1
|
Attia HRM, Kamel MM, Ayoub DF, Abd El-Aziz SH, Abdel Wahed MM, El-Fattah SNA, Ablel-Monem MA, Rabah TM, Helal A, Ibrahim MH. CYP2C8 rs11572080 and CYP3A4 rs2740574 risk genotypes in paclitaxel-treated premenopausal breast cancer patients. Sci Rep 2024; 14:7922. [PMID: 38575662 PMCID: PMC10995116 DOI: 10.1038/s41598-024-58104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy in women globally. At time of diagnosis, premenopausal BC is considered more aggressive and harder to treat than postmenopausal cases. Cytochrome P450 (CYP) enzymes are responsible for phase I of estrogen metabolism and thus, they are prominently involved in the pathogenesis of BC. Moreover, CYP subfamily 2C and 3A play a pivotal role in the metabolism of taxane anticancer agents. To understand genetic risk factors that may have a role in pre-menopausal BC we studied the genotypic variants of CYP2C8, rs11572080 and CYP3A4, rs2740574 in female BC patients on taxane-based therapy and their association with menopausal status. Our study comprised 105 female patients with histologically proven BC on paclitaxel-therapy. They were stratified into pre-menopausal (n = 52, 49.5%) and post-menopausal (n = 53, 50.5%) groups. Genotyping was done using TaqMan assays and employed on Quantstudio 12 K flex real-time platform. Significant increased frequencies of rs11572080 heterozygous CT genotype and variant T allele were established in pre-menopausal group compared to post-menopausal group (p = 0.023, 0.01, respectively). Moreover, logistic regression analysis revealed a significant association between rs11572080 CT genotype and premenopausal BC. However, regarding rs2740574, no significant differences in genotypes and allele frequencies between both groups were detected. We reported a significant association between CYP2C8 genotypic variants and premenopausal BC risk in Egyptian females. Further studies on larger sample sizes are still needed to evaluate its importance in early prediction of BC in young women and its effect on treatment outcome.
Collapse
Affiliation(s)
- Hanaa R M Attia
- Medical Research and Clinical Studies Institute, Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Mahmoud M Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt.
| | - Dina F Ayoub
- Medical Research and Clinical Studies Institute, Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Shereen H Abd El-Aziz
- Medical Research and Clinical Studies Institute, Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Mai M Abdel Wahed
- Medical Research and Clinical Studies Institute, Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Safa N Abd El-Fattah
- Medical Research and Clinical Studies Institute, Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Mahmoud A Ablel-Monem
- Medical Research and Clinical Studies Institute, Medical Biochemistry Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Thanaa M Rabah
- Medical Research and Clinical Studies Institute, Community Medicine Research Department, National Research Centre, Cairo, Egypt
| | - Amany Helal
- Baheya Centre of Early Detection and Treatment of Breast Cancer, Giza, Egypt
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona Hamed Ibrahim
- Medical Research and Clinical Studies Institute, Clinical and Chemical Pathology Department, Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|
2
|
Alshaye NA, Elgohary MK, Elkotamy MS, Abdel-Aziz HA. Design, Synthesis and Biological Assessment of N'-(2-Oxoindolin-3-ylidene)-6-methylimidazo[2,1- b]thiazole-5-carbohydrazides as Potential Anti-Proliferative Agents toward MCF-7 Breast Cancer. Pharmaceuticals (Basel) 2024; 17:216. [PMID: 38399431 PMCID: PMC10892120 DOI: 10.3390/ph17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Breast cancer is a serious threat to the health and lives of women. Two novel series of N'-(2-oxoindolin-3-ylidene)-6-methylimidazo[2,1-b]thiazole-5-carbohydrazides and 1-(aryl)-3-(6-methylimidazo[2,1-b]thiazol-5-yl)ureas were designed, synthesized and investigated for their anticancer efficacy against the MCF-7 breast cell line. Three compounds of the first series showed potent activity toward MCF-7 with IC50 in the range 8.38-11.67 µM, respectively, as compared to Sorafenib (IC50 = 7.55 µM). N'-(1-butyl-2-oxoindolin-3-ylidene)-6-methylimidazo[2,1-b]thiazole-5-carbohydrazide inhibited VEGFR-2 with IC50 = 0.33 µM when compared with Sorafenib (IC50 = 0.09 µM). Furthermore, this compound was introduced to PCR assessment, where it increased Bax, caspase 8, caspase 9 and cytochrome C levels by 4.337-, 2.727-, 4.947- and 2.420-fold, respectively, while it decreased levels of Bcl-2, as the anti-apoptotic gene, by 0.359-fold when compared to the untreated control MCF-7. This compound was also arrested in the G2/M phase by 27.07%, compared with 11.31% for the control MCF-7. Furthermore, it induced early and late apoptosis in MCF-7. In addition, a molecular docking study in the VEGFR-2 active site was performed to assess the binding profile for the most active compounds. Moreover, ADME parameters of the targeted compounds were also evaluated.
Collapse
Affiliation(s)
- Najla A. Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed K. Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Cairo 11829, Egypt;
| | - Mahmoud S. Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Cairo 11829, Egypt;
| | - Hatem A. Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| |
Collapse
|
3
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Fayez S, Bruhn T, Feineis D, Assi LA, Kushwaha PP, Kumar S, Bringmann G. Naphthylisoindolinone alkaloids: the first ring-contracted naphthylisoquinolines, from the tropical liana Ancistrocladus abbreviatus, with cytotoxic activity. RSC Adv 2022; 12:28916-28928. [PMID: 36320727 PMCID: PMC9555057 DOI: 10.1039/d2ra05758a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/03/2022] [Indexed: 11/23/2022] Open
Abstract
The West African liana Ancistrocladus abbreviatus is a rich source of structurally most diverse naphthylisoquinoline alkaloids. From its roots, a series of four novel representatives, named ancistrobrevolines A-D (14-17) have now been isolated, displaying an unprecedented heterocyclic ring system, where the usual isoquinoline entity is replaced by a ring-contracted isoindolinone part. Their constitutions were elucidated by 1D and 2D NMR and HR-ESI-MS. The absolute configurations at the chiral axis and at the stereogenic center were assigned by using experimental and computational electronic circular dichroism (ECD) investigations and a ruthenium-mediated oxidative degradation, respectively. For the biosynthetic origin of the isoindolinones from 'normal' naphthyltetrahydroisoquinolines, a hypothetic pathway is presented. It involves oxidative decarboxylation steps leading to a ring contraction by a benzilic acid rearrangement. Ancistrobrevolines A (14) and B (15) were found to display moderate cytotoxic effects (up to 72%) against MCF-7 breast and A549 lung cancer cells and to reduce the formation of spheroids (mammospheres) in the breast cancer cell line.
Collapse
Affiliation(s)
- Shaimaa Fayez
- Institute of Organic Chemistry, University of WürzburgAm HublandD-97074 WürzburgGermany,Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 111566 CairoEgypt
| | - Torsten Bruhn
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street 111566 CairoEgypt
| | - Doris Feineis
- Institute of Organic Chemistry, University of WürzburgAm HublandD-97074 WürzburgGermany
| | - Laurent Aké Assi
- Federal Institute for Risk AssessmentMax-Dohrn-Str. 8-10D-10589 BerlinGermany
| | - Prem Prakash Kushwaha
- Centre National de Floristique, Université d'AbidjanConservatoire et Jardin BotaniqueAbidjan 08Ivory Coast,Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of PunjabBathinda-151401PunjabIndia
| | - Shashank Kumar
- Centre National de Floristique, Université d'AbidjanConservatoire et Jardin BotaniqueAbidjan 08Ivory Coast
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of WürzburgAm HublandD-97074 WürzburgGermany
| |
Collapse
|
5
|
Hassan RA, Hamed MI, Abdou AM, El-Dash Y. Novel antiproliferative agents bearing substituted thieno[2,3-d]pyrimidine scaffold as dual VEGFR-2 and BRAF kinases inhibitors and apoptosis inducers; design, synthesis and molecular docking. Bioorg Chem 2022; 125:105861. [DOI: 10.1016/j.bioorg.2022.105861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
|
6
|
Hassan RA, Emam SH, Hwang D, Kim GD, Hassanin SO, Khalil MG, Abdou AM, Sonousi A. Design, synthesis and evaluation of anticancer activity of new pyrazoline derivatives by down-regulation of VEGF: Molecular docking and apoptosis inducing activity. Bioorg Chem 2021; 118:105487. [PMID: 34798455 DOI: 10.1016/j.bioorg.2021.105487] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
Two series of pyrazoline compounds were designed and synthesized as antiproliferative agents by VEGFR pathway inhibition. All synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines. Compound 3f exhibited the highest anticancer activity on the ovarian cell line (OVCAR-4) with IC50 = 0.29 μM and on the breast cell line (MDA-MB-468) with IC50 = 0.35 μM. It also exhibited the highest selectivity index (SI = 74). Compound 3f caused cell cycle arrest in OVCAR-4 cell line at the S phase which consequently inhibited cell proliferation and induced apoptosis. Moreover, 3f showed potent down-regulation of VEGF and p-VEGFR-2. Docking studies showed that compound 3f interacts in a similar pattern to axitinib on the VEGFR-2 receptor. The same compound was also able to fit into the gorge of STAT3 binding site, the transcription factor for VEGF, which explains the VEGF down-regulation.
