, Danielson P. Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity: Comparison between two model systems. Scand J Med Sci Sports 2012; 23:687-96. [PMID: 22292987 PMCID: PMC3933766 DOI: 10.1111/j.1600-0838.2011.01442.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2011] [Indexed: 11/29/2022]
Abstract
The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α2A AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α2A AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α2A AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.
Collapse
Affiliation(s)
- L J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
23
|
Buckley G, Wong J, Metcalfe AD, Ferguson MWJ. Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds. J Anat 2011; 220:3-12. [PMID: 22066944 DOI: 10.1111/j.1469-7580.2011.01452.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The MRL/MpJ mouse displays the rare ability amongst mammals to heal injured ear tissue without scarring. Numerous studies have shown that the formation of a blastema-like structure leads to subsequent tissue regeneration in this model, indicating many parallels with amphibian limb regeneration and mammalian embryogenesis. We have recently shown that the MRL/MpJ mouse also possesses an enhanced capacity for peripheral nerve regeneration within the ear wound. Indeed, nerves are vital for the initial phase of blastema formation in the amphibian limb. In this study we investigated the capacity for wound regeneration in a denervated ear. The left ears of MRL/MpJ mice and C57BL/6 (a control strain known to have a poorer regenerative capacity) were surgically denervated at the base via an incision and nerve transection, immediately followed by a 2-mm ear punch wound. Immunohistochemical analysis showed a lack of neurofilament expression in the denervated ear wound. Histology revealed that denervation prevented blastema formation and chrondrogenesis, and also severely hindered normal healing, with disrupted re-epithelialisation, increasing wound size and progressive necrosis towards the ear tip. Denervation of the ear obliterated the regenerative capacity of the MRL/MpJ mouse, and also had a severe negative effect on the ear wound repair mechanisms of the C57BL/6 strain. These data suggest that innervation may be important not only for regeneration but also for normal wound repair processes.
Collapse
Affiliation(s)
- Gemma Buckley
- UK Centre for Tissue Engineering, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
24
|
Ke Y, Liu W, Wang Z, Dong Y, Chen Y. The Role of Sympathectomy on the Distribution of Intraepithelial Lymphocyte, Mast Cell, IgA+, CD4+ and CD8+ Cell in Intestine of Mice. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/ajava.2011.935.943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Robles TF, Carroll JE. Restorative biological processes and health. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2011; 5:518-537. [PMID: 21927619 DOI: 10.1111/j.1751-9004.2011.00368.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Research on psychological influences on physiology primarily focuses on biological responses during stressful challenges, and how those responses can become dysregulated with prolonged or repeated exposure to stressful circumstances. At the same time, humans spend considerable time recovering from those challenges, and a host of biological processes involved in restoration and repair take place during normal, non-stressed activities. We review restorative biological processes and evidence for links between psychosocial factors and several restorative processes including sleep, wound healing, antioxidant production, DNA repair, and telomerase function. Across these biological processes, a growing body of evidence suggests that experiencing negative emotional states, including acute and chronic stress, depressive symptoms, and individual differences in negative affectivity and hostility, can influence these restorative processes. This review calls attention to restorative processes as fruitful mechanisms and outcomes for future biobehavioral research.
Collapse
|
26
|
Georgii JL, Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Topical S-nitrosoglutathione-releasing hydrogel improves healing of rat ischaemic wounds. J Tissue Eng Regen Med 2010; 5:612-9. [DOI: 10.1002/term.353] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 07/12/2010] [Indexed: 11/08/2022]
|
27
|
Romana-Souza B, Porto LC, Monte-Alto-Costa A. Cutaneous wound healing of chronically stressed mice is improved through catecholamines blockade. Exp Dermatol 2010; 19:821-9. [PMID: 20629735 DOI: 10.1111/j.1600-0625.2010.01113.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress impairs cutaneous wound healing; however, it is unclear how beta-adrenoceptors participates in alterations induced by stress on skin wound repair. Therefore, the aim of this study was to investigate the effects of propranolol, a non-selective beta-blocker, administration on cutaneous wound healing of chronically stressed mice. Male mice were spun at 115 rpm for 15 min every hour from three days before wounding until euthanasia. Control animals were not submitted to stress. Stressed and control animals were treated with propranolol dissolved in water; controls received only water. Propranolol administration began one day before wounding and was continued daily until euthanasia. A full-thickness excisional lesion was performed. Seven and fourteen days later, animals were killed, and lesions were formalin-fixed and paraffin-embedded. Sections were stained with hematoxylin-eosin and immunostained against F4/80 to quantify macrophages, alpha-smooth muscle actin to quantify the myofibroblast density and proliferating cell nuclear antigen to quantify the cell proliferation. Furthermore, matrix metalloproteinases (MMP)-2 and MMP-9 activity, nitrite and hydroxyproline levels and tumor necrosis factor-alpha (TNF-alpha) expression were measured in wound. Stress and control + propranolol groups presented a delay in wound contraction, re-epithelialization, F4/80-positive macrophages, neutrophils and mast cells infiltration, cellular proliferation, angiogenesis, myofibroblastic differentiation, MMP-2 and MMP-9 activation and TNF-alpha expression, whereas an increase in the nitrite levels. Stress + propranolol group presented results similar to control group. In conclusion, stress impairs cutaneous wound healing in mice through beta1- adrenoceptors and beta2-adrenoceptors activation.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
28
|
Kahan V, Andersen ML, Tomimori J, Tufik S. Stress, immunity and skin collagen integrity: evidence from animal models and clinical conditions. Brain Behav Immun 2009; 23:1089-95. [PMID: 19523511 DOI: 10.1016/j.bbi.2009.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 12/21/2022] Open
Abstract
The skin is the largest organ of the human body and plays a major role in maintaining homeostasis and protection. As the main component of skin, collagen has a key role in providing integrity and elasticity to this organ. Several factors, including autoimmune disease, aging, and stress, can change the quantity and integrity of skin collagen. These factors impair collagen quality and consequently affect skin function. Stress seems to affect the integrity of skin collagen through glucocorticoid-mediated processes that alter its synthesis and degradation. Glucocorticoids also affect skin quality through modulation of the immune system. This review will briefly present comprehensive data from both animal and human studies delineating processes that modulate alterations in collagen in general, and will treat in more detail the consequences of stress on skin collagen.
Collapse
Affiliation(s)
- V Kahan
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP) - São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
29
|
Romana-Souza B, Monte-Alto-Costa A. Simultaneous blockade of alpha and beta adrenoceptors impairs cutaneous wound healing in rats. J Eur Acad Dermatol Venereol 2009; 24:349-52. [PMID: 19686328 DOI: 10.1111/j.1468-3083.2009.03376.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Recent studies showed that propranolol administration (beta-antagonist), but not phentolamine administration (alpha-antagonist), delays cutaneous wound healing. However, alpha adrenoceptor activation may be participating in propranolol-induced alterations. OBJECTIVE This study aims to investigate the effects of simultaneous blockade of beta and alpha adrenoceptors on cutaneous wound healing. METHODS Rats were treated with propranolol plus phentolamine dissolved in water. An excisional lesion was done and measured. Lesions were formalin-fixed and paraffin-embedded 21 days after wounding. Sections were stained with haematoxylin and eosin, toluidine blue and Sirius red, and immunostained for alpha-smooth muscle actin or proliferating cell nuclear antigen. RESULTS Administration of propranolol plus phentolamine reduced wound contraction and re-epithelialization, but increased cellular proliferation and the number of mast cells. There was no difference in myofibroblast density, collagen fibre organization and polymorphonuclear number between the control and treated groups. CONCLUSION Simultaneous blockade of beta and alpha adrenoceptors impairs cutaneous wound healing. Furthermore, propranolol-induced impairment on cutaneous wound healing does not occur through alpha adrenoceptor activation.