Collapse
Affiliation(s)
- Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Soha H Emam
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Dukhyun Hwang
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Gun-Do Kim
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona G Khalil
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.
| |
Collapse
|
7
|
Hormones and Hormonal Anabolics: Residues in Animal Source Food, Potential Public Health Impacts, and Methods of Analysis. J FOOD QUALITY 2020. [DOI: 10.1155/2020/5065386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The demand for nutritious food, especially food of animal origin, is globally increasing due to escalating population growth and a dietary shift to animal source food. In order to fulfill the requirements, producers are using veterinary drugs such as hormones and hormone-like anabolic agents. Hormones such as steroidal (estrogens, gestagens, and androgens), nonsteroidal, semisynthetic, and synthetic or designer drugs are all growth-promoting and body-partitioning agents. Hence, in food animal production practice, farm owners use these chemicals to improve body weight gain, increase feed conversion efficiency, and productivity. However, the use of these hormones and hormonal growth-promoting agents eventually ends up with the occurrence of residues in the animal-originated food. The incidence of hormone residues in such types of food and food products beyond the tolerance acts as a risk factor for the occurrence of potential public health problems. Currently, different international and national regulatory bodies have placed requirements and legislative frameworks, which enable them to implement residue monitoring test endeavors that safeguard the public and facilitate the trading activity. To make the tests on the animal-origin food matrix, there are different sample extraction techniques such as accelerated solvent extraction, supercritical fluid extraction, solid phase extraction, solid-phase microextraction, and hollow-fiber liquid-phase microextraction. After sample preparation steps, the analytes of interest can be assayed by screening and confirmatory methods of analysis. For screening, immunological tests such as ELISA and radioimmunoassay are used. Detection and determination of the specific residues will be done by chromatographic or instrumental analysis. Mainly, among high-performance liquid chromatography, liquid chromatography with mass spectrometry (LC-MS, LC-MS/MS), and gas chromatography with mass spectrometry (GC-MS and GC-MS/MS) methods, LC-MS/MS is being preferred because of easier sample preparation without a derivatization step and high detection and quantification capacity.
Collapse
|
8
|
Yin M, Hu X, Sun Y, Xing Y, Chai S, Xing G, Yang Y, Teng M, Li Q, Wang Y, Deng R, Zhang G. The broad-spectrum and ultra-sensitive detection of zeranol and its analogues by an enzyme-linked immunosorbent assay in cattle origin samples. RSC Adv 2020; 10:20809-20816. [PMID: 35517725 PMCID: PMC9054319 DOI: 10.1039/d0ra02936j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
Zeranol (α-zearalanol) has been used as a growth promoter in livestock since 1969 in some non-EU countries; the residues of zeranol and its five analogues in animal origin foods may endanger human health due to their strong estrogenic and anabolic activities. Therefore, it is urgent to establish simple, rapid, real-time, broad-spectrum and high-sensitivity detection methods for the residues of zeranol and its analogues. In this study, an ultrasensitive indirect-competition enzyme-linked immunosorbent assay (ic-ELISA) was established for the rapid multi-residue detection of zeranol and its five analogues in cattle origin samples, which was based on a broad-spectrum monoclonal antibody (mAb) that specifically bound to zeranol and its analogues with high sensitivity. The half maximal inhibitory concentration (IC50) values for zeranol, β-zearalanol, zearalanone, α-zearalenol, β-zearalenol, and zearalenone were 0.103, 0.080, 0.161, 0.177, 0.254, and 0.194 ng mL-1, respectively, the recovery rates of cattle origin samples spiked with zeranol ranged from 79.2-104.2%, and the coefficient of variation (CV) values were less than 11.4%. Excellent correlation (R 2 = 0.9845) was obtained between the results of HPLC-MS/MS and ic-ELISA. In conclusion, the developed ic-ELISA could be employed as an ultrasensitive and broad-spectrum detection method for monitoring trace ZEN residues in cattle origin foods.
Collapse
Affiliation(s)
- Mengqi Yin
- School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Xiaofei Hu
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Yaning Sun
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Yunrui Xing
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Shujun Chai
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Guangxu Xing
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Yanyan Yang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Man Teng
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Yao Wang
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang 471023 China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Gaiping Zhang
- School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou 450002 China
| |
Collapse
|
9
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|
10
|
Sialic Acid-Binding Lectin from Bullfrog Eggs Exhibits an Anti-Tumor Effect Against Breast Cancer Cells Including Triple-Negative Phenotype Cells. Molecules 2018; 23:molecules23102714. [PMID: 30347895 PMCID: PMC6222625 DOI: 10.3390/molecules23102714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 01/22/2023] Open
Abstract
Sialic acid-binding lectin from Rana catesbeiana eggs (cSBL) is a multifunctional protein that has lectin and ribonuclease activity. In this study, the anti-tumor activities of cSBL were assessed using a panel of breast cancer cell lines. cSBL suppressed the cell growth of all cancer cell lines tested here at a concentration that is less toxic, or not toxic at all, to normal cells. The growth suppressive effect was attributed to the cancer-selective induction of apoptosis. We assessed the expressions of several key molecules associated with the breast cancer phenotype after cSBL treatment by western blotting. cSBL decreased the expression level of estrogen receptor (ER) α, while it increased the phosphorylation level of p38 mitogen-activated protein kinase (MAPK). cSBL also suppressed the expression of the progesterone receptor (PgR) and human epidermal growth factor receptor type 2 (HER2). Furthermore, it was revealed that cSBL decreases the expression of the epidermal growth factor receptor (EGFR/HER1) in triple-negative breast cancer cells. These results indicate that cSBL induces apoptosis with decreasing ErbB family proteins and may have great potential for breast cancer chemotherapy, particularly in triple-negative phenotype cells.
Collapse
|
11
|
Baicalein has protective effects on the 17β-estradiol-induced transformation of breast epithelial cells. Oncotarget 2018; 8:10470-10484. [PMID: 28060756 PMCID: PMC5354673 DOI: 10.18632/oncotarget.14433] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic and systematic studies have indicated that flavonoid consumption is associated with a lower incidence of breast cancer. Baicalein is the primary flavonoid derived from the roots of Scutellaria baicalensis Georgi. In the current study, the long-term exposure of breast epithelial cells to 17β-estradiol (E2) was used to investigate the chemopreventive potential of baicalein on neoplastic transformation. The results demonstrated that baicalein significantly inhibited E2-induced cell growth, motility, and invasiveness, and suppressed E2-induced misshapen acini formation in 3D cultures. Furthermore, it inhibited the ability of E2-induced cells to form clones in agarose and tumors in NOD/SCID immunodeficient mice. Docking studies using Sybyl-X 1.2 software showed that baicalein could bind to both estrogen receptor-α (ERa) and G-protein coupled estrogen receptor 30 (GPR30), which are two critical E2-mediated pathways. Baicalein prevented the E2-induced ERa-mediated activation of nuclear transcriptional signaling by interfering with the trafficking of ERa into the nucleus and subsequent binding to estrogen response elements, thereby decreasing the mRNA levels of ERa target genes. It also inhibited E2-induced GPR30-mediated signal transduction, as well as the transcription of GPR30-regulated genes. Therefore, these results suggest that baicalein is a potential drug for reducing the risk of estrogen-dependent breast cancer.
Collapse
|
12
|
Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health 2017; 16:94. [PMID: 28865460 PMCID: PMC5581466 DOI: 10.1186/s12940-017-0287-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 07/17/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND In this review, we examine the continually expanding and increasingly compelling data linking radiation and various chemicals in our environment to the current high incidence of breast cancer. Singly and in combination, these toxicants may have contributed significantly to the increasing rates of breast cancer observed over the past several decades. Exposures early in development from gestation through adolescence and early adulthood are particularly of concern as they re-shape the program of genetic, epigenetic and physiological processes in the developing mammary system, leading to an increased risk for developing breast cancer. In the 8 years since we last published a comprehensive review of the relevant literature, hundreds of new papers have appeared supporting this link, and in this update, the evidence on this topic is more extensive and of better quality than that previously available. CONCLUSION Increasing evidence from epidemiological studies, as well as a better understanding of mechanisms linking toxicants with development of breast cancer, all reinforce the conclusion that exposures to these substances - many of which are found in common, everyday products and byproducts - may lead to increased risk of developing breast cancer. Moving forward, attention to methodological limitations, especially in relevant epidemiological and animal models, will need to be addressed to allow clearer and more direct connections to be evaluated.