Collapse
Affiliation(s)
- B Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
30
|
Romana-Souza B, Santos JS, Monte-Alto-Costa A. beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays rat cutaneous wound healing. Wound Repair Regen 2009; 17:230-9. [PMID: 19320892 DOI: 10.1111/j.1524-475x.2008.00453.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The sympathetic nervous system plays an important role in wound healing, but its mechanism of action is poorly understood. The aim of this study was to investigate the effects of beta- and alpha-adrenoceptor blockade on cutaneous wound healing. Male rats were treated with propranolol (beta1- and beta2-antagonist), atenolol (beta1-antagonist), or phentolamine (alpha1- and alpha2-antagonist) dissolved in drinking water. A full-thickness excisional lesion was created and the wound area was measured. Fourteen days after wounding, lesions and adjacent skin were removed, formalin-fixed, and paraffin-embedded. Sections were stained with hematoxylin-eosin and toluidine blue, and immunostained for alpha-smooth muscle actin and proliferating cell nuclear antigen. Wound contraction was delayed in propranolol- and atenolol-treated animals but not in phentolamine-treated animals. Reepithelialization was decreased only in propranolol-treated animals. beta1- and beta2-adrenoceptor blockade delayed leukocyte migration, epidermal and connective tissue cell proliferation, myofibroblastic differentiation, and mast cell migration. The volume density of blood vessels was increased in the propranolol- and atenolol-treated animals compared with controls. The levels of matrix metalloproteases (MMP-2 and MMP-9) decreased in the propranolol- and atenolol-treated animals. alpha1- and alpha2-adrenoceptor blockade only affected leukocyte migration, epithelial and connective tissue cell proliferation, and pro-MMP-9 levels. In conclusion, beta-1 and beta-2, but not alpha-1 and alpha-2, adrenoceptor blockade delays cutaneous wound healing.
Collapse
Affiliation(s)
- Bruna Romana-Souza
- Department of Histology and Embryology, State University of Rio de Janeiro, Brazil
| | | | | |
Collapse
|
31
|
Wernli G, Hasan W, Bhattacherjee A, van Rooijen N, Smith PG. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 2009; 104:681-93. [PMID: 19437062 DOI: 10.1007/s00395-009-0033-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 04/24/2009] [Accepted: 04/29/2009] [Indexed: 01/16/2023]
Abstract
Myocardial infarction induces sympathetic axon sprouting adjacent to the necrotic region, and this has been implicated in the etiology of arrhythmias resulting in sudden cardiac death. Previous studies show that nerve growth factor (NGF) is essential for enhanced post-infarct sympathetic sprouting, but the cell types necessary to supply this neurotrophic protein are unknown. The objective of the present study was to determine whether macrophages, which are known to synthesize NGF, are necessary for post-infarct cardiac sympathetic sprouting. Ovariectomized female rats received left coronary artery ligation or sham operation, followed by intravenous injection of liposomes containing saline vehicle or clodronate, which kills macrophages. Sham-operated myocardium contained some sympathetic axons, few myofibroblasts and T cells and no CD-68-positive macrophages. In rats receiving saline liposomes through 7 days post-ligation, the posterolateral infarct border contained numerous myofibroblasts, macrophages and T cells, and sympathetic innervation was increased twofold. Treatment with clodronate liposomes reduced macrophage numbers by 69%, while myofibroblast area was reduced by 23% and T cell number was unaffected. Clodronate liposome treatment reduced sympathetic axon density to levels comparable to the uninfarcted heart. NGF protein content measured in western blots was reduced to 33% of that present in infarcts where rats received saline-containing liposomes. Tissue morphometry confirmed that NGF immunostaining was dramatically reduced, and this was attributable primarily to reduced macrophage content. These results show that macrophage destruction markedly reduces post-infarction levels of NGF and that the presence of elevated numbers of macrophages is obligatory for development of sympathetic hyperinnervation following myocardial infarction.
Collapse
Affiliation(s)
- Gwenaelle Wernli
- Department of Molecular and Integrative Physiology, Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Mail Stop 3051, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | |
Collapse
|
32
|
Cardoso JF, Mendes FA, Amadeu TP, Romana-Souza B, Valença SS, Porto LCDMS, Abreu JG, Monte-Alto-Costa A. Ccn2/Ctgf overexpression induced by cigarette smoke during cutaneous wound healing is strain dependent. Toxicol Pathol 2009; 37:175-82. [PMID: 19332661 DOI: 10.1177/0192623308328134] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cigarette smoke has been associated with poor healing in several studies, but the precise mechanisms involving this impairment are still not elucidated. The aim of this work was to investigate cigarette smoke exposure effects on initial phases of cutaneous healing in mice, focusing mainly on gene expression of two molecules involved in wound repair (Ccn2/Ctgf and Tgfb1) and to study if these effects are strain dependent. Mice were exposed to the smoke of nine cigarettes per day, three times per day, for ten days. In the eleventh day an excisional wound was made. The control group was sham-exposed. The cigarette smoke exposure protocol was performed until euthanasia, seven days after wounding. Wound contraction was evaluated. Sections were stained with hematoxylin-eosin, Sirius red, and toluidine blue, and also immunostained for alpha-smooth muscle actin. Gene expression of Ccn2/Ctgf and Tgfb1 was evaluated by semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR). Smoke-exposed animals presented delay in wound contraction; fibroblastic, inflammatory, and mast cell recruitment; re-epithelialization; myofibroblastic differentiation; and Ccn2/Ctgf and Tgfb1 gene expression. Those alterations were strain dependent. This work confirmed the deleterious effects of cigarette smoke exposure on mouse cutaneous healing depending on mouse strain and links these effects to an overexpression of Ccn2/Ctgf.
Collapse
|
33
|
Dudas M, Wysocki A, Gelpi B, Tuan TL. Memory encoded throughout our bodies: molecular and cellular basis of tissue regeneration. Pediatr Res 2008; 63:502-12. [PMID: 18427295 DOI: 10.1203/pdr.0b013e31816a7453] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field. When a sheep loses its tail, it cannot regenerate it in the manner of lizards. On the other hand, it is possible to clone mammals from somatic cells, showing that a complete developmental program is intact in a wounded sheep's tail the same way it is in a lizard. Thus, there is a requirement for more than only the presence of the entire genetic code in somatic cells for regenerative abilities. Thoughts like this have motivated us to assemble more than just a factographic synopsis on tissue regeneration. As a model, we review skin wound healing in chronological order, and when possible, we use that overview as a framework to point out possible mechanisms of how damaged tissues can restore their original structure. This article postulates the existence of tissue structural memory as a complex distributed homeostatic mechanism. We support such an idea by referring to an extremely fragmented literature base, trying to synthesize a broad picture of important principles of how tissues and organs may store information about their own structure for the purposes of regeneration. Selected developmental, surgical, and tissue engineering aspects are presented and discussed in the light of recent findings in the field.
Collapse
Affiliation(s)
- Marek Dudas
- Developmental Biology Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
34
|
Cardoso JF, Souza BR, Amadeu TP, Valença SS, Porto LCMS, Costa AMA. Effects of cigarette smoke in mice wound healing is strain dependent. Toxicol Pathol 2007; 35:890-6. [PMID: 18098035 DOI: 10.1080/01926230701459986] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It has been clinically and experimentally shown that cigarette smokers suffer from impaired wound healing, but the mechanisms that lead to the alterations are not well understood. The aim of this study was to investigate if the effects of cigarette smoke exposure on excisional cutaneous wound healing are different depending on the strain (Swiss, BALB/c and C57BL/6 mice) studied. Male mice were exposed to smoke of nine whole cigarettes per day, 3 times/day, daily, for 10 days. In the 11th day a full-thickness excisional wound was performed. Control group was sham-exposed and also had a full-thickness excisional wound. The cigarette smoke exposure protocol was performed until euthanasia. Animals were euthanatized 14 days after wounding. Wound contraction was evaluated 7 and 14 days after lesion. Sections were stained with hematoxylin-eosin, Sirius red or toluidine blue and immunostained for alpha-smooth muscle actin. Smoke exposed animals presented delay in wound contraction, in fibroblastic and inflammatory cells recruitment and in myofibroblastic differentiation; those alterations were strain dependent. Cigarette smoke exposure also affected mast cells recruitment and neoepidermis thickness. In conclusion, the present study demonstrated that the effects of cigarette smoke in mice cutaneous wound healing are related to mice strain studied.
Collapse
Affiliation(s)
- Juliana F Cardoso
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Amadeu TP, Seabra AB, de Oliveira MG, Monte-Alto-Costa A. Nitric oxide donor improves healing if applied on inflammatory and proliferative phase. J Surg Res 2007; 149:84-93. [PMID: 18374944 DOI: 10.1016/j.jss.2007.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 09/24/2007] [Accepted: 10/21/2007] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nitric oxide (NO) is an important molecule synthesized during wound repair. Studies have reported the use of NO donors on cutaneous wound repair, but their effects in different phases of healing are still not elucidated. The aim of this work was to investigate the effects of topical application of a NO donor (S-nitrosoglutathione, GSNO)-containing hydrogel on excisional wounds in the inflammatory ((inf)), proliferative ((prol)), and inflammatory and proliferative phases ((inf+prol)) of rat cutaneous wound repair. MATERIAL AND METHODS In each group (control, GSNO(inf), GSNO(prol), and GSNO(inf+prol)), excisional wounds on the dorsal surface were made and wound contraction and re-epithelialization were evaluated. Fourteen days after wounding, wounds and adjacent skin were formalin-fixed and paraffin-embedded. Collagen fibers organization, mast cells, myofibroblasts and vessels were evaluated. RESULTS Wound contraction of the GSNO(inf+prol) group was faster than control, GSNO(inf), and GSNO(prol) groups, 5 and 7 d after wounding. Topical application of GSNO accelerated re-epithelialization 14 d after wounding, mainly in GSNO(inf+prol) group. In addition, the GSNO(inf+prol) group showed improved collagen fibers maturation and tissue organization, and lower amount of inflammatory cells in the superficial and deep areas of the granulation tissue, compared with the other groups. CONCLUSIONS NO is important in all phases of rat cutaneous wound repair, but if applied on inflammatory and proliferative phases, the improvement in wound healing (accelerating wound closure, wound re-epithelialization, and granulation tissue organization) is more impressive.