Collapse
Affiliation(s)
- Janet M. Gray
- Department of Psychology and Program in Science, Technology, and Society, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604-0246 USA
| | - Sharima Rasanayagam
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Connie Engel
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| | - Jeanne Rizzo
- Breast Cancer Prevention Partners, 1388 Sutter St., Suite 400, San Francisco, CA 94109-5400 USA
| |
Collapse
|
13
|
Gargiulo L, May M, Rivero EM, Copsel S, Lamb C, Lydon J, Davio C, Lanari C, Lüthy IA, Bruzzone A. A Novel Effect of β-Adrenergic Receptor on Mammary Branching Morphogenesis and its Possible Implications in Breast Cancer. J Mammary Gland Biol Neoplasia 2017; 22:43-57. [PMID: 28074314 DOI: 10.1007/s10911-017-9371-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the mechanisms that govern normal mammary gland development is crucial to the comprehension of breast cancer etiology. β-adrenergic receptors (β-AR) are targets of endogenous catecholamines such as epinephrine that have gained importance in the context of cancer biology. Differences in β2-AR expression levels may be responsible for the effects of epinephrine on tumor vs non-tumorigenic breast cell lines, the latter expressing higher levels of β2-AR. To study regulation of the breast cell phenotype by β2-AR, we over-expressed β2-AR in MCF-7 breast cancer cells and knocked-down the receptor in non-tumorigenic MCF-10A breast cells. In MCF-10A cells having knocked-down β2-AR, epinephrine increased cell proliferation and migration, similar to the response by tumor cells. In contrast, in MCF-7 cells overexpressing the β2-AR, epinephrine decreased cell proliferation and migration and increased adhesion, mimicking the response of the non-tumorigenic MCF-10A cells, thus underscoring that β2-AR expression level is a key player in cell behavior. β-adrenergic stimulation with isoproterenol induced differentiation of breast cells growing in 3-dimension cell culture, and also the branching of murine mammary epithelium in vivo. Branching induced by isoproterenol was abolished in fulvestrant or tamoxifen-treated mice, demonstrating that the effect of β-adrenergic stimulation on branching is dependent on the estrogen receptor (ER). An ER-independent effect of isoproterenol on lumen architecture was nonetheless found. Isoproterenol significantly increased the expression of ERα, Ephrine-B1 and fibroblast growth factors in the mammary glands of mice, and in MCF-10A cells. In a poorly differentiated murine ductal carcinoma, isoproterenol also decreased tumor growth and induced tumor differentiation. This study highlights that catecholamines, through β-AR activation, seem to be involved in mammary gland development, inducing mature duct formation. Additionally, this differentiating effect could be resourceful in a breast tumor context.
Collapse
Affiliation(s)
- Lucía Gargiulo
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - María May
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ezequiel M Rivero
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Sabrina Copsel
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Caroline Lamb
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - John Lydon
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos Davio
- Laboratorio de Farmacología de Receptores, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 1113, Buenos Aires, CABA, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Isabel A Lüthy
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, CABA, Argentina
| | - Ariana Bruzzone
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), CONICET-Universidad Nacional del Sur, Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
14
|
Peña-Morán OA, Villarreal ML, Álvarez-Berber L, Meneses-Acosta A, Rodríguez-López V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules 2016; 21:molecules21081013. [PMID: 27527135 PMCID: PMC6274026 DOI: 10.3390/molecules21081013] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Despite prevention and treatment options, breast cancer (BC) has become one of the most important issues in the present day. Therefore, the need for more specific and efficient compounds remains paramount. We evaluated four previously isolated aryltetralin lignans: 5'-demethoxy-β-peltatin-A-methylether (1), acetylpodophyllotoxin (2), 5'-demethoxydeoxypodophyllotoxin (3), and 7',8'-dehydroacetylpodophyllotoxin (4) for cytotoxicity, clonogenicity, and selectivity against three BC cell lines: MCF-7, MDA-MB-231, and BT-549, as well as the non-tumorigenic mammary epithelial cell line MCF-10A. Cytotoxicity was evaluated after 72 h of treatment, and clonogenicity was determined at 72 h post-treatment; experiments were performed using the sulforhodamine B staining assay. Selective-index (SI) was calculated by comparing pure compound IC50 values in MCF-10A cell line against the IC50 of the same compound in cancer cell lines. Structural similarities among lignans and controls (podophyllotoxin and etoposide) were analyzed using the Tanimoto coefficient (Tc). Lignans were cytotoxic against all tested cell lines (0.011-7.22 µM) and clonogenicity testing showed a dose-dependent cytocidality for all lignans (≥0.08 µg/mL); compounds 2 and 3 were more potent (14.1 and 7.6 respectively) than etoposide in BT-549 cell line, while compound 2 displayed selectivity (SI = 28.17) in BT-549 cell line. Tc values of lignans suggested a greater similarity with podophyllotoxin structure.
Collapse
Affiliation(s)
- Omar Aristeo Peña-Morán
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Laura Álvarez-Berber
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Angélica Meneses-Acosta
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| | - Verónica Rodríguez-López
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos 62209, Mexico.
| |
Collapse
|
15
|
Sánchez-Zamorano LM, Flores-Luna L, Angeles-Llerenas A, Ortega-Olvera C, Lazcano-Ponce E, Romieu I, Mainero-Ratchelous F, Torres-Mejía G. The Western dietary pattern is associated with increased serum concentrations of free estradiol in postmenopausal women: implications for breast cancer prevention. Nutr Res 2016; 36:845-54. [PMID: 27440539 DOI: 10.1016/j.nutres.2016.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
Abstract
Little is known about the possible influence of food consumption on the serum concentrations of endogenous sex hormones in postmenopausal women. We evaluated the relationships of the Western dietary pattern with serum concentrations of free estradiol and testosterone of postmenopausal women to test the hypothesis that a highly Western dietary pattern is associated with high serum concentrations of these hormones. We used data from a representative subsample of 305 women from the control group of a population-based case-control study conducted in Mexico from 2004 to 2007. A Western dietary pattern index value was compared with log natural serum concentrations of testosterone and estradiol using multiple linear regression models. The median values of serum concentrations of free estradiol and testosterone were 0.26 pg/mL (interquartile range, 0.14-0.43) and 0.40 pg/mL (interquartile range, 0.30-0.70), respectively. A multiple linear regression model showed that for each unit increase in the Western dietary pattern index, there was a 16.2% increase in the serum concentrations of free estradiol (β=0.15; 95% confidence interval [CI], 0.01-0.29); for each additional serving per week of chicken eggs, the increase was 31.0% (β=0.27; 95% CI, 0.106-0.441); for each additional serving per week of red meat, the increase was 64.9% (β=0.50; 95% CI, 0.01-1.01). There was no relationship found between dietary patterns and serum concentrations of free testosterone. The present findings suggest that intake of a Western diet, particularly of chicken eggs and meat, increases serum concentrations of free estradiol; these results have implications for breast cancer prevention.
Collapse
Affiliation(s)
- Luisa María Sánchez-Zamorano
- Population Health Research Center, National Institute of Public Health, Cuernavaca, Mor, Mexico, Av. Universidad 655, Col. Sta. Ma. Ahuacatitlán CP 62100
| | - Lourdes Flores-Luna
- Population Health Research Center, National Institute of Public Health, Cuernavaca, Mor, Mexico, Av. Universidad 655, Col. Sta. Ma. Ahuacatitlán CP 62100
| | - Angélica Angeles-Llerenas
- Population Health Research Center, National Institute of Public Health, Cuernavaca, Mor, Mexico, Av. Universidad 655, Col. Sta. Ma. Ahuacatitlán CP 62100
| | - Carolina Ortega-Olvera
- Population Health Research Center, National Institute of Public Health, Cuernavaca, Mor, Mexico, Av. Universidad 655, Col. Sta. Ma. Ahuacatitlán CP 62100
| | - Eduardo Lazcano-Ponce
- Population Health Research Center, National Institute of Public Health, Cuernavaca, Mor, Mexico, Av. Universidad 655, Col. Sta. Ma. Ahuacatitlán CP 62100
| | - Isabelle Romieu
- International Agency for Research on Cancer (IARC), 150 cours Albert Thomas 69372, Lyon, Cedex, 08, France
| | - Fernando Mainero-Ratchelous
- Mexican Institute of Social Security, Dr. Luis Castelazo Ayala Hospital for Gynecology and Obstetrics # 4, Mexico City, Mexico
| | - Gabriela Torres-Mejía
- Population Health Research Center, National Institute of Public Health, Cuernavaca, Mor, Mexico, Av. Universidad 655, Col. Sta. Ma. Ahuacatitlán CP 62100.
| |
Collapse
|
16
|
Zhong S, Liu S, Chen S, Lin H, Wang W, Qin X. Zeranol stimulates proliferation and aromatase activation in human breast preadipocytes. Mol Med Rep 2016; 14:1014-8. [PMID: 27220457 DOI: 10.3892/mmr.2016.5293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/18/2016] [Indexed: 11/05/2022] Open
Abstract
Aromatase is a crucial enzyme for the biosynthesis of estrogens and is involved in the process of breast carcinogenesis. Concerns have been raised regarding the effects of environmental estrogens as potential regulators of aromatase expression in human breast cells. Zeranol is a non‑steroidal agent with potent estrogenic activity, which is widely used as a growth promoter for cattle in certain countries. The present study hypothesized that aromatase expression and activity may be elevated by low dose zeranol exposure, providing a source of estrogens that may stimulate cell proliferation. In the present study, primary cultured human breast preadipocytes were used as an in vitro model. The effects of zeranol on cell proliferation were measured using the MTS assay, aromatase expression levels were determined by immunocytochemical staining and reverse transcription‑polymerase chain reaction, and aromatase enzyme activity and estrogen production were analyzed using corresponding assay kits. The results demonstrated that low dose zeranol (2‑50 nM) was able to significantly promote cell proliferation, aromatase mRNA expression, aromatase activity and estrogen production in primary cultured human breast preadipocytes, thus suggesting that zeranol may act as an aromatase activator. The findings of the present study suggest that zeranol promotes breast cancer cell growth by stimulating aromatase activation and increasing estrogen biosynthesis in adipose tissue.