Collapse
Affiliation(s)
- Thaís P Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
36
|
Imaizumi T, Akita S, Akino K, Hirano A. Acceleration of Sensory Neural Regeneration and Wound Healing with Human Mesenchymal Stem Cells in Immunodeficient Rats. Stem Cells 2007; 25:2956-63. [PMID: 17702984 DOI: 10.1634/stemcells.2007-0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The sensory nerve is highly involved in lower extremity wound healing. In diabetic and vascular diseases, impaired nerve function and blood flow delay wound healing. Tissue regeneration using adult stem cells is a targeted therapeutic modality in disorders of nerve and blood supply. Effective delivery using an autologous vascularized fascial flap as a vehicle of stem cells leads to severed sensory nerve recovery, local tissue blood flow, and wound healing. Human MSCs (hMSCs) were transfected with green fluorescent protein (GFP) cDNA and tested for efficiency and proliferation in vitro. The nude rat model with femoral vessel and saphenous nerve severance and ligation was wrapped with a vascularized epigastric flap for GFP-hMSC, fibroblast growth factor-2 (FGF-2), or a combination of both after 2 weeks. Maximum nerve conduction velocity recovered to 70% of the presurgical level in the GFP-hMSC- and FGF-2-treated group at 2 weeks. Blood flow and nerve conduction velocity were positively correlated at 1 week. Wound healing in the ipsilateral paw had significantly improved by 1 week. Histologically, blood vessels and nerves are very organized, and regenerated neuron immunoreactivity of GAP-43 and a nerve regrowth marker of S-100 were remarkable in the human GFP (hGFP)-hMSC and FGF-2-treated group at 2 weeks; therefore, sensory nerve regeneration, blood flow, and wound healing were improved by the administration of stem cells and FGF-2 via a vascularized flap. This may be implicated in clinical denervated and reduced circulation tissue wound healing.
Collapse
Affiliation(s)
- Toshifumi Imaizumi
- Division of Plastic and Reconstructive Surgery, Department of Developmental and Reconstructive Medicine, Nagasaki University, Graduate School of Biomedical and Sciences, Nagasaki, Japan
| | | | | | | |
Collapse
|
37
|
Gosain A, Muthu K, Gamelli RL, DiPietro LA. Norepinephrine suppresses wound macrophage phagocytic efficiency through alpha- and beta-adrenoreceptor dependent pathways. Surgery 2007; 142:170-9. [PMID: 17689682 PMCID: PMC2430526 DOI: 10.1016/j.surg.2007.04.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 04/05/2007] [Accepted: 04/08/2007] [Indexed: 11/23/2022]
Abstract
BACKGROUND The systemic response to injury is characterized by massive release of norepinephrine (NE) into the circulation as a result of global sympathetic activation. We have recently demonstrated that NE modulates the recruitment of macrophages to the cutaneous wound. We hypothesized that NE suppresses wound macrophage phagocytic function through canonical adrenergic signaling pathways. METHODS Murine wound macrophages were harvested at 5 days after injury and treated with physiologic and pharmacologic dose norepinephrine. Phagocytosis of green fluorescent protein-labeled Escherichia coli was assayed by flow cytometry. The signaling pathways mediating NE modulation of wound macrophage phagocytosis were interrogated by pharmacologic manipulation of alpha- and beta-adrenoreceptors (ARs), intracellular cyclic adenosine monophosphate (cAMP), and protein kinase A (PKA). Tissue specificity was determined by comparison of wound macrophages to splenic macrophages. RESULTS Both physiologic and pharmacologic dose NE suppressed wound macrophage phagocytic efficiency. This effect was mediated by alpha- and beta-ARs in a dose-dependent fashion. Direct stimulation of cAMP-suppressed phagocytic efficiency and blockade of PKA signaling prevented NE-mediated suppression of phagocytic efficiency. Splenic macrophage phagocytic efficiency was less than that of wound macrophages and was not altered by NE. CONCLUSIONS NE has a profound immunosuppressive effect on wound macrophage function that is tissue specific and appears to be mediated through adrenergic receptors and their canonical downstream signaling pathway. Attenuation of post-injury immunosuppression represents another potential mechanism by which beta-AR blockade may reduce morbidity and mortality after severe injury.