Collapse
Affiliation(s)
- Saiyi Zhong
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Shouchun Liu
- Beijing Academy of Agriculture and Forestry Science, Beijing 100097, P.R. China
| | - Suhua Chen
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Huajuan Lin
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Weimin Wang
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| | - Xiaoming Qin
- Department of Food Science, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, P.R. China
| |
Collapse
|
17
|
Hormone Use in Food Animal Production: Assessing Potential Dietary Exposures and Breast Cancer Risk. Curr Environ Health Rep 2016; 2:1-14. [PMID: 26231238 DOI: 10.1007/s40572-014-0042-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, increasing attention has been paid to the role of hormones in breast cancer etiology, following reports that heightened levels of endogenous hormones and exposure to exogenous hormones and other endocrine-disrupting chemicals through food and the environment are associated with increased breast cancer risk. Seven hormone drugs (testosterone propionate, trenbolone acetate, estradiol, zeranol, progesterone, melengestrol acetate, and bovine somatotropin) are approved by the U.S. Food and Drug Administration for use in food animals. There is concern that these drugs or their biologically active metabolites may accumulate in edible tissues, potentially increasing the risk of exposure for consumers. To date, the potential for human exposure to residues of these compounds in animal products, as well as the risks that may result from this exposure, is poorly understood. In this paper, we discuss the existing scientific evidence examining the toxicological significance of exposure to hormones used in food animal production in relation to breast cancer risk. Through a discussion of U.S. federal regulatory programs and the primary literature, we interpret the state of surveillance for residues of hormone drugs in animal products and discuss trends in meat consumption in relation to the potential for hormone exposure. Given the lack of chronic bioassays of oral toxicity of the seven hormone compounds in the public literature and the limitations of existing residue surveillance programs, it is not currently possible to provide a quantitative characterization of risks that result from the use of hormonal drugs in food animal production, complicating our understanding of the role of dietary hormone exposure in the population burden of breast cancer.
Collapse
|
18
|
Belkaid A, Duguay SR, Ouellette RJ, Surette ME. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer 2015; 15:440. [PMID: 26022099 PMCID: PMC4446951 DOI: 10.1186/s12885-015-1452-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
Background To sustain cell growth, cancer cells exhibit an altered metabolism characterized by increased lipogenesis. Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the production of monounsaturated fatty acids that are essential for membrane biogenesis, and is required for cell proliferation in many cancer cell types. Although estrogen is required for the proliferation of many estrogen-sensitive breast carcinoma cells, it is also a repressor of SCD-1 expression in liver and adipose. The current study addresses this apparent paradox by investigating the impact of estrogen on SCD-1 expression in estrogen receptor-α-positive breast carcinoma cell lines. Methods MCF-7 and T47D mammary carcinomas cells and immortalized MCF-10A mammary epithelial cells were hormone-starved then treated or not with 17β-estradiol. SCD-1 activity was assessed by measuring cellular monounsaturated/saturated fatty acid (MUFA/SFA) ratios, and SCD-1 expression was measured by qPCR, immunoblot, and immunofluorescence analyses. The role of SCD-1 in cell proliferation was measured following treatment with the SCD-1 inhibitor A959372 and following SCD-1 silencing using siRNA. The involvement of IGF-1R on SCD-1 expression was measured using the IGF-1R antagonist AG1024. The expression of SREBP-1c, a transcription factor that regulates SCD-1, was measured by qPCR, and by immunoblot analyses. Results 17β-estradiol significantly induced cell proliferation and SCD-1 activity in MCF-7 and T47D cells but not MCF-10A cells. Accordingly, 17β-estradiol significantly increased SCD-1 mRNA and protein expression in MCF-7 and T47D cells compared to untreated cells. Treatment of MCF-7 cells with 4-OH tamoxifen or siRNA silencing of estrogen receptor-α largely prevented 17β-estradiol-induced SCD-1 expression. 17β-estradiol increased SREBP-1c expression and induced the mature active 60 kDa form of SREBP-1. The selective SCD-1 inhibitor or siRNA silencing of SCD-1 blocked the 17β-estradiol-induced cell proliferation and increase in cellular MUFA/SFA ratios. IGF-1 also induced SCD-1 expression, but to a lesser extent than 17β-estradiol. The IGF-1R antagonist partially blocked 17β-estradiol-induced cell proliferation and SCD-1 expression, suggesting the impact of 17β-estradiol on SCD-1 expression is partially mediated though IGF-1R signaling. Conclusions This study illustrates for the first time that, in contrast to hepatic and adipose tissue, estrogen induces SCD-1 expression and activity in breast carcinoma cells. These results support SCD-1 as a therapeutic target in estrogen-sensitive breast cancer.
Collapse
Affiliation(s)
- Anissa Belkaid
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada. .,Atlantic Cancer Research Institute, Moncton, NB, Canada.
| | - Sabrina R Duguay
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada.
| | | | - Marc E Surette
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Antonine Maillet Ave, Moncton, NB, E1A 3E9, Canada.
| |
Collapse
|
19
|
McVeigh TP, Jung SY, Kerin MJ, Salzman DW, Nallur S, Nemec AA, Dookwah M, Sadofsky J, Paranjape T, Kelly O, Chan E, Miller N, Sweeney KJ, Zelterman D, Sweasy J, Pilarski R, Telesca D, Slack FJ, Weidhaas JB. Estrogen withdrawal, increased breast cancer risk and the KRAS-variant. Cell Cycle 2015; 14:2091-9. [PMID: 25961464 PMCID: PMC4614527 DOI: 10.1080/15384101.2015.1041694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The KRAS-variant is a biologically functional, microRNA binding site variant, which predicts increased cancer risk especially for women. Because external exposures, such as chemotherapy, differentially impact the effect of this mutation, we evaluated the association of estrogen exposures, breast cancer (BC) risk and tumor biology in women with the KRAS-variant. Women with BC (n = 1712), the subset with the KRAS-variant (n = 286) and KRAS-variant unaffected controls (n = 80) were evaluated, and hormonal exposures, KRAS-variant status, and pathology were compared. The impact of estrogen withdrawal on transformation of isogenic normal breast cell lines with or without the KRAS-variant was studied. Finally, the association and presentation characteristics of the KRAS-variant and multiple primary breast cancer (MPBC) were evaluated. KRAS-variant BC patients were more likely to have ovarian removal pre-BC diagnosis than non-variant BC patients (p = 0.033). In addition, KRAS-variant BC patients also appeared to have a lower estrogen state than KRAS-variant unaffected controls, with a lower BMI (P < 0.001). Finally, hormone replacement therapy (HRT) discontinuation in KRAS-variant patients was associated with a diagnosis of triple negative BC (P < 0.001). Biologically confirming our clinical findings, acute estrogen withdrawal led to oncogenic transformation in KRAS-variant positive isogenic cell lines. Finally, KRAS-variant BC patients had greater than an 11-fold increased risk of presenting with MPBC compared to non-variant patients (45.39% vs 6.78%, OR 11.44 [3.42–37.87], P < 0.001). Thus, estrogen withdrawal and a low estrogen state appear to increase BC risk and to predict aggressive tumor biology in women with the KRAS-variant, who are also significantly more likely to present with multiple primary breast cancer.
Collapse
|
20
|
Mukherjee D, Royce SG, Alexander JA, Buckley B, Isukapalli SS, Bandera EV, Zarbl H, Georgopoulos PG. Physiologically-based toxicokinetic modeling of zearalenone and its metabolites: application to the Jersey girl study. PLoS One 2014; 9:e113632. [PMID: 25474635 PMCID: PMC4256163 DOI: 10.1371/journal.pone.0113632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/27/2014] [Indexed: 12/02/2022] Open
Abstract
Zearalenone (ZEA), a fungal mycotoxin, and its metabolite zeranol (ZAL) are known estrogen agonists in mammals, and are found as contaminants in food. Zeranol, which is more potent than ZEA and comparable in potency to estradiol, is also added as a growth additive in beef in the US and Canada. This article presents the development and application of a Physiologically-Based Toxicokinetic (PBTK) model for ZEA and ZAL and their primary metabolites, zearalenol, zearalanone, and their conjugated glucuronides, for rats and for human subjects. The PBTK modeling study explicitly simulates critical metabolic pathways in the gastrointestinal and hepatic systems. Metabolic events such as dehydrogenation and glucuronidation of the chemicals, which have direct effects on the accumulation and elimination of the toxic compounds, have been quantified. The PBTK model considers urinary and fecal excretion and biliary recirculation and compares the predicted biomarkers of blood, urinary and fecal concentrations with published in vivo measurements in rats and human subjects. Additionally, the toxicokinetic model has been coupled with a novel probabilistic dietary exposure model and applied to the Jersey Girl Study (JGS), which involved measurement of mycoestrogens as urinary biomarkers, in a cohort of young girls in New Jersey, USA. A probabilistic exposure characterization for the study population has been conducted and the predicted urinary concentrations have been compared to measurements considering inter-individual physiological and dietary variability. The in vivo measurements from the JGS fall within the high and low predicted distributions of biomarker values corresponding to dietary exposure estimates calculated by the probabilistic modeling system. The work described here is the first of its kind to present a comprehensive framework developing estimates of potential exposures to mycotoxins and linking them with biologically relevant doses and biomarker measurements, including a systematic characterization of uncertainties in exposure and dose estimation for a vulnerable population.