Collapse
Affiliation(s)
- Ankush Gosain
- Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL, 60153
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, IL, 60153
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153
| | - Kuzhali Muthu
- Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL, 60153
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153
| | - Richard L. Gamelli
- Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL, 60153
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153
| | - Luisa A. DiPietro
- Center for Wound Healing & Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612
| |
Collapse
|
38
|
Souza BR, Santos JS, Costa AMA. Blockade of beta1- and beta2-adrenoceptors delays wound contraction and re-epithelialization in rats. Clin Exp Pharmacol Physiol 2007; 33:421-30. [PMID: 16700874 DOI: 10.1111/j.1440-1681.2006.04383.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. The participation of sympathetic efferent fibres in wound healing is not well understood. The aim of the present study was to investigate the effects of beta(1)- and beta(2)-adrenoceptor blockade on rat excisional cutaneous wound healing. 2. Male rats were treated orally with propranolol dissolved in drinking water (50 mg/kg per day), whereas the control group received drinking water without propranolol. Propranolol was administered daily until rats were killed. A full-thickness excisional lesion was performed. The lesion area was measured to evaluate wound contraction. After rats had been killed, lesion and adjacent normal skin were formol fixed and paraffin embedded. Sections were stained with haematoxylin-eosin, Sirius red or Toluidine blue and immunostained for a-smooth muscle actin or proliferating cell nuclear antigen. 3. Propranolol-treated rats presented delayed wound contraction and epidermal healing and decreased hydroxyproline levels, collagen density and neo-epidermis thickness. Blockade of beta(1)- and beta(2)-adrenoceptors increased epidermal and connective tissue cell proliferation, polymorphonuclear leucocyte migration, myofibroblast density and mast cell migration. The volume density of blood vessels was increased and vessels were more dilated in propranolol-treated animals. 4. Thus, we conclude that beta(1)- and beta(2)-adrenoceptor blockade impairs cutaneous wound healing. This information should be considered by physicians during the treatment of patients who present with hypertension and problems in the healing process (such as venous ulcers).
Collapse
Affiliation(s)
- Bruna R Souza
- Departamento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
39
|
Amadeu TP, Seabra AB, de Oliveira MG, Costa AMA. S-nitrosoglutathione-containing hydrogel accelerates rat cutaneous wound repair. J Eur Acad Dermatol Venereol 2007; 21:629-37. [PMID: 17447976 DOI: 10.1111/j.1468-3083.2006.02032.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nitric oxide (NO) plays a key role in wound repair and S-nitrosothiols like S-nitrosoglutathione (GSNO) are well known NO donors. METHODS Animals were separated in two groups and submitted to excisional wounds on the dorsal surface at the first day. GSNO (100 microm)-containing hydrogels were topically applied on the wound bed in the GSNO group, daily, during the first 4 days. Control group was topically treated with hydrogel without GSNO for the same period. Wound contraction and re-epithelialization were measured. Animals were sacrificed 21 days after wounding. Samples of lesion and normal tissue were formalin-fixed, paraffin embedded for histological analysis. RESULTS Wound contraction, measured 14 and 21 days after wounding, was greater in the GSNO group than in the control group (P<0.05 for both). The re-epithelialized wound area, measured 14 days after wounding, was higher in the GSNO group than in the control group (P<0.05). A higher amount of inflammatory cells was observed in superficial and deep areas of the granulation tissue of the control group compared to the GSNO group. Twenty-one days after wounding, thin red-yellow collagen fibers arranged perpendicularly to the surface were found in the granulation tissue of the control group, whereas in the GSNO-treated group collagen fibers were thicker and arranged parallel to the surface. Increased number of mast cells was observed in the GSNO group compared with that in the control group. Vascularization and myofibroblast distribution were similar in both groups. CONCLUSION Topical application of GSNO-containing hydrogel during the early phases of rat cutaneous wound repair accelerates wound closure and re-epithelialization and affects granulation tissue organization.