Collapse
Affiliation(s)
- Dwaipayan Mukherjee
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
| | - Steven G. Royce
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Jocelyn A. Alexander
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sastry S. Isukapalli
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Elisa V. Bandera
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Helmut Zarbl
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Panos G. Georgopoulos
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, United States of America
- Department of Environmental and Occupational Medicine, Rutgers University - Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey, United States of America
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wróbel AM, Gregoraszczuk EŁ. Differential effect of methyl-, butyl- and propylparaben and 17β-estradiol on selected cell cycle and apoptosis gene and protein expression in MCF-7 breast cancer cells and MCF-10A non-malignant cells. J Appl Toxicol 2014; 34:1041-50. [DOI: 10.1002/jat.2978] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Anna Maria Wróbel
- Department of Physiology and Toxicology of Reproduction Institute of Zoology; Jagiellonian University in Kraków; Gronostajowa 9 30-387 Krakow Poland
| | - Ewa Łucja Gregoraszczuk
- Department of Physiology and Toxicology of Reproduction Institute of Zoology; Jagiellonian University in Kraków; Gronostajowa 9 30-387 Krakow Poland
| |
Collapse
|
22
|
Okoh VO, Felty Q, Parkash J, Poppiti R, Roy D. Reactive oxygen species via redox signaling to PI3K/AKT pathway contribute to the malignant growth of 4-hydroxy estradiol-transformed mammary epithelial cells. PLoS One 2013; 8:e54206. [PMID: 23437041 PMCID: PMC3578838 DOI: 10.1371/journal.pone.0054206] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 12/10/2012] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the effects of 17-β-estradiol (E2)-induced reactive oxygen species (ROS) on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2), a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes - nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor - NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast lesions.
Collapse
MESH Headings
- Animals
- Azoles/pharmacology
- Catalase/metabolism
- Catechols/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Proliferation/drug effects
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/pathology
- Collagen/pharmacology
- Colony-Forming Units Assay
- Dose-Response Relationship, Drug
- Epithelial Cells/enzymology
- Epithelial Cells/pathology
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogens, Catechol/pharmacology
- Fulvestrant
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Isoindoles
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/enzymology
- Mammary Glands, Human/pathology
- Mice
- Models, Biological
- Neoplasm Invasiveness
- Organoselenium Compounds/pharmacology
- Oxidation-Reduction/drug effects
- Phenotype
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
Collapse
Affiliation(s)
- Victor O. Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, Florida, United States of America
| | - Quentin Felty
- Department of Environmental and Occupational Health, Florida International University, Miami, Florida, United States of America
| | - Jai Parkash
- Department of Environmental and Occupational Health, Florida International University, Miami, Florida, United States of America
| | - Robert Poppiti
- Department of Pathology, Florida International University, Miami, Florida, United States of America
| | - Deodutta Roy
- Department of Environmental and Occupational Health, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
23
|
Abstract
BACKGROUND Endocrine disrupters have been shown to affect the male and female reproductive systems and to alter potential fertility. OBJECTIVES This study was conducted to evaluate the effect of a continuous-release pellet containing 12 mg of zeranol for 30 days on the testes and the prostate gland of mature male rats. RESULTS Zeranol treatment induced significant decrease of the testes and the prostate gland weights which were associated with a remarkable atrophy of the testicular seminiferous tubules and prominent regression of the glandular compartment of the prostate gland. However, zeranol treatment increased the thickness of the periductal layer of stromal cells of the prostate gland from a thin layer that express intense immunostaining of SM-actin and mild vimentin to a thicker layer of cells that exhibited intense immunostaining for both SM-actin and vimentin. CONCLUSION These findings suggest that zeranol-induced changes to the prostate gland could result from either a direct effect of zeranol on the prostate gland or an indirect effect by interfering with testosterone production through disruption of testicular function.
Collapse
Affiliation(s)
- Falah Shidaifat
- Laboratory of Reproductive and Molecular Endocrinology, College of Veterinary Medicine, The Ohio State University , 1900 Coffey Road, Columbus, OH , USA
| | | | | |
Collapse
|
24
|
Justenhoven C. Polymorphisms of Phase I and Phase II Enzymes and Breast Cancer Risk. Front Genet 2012; 3:258. [PMID: 23226154 PMCID: PMC3508624 DOI: 10.3389/fgene.2012.00258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/05/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is a complex disease which is provoked by a multitude of exogenous and endogenous factors including genetic variations. Recent genome-wide association studies identified a set of more than 18 novel low penetrant susceptibility loci, however, a limitation of this powerful approach is the hampered analysis of polymorphisms in DNA sequences with a high degree of similarity to other genes or pseudo genes. Since this common feature affects the majority of the highly polymorphic genes encoding phase I and II enzymes the retrieval of specific genotype data requires adapted amplification methods. With regard to breast cancer these genes are of certain interest due to their involvement in the metabolism of carcinogens like exogenous genotoxic compounds or steroid hormones. The present review summarizes the observed effects of functional genetic variants of phase I and II enzymes in well designed case control studies to shed light on their contribution to breast cancer risk.
Collapse
Affiliation(s)
- Christina Justenhoven
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology Stuttgart, Germany ; University of Tübingen Tübingen, Germany
| |
Collapse
|
25
|
Zhang Q, Jin J, Zhong Q, Yu X, Levy D, Zhong S. ERα mediates alcohol-induced deregulation of Pol III genes in breast cancer cells. Carcinogenesis 2012; 34:28-37. [PMID: 23054611 DOI: 10.1093/carcin/bgs316] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The association of alcohol consumption and breast cancer is more pronounced in cases that are positive for estrogen receptor (ER+) than in cases that are negative (ER-). Its mechanism remains to be determined. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular tRNAs and 5S rRNA production, increasing translational capacity to promote cell transformation and tumor formation. Here, we report that alcohol increases Pol III gene transcription in both normal and cancer breast cell lines. The induction in ER+ breast cancer cells (MCF-7) is significantly higher than in ER- normal breast cells (MCF-10A, MCF-10F and MCF-12A) and is correlated with ER expression. E2 causes <2-fold increase in Pol III gene transcription. The addition of ethanol to this system now produces a 10-15-fold increase. Ethanol increases ERα expression, resulting in an increase in Brf1 protein and mRNA levels. In addition, ethanol markedly stimulates phosphorylation of JNK1, but not JNK2. Inhibition of JNK1 decreases ERE-Luc reporter activity and represses expression of ERα, Brf1 and Pol III genes. Reduction of ERα by its small interfering RNA represses Brf1 and Pol III gene transcription. Ethanol with E2 produces larger and more numerous colonies. Repression of ERα or Brf1 inhibits alcohol-induced cell transformation. Together, these results support the idea that alcohol increases ERα expression through JNK1 to elevate Brf1 expression and Pol III gene transcription to bring about greater phenotypic changes. These studies demonstrate that ERα mediates Pol III gene transcription through Brf1, suggesting that ERα may play a critical role in alcohol-induced deregulation of Pol III genes in ER+ breast cancer development.
Collapse
Affiliation(s)
- Qingsong Zhang
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
26
|
Seitz HK, Pelucchi C, Bagnardi V, La Vecchia C. Epidemiology and pathophysiology of alcohol and breast cancer: Update 2012. Alcohol Alcohol 2012; 47:204-12. [PMID: 22459019 DOI: 10.1093/alcalc/ags011] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIMS To update epidemiological data on alcohol and breast cancer, with special emphasis on light alcohol consumption, and to review mechanisms of alcohol mediated mammary carcinogenesis. METHODS For epidemiological data, in November 2011 we performed a literature search in various bibliographic databases, and we conducted a meta-analysis of data on light alcohol drinking. Relevant mechanistic studies were also reviewed to November 2011. RESULTS A significant increase of the order of 4% in the risk of breast cancer is already present at intakes of up to one alcoholic drink/day. Heavy alcohol consumption, defined as three or more drinks/day, is associated with an increased risk by 40-50%. This translates into up to 5% of breast cancers attributable to alcohol in northern Europe and North America for a total of approximately 50,000 alcohol-attributable cases of breast cancer worldwide. Up to 1-2% of breast cancers in Europe and North America are attributable to light drinking alone, given its larger prevalence in most female populations when compared with heavy drinking. Alcohol increases estrogen levels, and estrogens may exert its carcinogenic effect on breast tissue either via the ER or directly. Other mechanisms may include acetaldehyde, oxidative stress, epigenetic changes due to a disturbed methyl transfer and decreased retinoic acid concentrations associated with an altered cell cycle. CONCLUSIONS Women should not exceed one drink/day, and women at elevated risk for breast cancer should avoid alcohol or consume alcohol occasionally only.
Collapse
Affiliation(s)
- Helmut K Seitz
- Centre of Alcohol Research, University of Heidelberg, Germany.
| | | | | | | |
Collapse
|
27
|
Abstract
Zearalenone (ZEN) is a non-steroidal mycoestrogen that widely contaminates agricultural products. ZEN and its derivatives share similar molecular mechanisms and activity with estrogens and interact with ERα and ERβ leading to changes in the reproductive system in both animals and humans. The reduced form of ZEN, α-ZEA ralenol, has been used as an anabolic agent for animals and also proposed as hormonal replacement therapy in postmenopausal women. Furthermore, both zearelanol ZEN and derivatives have been patented as oral contraceptives. ZEN has been widely used in the United States since 1969 to improve fattening rates in cattle by increasing growth rate and feed conversion efficiency. Evidence of human harm from this practice is provided by observations of central precocious puberty. As a result, this practice has been banned by the European Union. As ZEN has been associated with breast enlargement in humans, it has been included in many bust-enhancing dietary supplements but epidemiological evidence is lacking with regard to breast cancer risk. Extensive work with human breast cancer cell lines has shown estrogenic stimulation in those possessing ER but a reduction in DMBA-induced breast cancers in rodents given ZEN. Protein disulfide isomerase provides a molecular biomarker of dietary exposure to ZEN and its derivatives allowing the detection and control of harmful food intake. The interaction of ZEN with anti-estrogens, anticancer agents and antioxidants requires further investigation.
Collapse
Affiliation(s)
- A Pazaiti
- 1st Department of Surgery, University of Athens, Laiko Hospital, Athens, Greece
| | | | | |
Collapse
|
28
|
Lee YM, Lee JY, Ho CC, Hong QS, Yu SL, Tzeng CR, Yang PC, Chen HW. miRNA-34b as a tumor suppressor in estrogen-dependent growth of breast cancer cells. Breast Cancer Res 2011; 13:R116. [PMID: 22113133 PMCID: PMC3326558 DOI: 10.1186/bcr3059] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/06/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023] Open
Abstract
Introduction Estrogen is involved in several physiological and pathological processes through estrogen receptor (ER)-mediated transcriptional gene regulation. miRNAs (miRs), which are noncoding RNA genes, may respond to estrogen and serve as posttranscriptional regulators in tumorigenic progression, especially in breast cancer; however, only limited information about this possibility is available. In the present study, we identified the estrogen-regulated miR-34b and investigated its functional role in breast cancer progression. Methods Estrogen-regulated miRNAs were identified by using a TaqMan low density array. Our in vivo Tet-On system orthotopic model revealed the tumor-suppressive ability of miR-34b. Luciferase reporter assays and chromatin immunoprecipitation assay demonstrated miR-34b were regulated by p53-ER interaction. Results In this study, we identified one such estrogen downregulated miRNA, miR-34b, as an oncosuppressor that targets cyclin D1 and Jagged-1 (JAG1) in an ER+/wild-type p53 breast cancer cell line (MCF-7), as well as in ovarian and endometrial cells, but not in ER-negative or mutant p53 breast cancer cell lines (T47D, MBA-MB-361 and MDA-MB-435). There is a negative association between ERα and miR-34b expression levels in ER+ breast cancer patients. Tet-On induction of miR-34b can cause inhibition of tumor growth and cell proliferation. Also, the overexpression of miR-34b inhibited ER+ breast tumor growth in an orthotopic mammary fat pad xenograft mouse model. Further validation indicated that estrogen's inhibition of miR-34b expression was mediated by interactions between ERα and p53, not by DNA methylation regulation. The xenoestrogens diethylstilbestrol and zeranol also showed similar estrogenic effects by inhibiting miR-34b expression and by restoring the protein levels of the miR-34b targets cyclin D1 and JAG1 in MCF-7 cells. Conclusions These findings reveal that miR-34b is an oncosuppressor miRNA requiring both ER+ and wild-type p53 phenotypes in breast cancer cells. These results improve our ability to develop new therapeutic strategies to target the complex estrogenic pathway in human breast cancer progression through miRNA regulation.
Collapse
Affiliation(s)
- Yee-Ming Lee
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No, 1, Sec, 1, Ren-Ai Road, Taipei, 100, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zeranol down-regulates p53 expression in primary cultured human breast cancer epithelial cells through epigenetic modification. Int J Mol Sci 2011; 12:1519-32. [PMID: 21673905 PMCID: PMC3111616 DOI: 10.3390/ijms12031519] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 01/30/2011] [Accepted: 02/12/2011] [Indexed: 01/10/2023] Open
Abstract
Epidemiological studies have suggested that there are many risk factors associated with breast cancer. Silencing tumor suppressor genes through epigenetic alterations play critical roles in breast cancer initiation, promotion and progression. As a growth promoter, Zeranol (Z) has been approved by the FDA and is widely used to enhance the growth of beef cattle in the United States. However, the safety of Z use as a growth promoter is still under debate. In order to provide more evidence to clarify this critical health issue, the current study investigated the effect of Z on the proliferation of primary cultured human normal and cancerous breast epithelial cells (PCHNBECs and PCHBCECs, respectively) isolated from the same patient using MTS assay, RT-PCR and Western blot analysis. We also conducted an investigation regarding the mechanisms that might be involved. Our results show that Z is more potent to stimulate PCHBCEC growth than PCHNBEC growth. The stimulatory effects of Z on PCHBCECs and PCHBCECs may be mediated by its down-regulating expression of the tumor suppressor gene p53 at the mRNA and protein levels. Further investigation showed that the expression of DNA methylatransferase 1 mRNA and protein levels is up-regulated by treatment with Z in PCHBCECs as compared to PCHNBECs, which suggests a role of Z in epigenetic modification involved in the regulation of p53 gene expression in PCHBCECs. Our experimental results imply the potentially adverse health effect of Z in breast cancer development. Further study is continuing in our laboratory.
Collapse
|
30
|
Affiliation(s)
- Sandra V Fernandez
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA.
| |
Collapse
|
31
|
Xu P, Ye W, Zhong S, Jen R, Li H, Feng E, Lin SH, Liu JY, Lin YC. Zeranol may increase the risk of leptin-induced neoplasia in human breast. Oncol Lett 2010; 2:101-108. [PMID: 22870137 DOI: 10.3892/ol.2010.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/01/2010] [Indexed: 11/06/2022] Open
Abstract
Breast cancer and obesity are serious health problems and their relationship has been studied for many years. Leptin is mainly secreted by adipocytes and plays a key role in breast cancer development. Leptin expression is up-regulated in obese individuals and promotes breast cancer cell growth. On the other hand, exposure to environmental estrogens has been found to be directly related to breast cancer. Zeranol (Z) is a non-steroidal anabolic growth promoter used in the beef industry in the US. This study focused on the evaluation of Z and Z-containing sera (ZS) and its adverse health risk to human consumption of Z-containing meat produced from Z-implanted beef cattle. We hypothesized that Z increases the risk of breast neoplasia in women, particularly in obese women. A cell proliferation assay, ELISA analysis, RT-PCR and Western blot analysis were conducted. Our study demonstrated that Z and ZS collected from Z-implanted heifers stimulated the proliferation of primary cultured human normal breast epithelial cells (HNBECs) by up-regulating cyclin D1 expression. Leptin increased the sensitivity of HNBECs to Z, and Z increased the ability of HNBECs to secrete leptin. These results suggest an interaction between leptin and Z in HNBECs. Furthermore, Z may play a role in leptin-induced breast neoplasia.
Collapse
Affiliation(s)
- Pingping Xu
- Laboratory of Reproductive and Molecular Endocrinology, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Okoh V, Deoraj A, Roy D. Estrogen-induced reactive oxygen species-mediated signalings contribute to breast cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:115-33. [PMID: 21036202 DOI: 10.1016/j.bbcan.2010.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 01/01/2023]
Abstract
Elevated lifetime estrogen exposure is a major risk factor for breast cancer. Recent advances in the understanding of breast carcinogenesis clearly indicate that induction of estrogen receptor (ER) mediated signaling is not sufficient for the development of breast cancer. The underlying mechanisms of breast susceptibility to estrogen's carcinogenic effect remain elusive. Physiologically achievable concentrations of estrogen or estrogen metabolites have been shown to generate reactive oxygen species (ROS). Recent data implicated that these ROS induced DNA synthesis, increased phosphorylation of kinases, and activated transcription factors, e.g., AP-1, NRF1, E2F, NF-kB and CREB of non-genomic pathways which are responsive to both oxidants and estrogen. Estrogen-induced ROS by increasing genomic instability and by transducing signal through influencing redox sensitive transcription factors play important role (s) in cell transformation, cell cycle, migration and invasion of the breast cancer. The present review discusses emerging data in support of the role of estrogen induced ROS-mediated signaling pathways which may contribute in the development of breast cancer. It is envisioned that estrogen induced ROS mediated signaling is a key complementary mechanism that drives the carcinogenesis process. ROS mediated signaling however occurs in the context of other estrogen induced processes such as ER-mediated signaling and estrogen reactive metabolite-associated genotoxicity. Importantly, estrogen-induced ROS can function as independent reversible modifiers of phosphatases and activate kinases to trigger the transcription factors of downstream target genes which participate in cancer progression.