Collapse
Affiliation(s)
- T P Amadeu
- Histology and Embryology Department, State University of Rio de Janeiro, UERJ, Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
40
|
Nascimento AP, Costa AMA. Overweight induced by high-fat diet delays rat cutaneous wound healing. Br J Nutr 2007; 96:1069-77. [PMID: 17181882 DOI: 10.1017/bjn20061955] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prolonged wound healing is a complication that contributes to morbidity and mortality. Overweight people regularly undergo surgery and trauma, and often develop chronic wounds, but the effects of the adipose tissue excess on cutaneous wound healing are not well understood. This study tested the hypothesis that overweight induced by a high-fat diet impairs rat cutaneous wound healing. Male Wistar rats were fed with either a high-fat or a standard (control) diet. After 15 weeks, an excisional lesion was done and the animals were killed 21 d later. Wound contraction and re-epithelialization, blood pressure, glucose and retroperitoneal fat were evaluated. After killing, lesion and adjacent normal skin were formol-fixed and paraffin-embedded. Inflammatory infiltrate, myofibroblasts, collagen fibres and cellular proliferation were analysed and blood vessels were evaluated using stereological methods. There was no difference in blood pressure and glucose, but retroperitoneal fat increased in the high-fat diet group. Animals fed with the high-fat diet presented delayed wound contraction and re-epithelialization. It was found that 21 d after wounding, overweight induced by a high-fat diet increased the inflammatory infiltrate and delayed myofibroblastic differentiation, collagen deposition, epithelial and connective tissue cell proliferation, and angiogenesis. These findings support the hypothesis that a high-fat diet exerts negative effects on rat cutaneous wound healing, due mainly to the prolongation of the inflammatory phase.
Collapse
|
41
|
Boyce ST, Kagan RJ, Greenhalgh DG, Warner P, Yakuboff KP, Palmieri T, Warden GD. Norepinephrine Modulates the Inflammatory and Proliferative Phases of Wound Healing. ACTA ACUST UNITED AC 2006; 60:821-9. [PMID: 16612303 DOI: 10.1097/01.ta.0000196802.91829.cc] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Injury results in the massive release of norepinephrine (NE) into the peripheral circulation. Recent investigations have demonstrated functional adrenoreceptors on the cellular mediators of cutaneous wound healing and NE-induced phenotypic alterations in immune cells have been demonstrated in vitro. Despite this, there is little description of how NE might alter the phases of wound healing in vivo. The purpose of this study was to compare cutaneous wound healing in norepinephrine-intact and norepinephrine-depleted mice. METHODS Norepinephrine-depleted (NED) mice were generated by chemical axotomy with 6-hydroxydopamine and compared with norepinephrine-intact (NEI) animals (n = 6-12 per group, per time point). Using an excisional wound model, neutrophil recruitment was measured by myeloperoxidase assay. Macrophage recruitment and angiogenesis were measured by immunohistochemistry and re-epithelialization was determined histologically. The development of incisional wound disruption strength was determined over time. Finally, macrophage scavenger function was assessed by an in vitro latex bead phagocytosis assay. RESULTS Wounds from NEI mice demonstrated greater neutrophil infiltration than NED wounds (24, 72 hours; p < 0.05). Wound macrophage recruitment was initially higher in NEI animals (24 hours, p < 0.05), but was eventually surpassed by that of NED animals (120 hours, p < 0.05). Angiogenesis was decreased while re-epithelialization was accelerated in NEI animals (p < 0.05). Wound disruption strength and macrophage scavenger function were unaltered between NED and NEI mice. CONCLUSIONS Norepinephrine modulates the inflammatory and proliferative phases of wound healing in a temporally defined, cell-specific manner. By increasing recruitment of innate immune cells and expediting wound closure, norepinephrine appears to play a protective role in defense against infection.
Collapse
Affiliation(s)
- Steven T Boyce
- Department of Surgery, University of Cincinnati, OH 45267, USA.
| | | | | | | | | | | | | |
Collapse
|