Collapse
Affiliation(s)
- Victor Okoh
- Department of Environmental and Occupational Health, Florida International University, Miami, FL, USA
| | | | | |
Collapse
|
33
|
Ye W, Xu P, Zhong S, Threlfall WR, Frasure C, Feng E, Li H, Lin SH, Liu JY, Lin YC. Serum harvested from heifers one month post-zeranol implantation stimulates MCF-7 breast cancer cell growth. Exp Ther Med 2010; 1:963-968. [PMID: 22993626 DOI: 10.3892/etm.2010.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 09/15/2010] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is a serious disease in the US. Numerous risk factors have been linked to this disease. The safety of using growth promoters, such as zeranol, remains under debate due to the lack of sufficient in vitro and in vivo evidence. Using CellTiter 96(™) Aqueous Non-Radioactive Cell Proliferation assay, real-time PCR and Western blot analysis, we evaluated the effects of sera harvested from experimental and control heifers before and after one month of zeranol implantation on the growth of human breast cancer cell line MCF-7 as well as the involved mechanisms. We found that sera harvested from the heifers following one month of zeranol implantation were more mitogenically potent in stimulating the proliferation of MCF-7 cells when compared to sera harvested from the same heifers before zeranol implantation and the control heifers. Further investigation found that dextran-coated charcoal suppressed the stimulating effect of the sera on MCF-7 cell growth. The mechanisms involved in the MCF-7 cell proliferation stimulated by zeranol-containing sera may include up-regulation of cyclin D1 and down-regulation of p53 and p21 expression at the mRNA and protein levels in the cells. The results suggest that the consumption of beef products containing biologically active residues of zeranol or its metabolites is a risk linked to breast cancer development. Further investigation is required in order to clarify this critical issue.
Collapse
Affiliation(s)
- Weiping Ye
- Laboratory of Reproductive and Molecular Endocrinology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Song X, Siriwardhana N, Rathore K, Lin D, Wang HCR. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Mol Carcinog 2010; 49:450-63. [PMID: 20146248 DOI: 10.1002/mc.20616] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Breast cancer is the most common type of cancer among women in northern America and northern Europe; dietary prevention is a cost-efficient strategy to reduce the risk of this disease. To identify dietary components for the prevention of human breast cancer associated with long-term exposure to environmental carcinogens, we studied the activity of grape seed proanthocyanidin extract (GSPE) in suppression of cellular carcinogenesis induced by repeated exposures to low doses of environmental carcinogens. We used combined carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and benzo[a]pyrene (B[a]P), at picomolar concentrations, to repeatedly treat noncancerous, human breast epithelial MCF10A cells to induce cellular acquisition of cancer-related properties of reduced dependence on growth factors, anchorage-independent growth, and acinar-conformational disruption. Using these properties as biological target endpoints, we verified the ability of GSPE to suppress combined NNK- and B[a]P-induced precancerous cellular carcinogenesis and identified the minimal, noncytotoxic concentration of GSPE required for suppressing precancerous cellular carcinogenesis. We also identified that hydroxysteroid-11-beta-dehydrogenase 2 (HSD11B2) may play a role in NNK- and B[a]P-induced precancerous cellular carcinogenesis, and its expression may act as a molecular target endpoint in GSPE's suppression of precancerous cellular carcinogenesis. And, the ability of GSPE to reduce gene expression of cytochrome-P450 enzymes CYP1A1 and CYP1B1, which can bioactivate NNK and B[a]P, possibly contributes to the preventive mechanism for GSPE in suppression of precancerous cellular carcinogenesis. Our model system with biological and molecular target endpoints verified the value of GSPE for the prevention of human breast cell carcinogenesis induced by repeated exposures to low doses of multiple environmental carcinogens.
Collapse
Affiliation(s)
- Xiaoyu Song
- Department of Comparative Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | |
Collapse
|
35
|
Lu F, Zahid M, Wang C, Saeed M, Cavalieri EL, Rogan EG. Resveratrol prevents estrogen-DNA adduct formation and neoplastic transformation in MCF-10F cells. Cancer Prev Res (Phila) 2009; 1:135-45. [PMID: 19138946 DOI: 10.1158/1940-6207.capr-08-0037] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure to estrogens is a risk factor for breast cancer. Specific estrogen metabolites may initiate breast cancer and other cancers. Genotoxicity may be caused by cytochrome P450 (CYP)-mediated oxidation of catechol estrogens to quinones that react with DNA to form depurinating estrogen-DNA adducts. CYP1B1 favors quinone formation by catalyzing estrogen 4-hydroxylation, whereas NAD(P)H quinone oxidoreductase 1 (NQO1) catalyzes the protective reduction of quinones to catechols. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces CYP1B1 expression through the aryl hydrocarbon receptor (AhR). Resveratrol has anticancer effects in diverse in vitro and in vivo systems and is an AhR antagonist that decreases CYP expression but induces NQO1 expression. The chemopreventive effect of resveratrol on breast cancer initiation was investigated in MCF-10F cells. Its effects on estrogen metabolism and formation of estrogen-DNA adducts were analyzed in culture medium by high-performance liquid chromatography, whereas its effects on CYP1B1 and NQO1 were determined by immunoblotting and immunostaining. The antitransformation effects of resveratrol were also examined. TCDD induced expression of CYP1B1 and its redistribution in the nucleus and cytoplasm. Concomitant treatment with resveratrol dose-dependently suppressed TCDD-induced expression of CYP1B1, mainly in the cytoplasm. Resveratrol dose- and time-dependently induced expression of NQO1. NQO1 is mainly in the perinuclear membrane of control cells, but resveratrol induced NQO1 and its intracellular redistribution, which involves nuclear translocation of nuclear factor erythroid 2-related factor 2. Resveratrol decreased estrogen metabolism and blocked formation of DNA adducts in cells treated with TCDD and/or estradiol. Resveratrol also suppressed TCDD and/or estradiol-induced cell transformation. Thus, resveratrol can prevent breast cancer initiation by blocking multiple sites in the estrogen genotoxicity pathway.
Collapse
Affiliation(s)
- Fang Lu
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | | | | | | | | | | |
Collapse
|
36
|
Doyle AE, Yager JD. Catechol-O-methyltransferase: effects of the val108met polymorphism on protein turnover in human cells. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:27-33. [PMID: 17980711 PMCID: PMC2198850 DOI: 10.1016/j.bbagen.2007.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 10/01/2007] [Accepted: 10/03/2007] [Indexed: 11/25/2022]
Abstract
A single nucleotide polymorphism in the human COMT (catechol-O-methyltransferase) gene has been associated with increased risk for breast cancer and several CNS diseases and disorders. The G to A polymorphism causes a valine (val) to methionine (met) substitution at codon 108 soluble - (S)/158 membrane - (MB)-COMT, generating alleles encoding high and low-activity forms of the enzyme, COMT H and COMT L, respectively. Tissues and cells with a COMT LL genotype have decreased COMT activity compared to COMT HH cells. Previously, we reported that the decreased activity was due to decreased amounts of S-COMT L protein in human hepatocytes. In this study, we investigated the role of S-COMT protein synthesis and turnover as determinates of reduced COMT protein in COMT LL compared to COMT HH cells. No association between S-COMT protein synthesis and COMT genotype was detected. Using a pulse-chase protocol, the half-life of S-COMT H was determined to be 4.7 days, which was considerably longer than expected from the half-lives of other phase 2 enzyme proteins. The half-life of S-COMT L compared to S-COMT H protein was significantly shorter at 3.0 days, but the difference was affected by the medium used during the chase period. These results suggest that increased turnover may contribute to reduced COMT activity in cells and tissues from COMT LL individuals. Subtle differences appear to be able to affect the stability of the S-COMT L protein, and this may contribute to the differences observed in epidemiological studies on the association of this polymorphism with breast cancer risk.
Collapse
Affiliation(s)
- Anne E. Doyle
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Toxicology, Baltimore, MD 21205, U.S.A
| | - James D. Yager
- Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Toxicology, Baltimore, MD 21205, U.S.A
| |
Collapse
|
37
|
Siriwardhana N, Choudhary S, Wang HCR. Precancerous model of human breast epithelial cells induced by NNK for prevention. Breast Cancer Res Treat 2007; 109:427-41. [PMID: 17653854 DOI: 10.1007/s10549-007-9666-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 06/26/2007] [Indexed: 12/01/2022]
Abstract
Epidemiological investigations have suggested that exposure to tobacco and environmental carcinogens increase the risk of developing human breast cancer. In light of the chronic exposure of human breast tissues to tobacco and environmental carcinogens, we have taken an approach of analyzing cellular changes of immortalized non-cancerous human breast epithelial MCF10A cells during the acquisition of cancerous properties induced by repeated exposure to the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) at a low concentration of 100 pM. We found that accumulated exposures of MCF10A cells to NNK result in progressive development of cellular carcinogenesis from a stage of immortalization to precancerous sub-stages of acquiring a reduced dependence on growth factors and acquiring anchorage-independent growth. Using Matrigel for MCF10A cells to form size-restricted acini, we detected that exposures to NNK resulted in altered acinar conformation. Analysis of gene expression profiles by cDNA microarrays revealed up- and down-regulated genes associated with NNK-induced carcinogenesis. Using this cellular carcinogenesis model as a target system to identify anticancer agents, we detected that grape seed proanthocyanadin extract significantly suppressed NNK-induced carcinogenesis of MCF10A cells. Our studies provide a carcinogenesis-cellular model mimicking the accumulative exposure to carcinogens in the progression of human breast epithelial cells to increasingly acquire cancerous properties, as likely occurs in the development of precancerous human breast cells. Our cellular model also serves as a cost-efficient, in vitro system to identify preventive agents that inhibit human breast cell carcinogenesis induced by chronic exposures to carcinogens.
Collapse
Affiliation(s)
- Nalin Siriwardhana
- Anticancer Molecular Oncology Laboratory, Department of Pathobiology, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
38
|
Opinion of the Scientific Panel on contaminants in the food chain (CONTAM) related to hormone residues in bovine meat and meat products. EFSA J 2007. [DOI: 10.2903/j.efsa.2007.510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Abstract
Estrogens are considered to play a major role in promoting the proliferation of both the normal and the neoplastic breast epithelium. Their role as breast carcinogens has long been suspected and recently confirmed by epidemiological studies. Three major mechanisms are postulated to be involved in their carcinogenic effects: stimulation of cellular proliferation through their receptor-mediated hormonal activity, direct genotoxic effects by increasing mutation rates through a cytochrome P450-mediated metabolic activation, and induction of aneuploidy. Recently it has been fully demonstrated that estrogens are carcinogenic in the human breast by testing in an experimental system the natural estrogen 17beta-estradiol (E(2)) by itself or its metabolites 2-hydroxy, 4-hydroxy, and 16-a-hydroxy-estradiol (2-OH-E(2), 4-OH-E(2), and 16-alpha-OH E(2)), respectively, by inducing neoplastic transformation of human breast epithelial cells (HBEC) MCF-10F in vitro to a degree at least similar to that induced by the chemical carcinogen benz(a)pyrene (BP). Neither Tamoxyfen (TAM) nor ICI-182,780 abrogated the transforming efficiency of estrogen or its metabolites. The E(2) induced expression of anchorage independent growth, loss of ductulogenesis in collagen, invasiveness in Matrigel, is associated with the loss of 9p11-13 and only invasive cells that exhibited a 4p15.3-16 deletion were tumorigenic. Tumors were poorly differentiated ER-alpha and progesterone receptor negative adenocarcinomas that expressed keratins, EMA and E-cadherin. The E(2) induced tumors and tumor-derived cell lines exhibited loss of chromosome 4, deletions in chromosomes 3p12.3-13, 8p11.1-21, 9p21-qter, and 18q, and gains in 1p, and 5q15-qter. The induction of complete transformation of the human breast epithelial cell MCF-10F in vitro confirms the carcinogenicity of E(2), supporting the concept that this hormone could act as an initiator of breast cancer in women. This model provides a unique system for understanding the genomic changes that intervene for leading normal cells to tumorigenesis and for testing the functional role of specific genomic events taking place during neoplastic transformation.
Collapse
Affiliation(s)
- J Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
40
|
Russo J, Fernandez SV, Russo PA, Fernbaugh R, Sheriff FS, Lareef HM, Garber J, Russo IH. 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 2006; 20:1622-34. [PMID: 16873885 DOI: 10.1096/fj.05-5399com] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Breast cancer is a malignancy whose dependence on estrogen exposure has long been recognized even though the mechanisms whereby estrogens cause cancer are not clearly understood. This work was performed to determine whether 17beta-estradiol (E2), the predominant circulating ovarian steroid, is carcinogenic in human breast epithelial cells and whether nonreceptor mechanisms are involved in the initiation of breast cancer. For this purpose, the effect of four 24 h alternate periods of 70 nM E2 treatment of the estrogen receptor alpha (ER-alpha) negative MCF-10F cell line on the in vitro expression of neoplastic transformation was evaluated. E2 treatment induced the expression of anchorage-independent growth, loss of ductulogenesis in collagen, invasiveness in Matrigel, and loss of 9p11-13. Only invasive cells that exhibited a 4p15.3-16 deletion were tumorigenic. Tumors were poorly differentiated ER-alpha and progesterone receptor-negative adenocarcinomas that expressed keratins, EMA, and E-cadherin. Tumors and tumor-derived cell lines exhibited loss of chromosome 4, deletions in chromosomes 3p12.3-13, 8p11.1-21, 9p21-qter, and 18q, and gains in 1p, and 5q15-qter. The induction of complete transformation of MCF-10F cells in vitro confirms the carcinogenicity of E2, supporting the concept that this hormone could act as an initiator of breast cancer in women. This model provides a unique system for understanding the genomic changes that intervene for leading normal cells to tumorigenesis and for testing the functional role of specific genomic events taking place during neoplastic transformation.
Collapse
Affiliation(s)
- Jose Russo
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, Pennsylvania 19111, USA.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Enriori PJ, Vázquez SM, Chiauzzi V, Pérez C, Fischer CR, Gori JR, Etkin AE, Charreau E, Calandra RS, Lüthy IA. Breast cyst fluids increase the proliferation of breast cell lines in correlation with their hormone and growth factor concentration. Clin Endocrinol (Oxf) 2006; 64:20-8. [PMID: 16402924 DOI: 10.1111/j.1365-2265.2005.02408.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE AND DESIGN Gross cystic disease (GCD) of the breast is reported to occur in 7% of women in the developed world and, although not premalignant, is thought to be associated with an increased risk of breast cancer. Hormone and growth factor concentration levels were measured in breast cyst fluid (BCF) to correlate them with their mitogenic activity in tumour (MCF-7) or nontransformed (MCF-10A) cells. RESULTS Oestradiol (E2), oestrone (E1), E2-sulfate (E2-S), E1-sulfate (E1-S) and epidermal growth factor (EGF) concentrations were, as expected, significantly higher in type I than in type II cysts, while transforming growth factor-beta 2 (TGF-beta2) showed higher levels in type II cysts. Fifty per cent of the BCF samples stimulated [3H]-thymidine incorporation into MCF-7 cells while 34.5% inhibited this parameter. In MCF-10A cells, most BCF samples were stimulatory (85%). E2, E1 and EGF concentrations in BCF samples correlated significantly and positively with cell proliferation in MCF-7 cells, whereas a significant negative correlation was found for TGF-beta2. In MCF-10A cells, only E2-S and E1-S exhibited significant positive correlation, whereas a significant negative correlation was found for TGF-beta2. Progesterone (Pg), E2 and EGF incubated under the same conditions had a stimulatory effect on [3H]-thymidine incorporation into MCF-7 cells, whereas TGF-beta2 inhibited this parameter. Pg, E2, E1 and EGF significantly stimulated this parameter in MCF-10A cells. CONCLUSIONS The stimulatory action of BCF on cell proliferation in a model of human breast epithelial cells could partly explain the increased incidence of breast cancer in cyst-bearing women.
Collapse
Affiliation(s)
- Pablo J Enriori
- Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fernandez SV, Russo IH, Russo J. Estradiol and its metabolites 4-hydroxyestradiol and 2-hydroxyestradiol induce mutations in human breast epithelial cells. Int J Cancer 2005; 118:1862-8. [PMID: 16287077 DOI: 10.1002/ijc.21590] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An elevated incidence of breast cancer in women has been associated with prolonged exposure to high levels of estrogens. Our laboratory demonstrated that treatment of the immortalized human breast epithelial cells MCF-10F with 17beta-estradiol (E2), 4-hydroxyestradiol (4-OHE2) or 2-hydroxyestradiol (2-OHE2) induces phenotypical changes indicative of neoplastic transformation. MCF-10F cells treated with E2, 4-OHE2 or 2-OHE2 formed colonies in agar methocel and lost their ductulogenic capacity in collagen, expressing phenotypes similar to those induced by the carcinogen benzo[a]pyrene. To investigate whether the transformation phenotypes were associated with genomic changes, cells treated with E2, 4-OHE2 or 2-OHE2 at different doses were analyzed using microsatellite markers. Since microsatellite instability (MSI) and loss of heterozygosity (LOH) in chromosomes 13 and 17 have been reported in human breast carcinomas, we tested these parameters in MCF-10F cells treated with E2, 2-OHE2, or 4-OHE2 alone or in combination with the antiestrogen ICI182780. MCF-10F cells treated with E2 or 4-OHE2, either alone or in combination with ICI182780, exhibited LOH in the region 13q12.3 with the marker D13S893 located at approximately 0.8 cM telomeric to BRCA2. Cells treated with E2 or 4-OHE2 at doses of 0.007 and 70 nM and 2-OHE2 only at a higher dose (3.6 microM) showed a complete loss of 1 allele with D13S893. For chromosome 17, differences were found using the marker TP53-Dint located in exon 4 of p53. Cells treated with E2 or 4-OHE2 at doses of 0.007 nM and 70 nM and 2-OHE2 only at a higher dose (3.6 microM) exhibited a 5 bp deletion in p53 exon 4. Our results show that E2 and its catechol estrogen metabolites are mutagenic in human breast epithelial cells. ICI182780 did not prevent these mutations, indicating that the carcinogenic effect of E2 is mainly through its reactive metabolites 4-OHE2 and 2-OHE2, with 4-OHE2 and E2 being mutagenic at lower doses than 2-OHE2.
Collapse
Affiliation(s)
- Sandra V Fernandez
- Breast Cancer Research Laboratory, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Grant S Frazer
- College of Veterinary Medicine, The Ohio State University, A100 Sisson Hall, 1920 Coffey Road, Columbus, OH 43210, USA.
| |
Collapse
|