1
|
Hawkins NJ. Assessing the predictability of fungicide resistance evolution through in vitro selection. JOURNAL OF PLANT DISEASES AND PROTECTION : SCIENTIFIC JOURNAL OF THE GERMAN PHYTOMEDICAL SOCIETY (DPG) 2024; 131:1257-1264. [PMID: 38947557 PMCID: PMC11213724 DOI: 10.1007/s41348-024-00906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 07/02/2024]
Abstract
Plant pathogens are highly adaptable, and have evolved to overcome control measures including multiple classes of fungicides. More effective management requires a thorough understanding of the evolutionary drivers leading to resistance. Experimental evolution can be used to investigate evolutionary processes over a compressed timescale. For fungicide resistance, applications include predicting resistance ahead of its emergence in the field, testing potential outcomes under multiple different fungicide usage scenarios or comparing resistance management strategies. This review considers different experimental approaches to in vitro selection, and their suitability for addressing different questions relating to fungicide resistance. When aiming to predict the evolution of new variants, mutational supply is especially important. When assessing the relative fitness of different variants under fungicide selection, growth conditions such as temperature may affect the results as well as fungicide choice and dose. Other considerations include population size, transfer interval, competition between genotypes and pathogen reproductive mode. However, resistance evolution in field populations has proven to be less repeatable for some fungicide classes than others. Therefore, even with optimal experimental design, in some cases the most accurate prediction from experimental evolution may be that the exact evolutionary trajectory of resistance will be unpredictable.
Collapse
|
2
|
LaPanse AJ, Burch TA, Tamburro JM, Traller JC, Pinowska A, Posewitz MC. Adaptive laboratory evolution for increased temperature tolerance of the diatom Nitzschia inconspicua. Microbiologyopen 2023; 12:e1343. [PMID: 36825881 PMCID: PMC9791160 DOI: 10.1002/mbo3.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Outdoor microalgal cultivation for the production of valuable biofuels and bioproducts typically requires high insolation and strains with high thermal (>37°C) tolerance. While some strains are naturally thermotolerant, other strains of interest require improved performance at elevated temperatures to enhance industrial viability. In this study, adaptive laboratory evolution (ALE) was performed for over 300 days using consecutive 0.5°C temperature increases in a constant temperature incubator to attain greater thermal tolerance in the industrially relevant diatom Nitzschia inconspicua str. Hildebrandi. The adapted strain was able to grow at a constant temperature of 37.5°C; whereas this constant temperature was lethal to the parental control, which had an upper-temperature boundary of 35.5°C before adaptive evolution. Several high-temperature clonal isolates were obtained from the evolved population following ALE, and increased temperature tolerance was observed in the clonal, parent, and non-clonal adapted cultures. This ALE method demonstrates the development of enhanced industrial algal strains without the production of genetically modified organisms (GMOs).
Collapse
Affiliation(s)
| | - Tyson A. Burch
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Jacob M. Tamburro
- Department of Quantitative Biosciences and EngineeringColorado School of MinesGoldenColoradoUSA
| | | | | | | |
Collapse
|
3
|
Hansson EM, Childs DZ, Beckerman AP. Mesostats—A multiplexed, low-cost, do-it-yourself continuous culturing system for experimental evolution of mesocosms. PLoS One 2022; 17:e0272052. [PMID: 35901067 PMCID: PMC9333204 DOI: 10.1371/journal.pone.0272052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
Microbial experimental evolution allows studying evolutionary dynamics in action and testing theory predictions in the lab. Experimental evolution in chemostats (i.e. continuous flow through cultures) has recently gained increased interest as it allows tighter control of selective pressures compared to static batch cultures, with a growing number of efforts to develop systems that are easier and cheaper to construct. This protocol describes the design and construction of a multiplexed chemostat array (dubbed “mesostats”) designed for cultivation of algae in 16 concurrent populations, specifically intended for studying adaptation to herbicides. We also present control data from several experiments run on the system to show replicability, data illustrating the effects of common issues like leaks, contamination and clumps, and outline possible modifications and adaptations of the system for future research.
Collapse
Affiliation(s)
- Erika M. Hansson
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- * E-mail:
| | - Dylan Z. Childs
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Andrew P. Beckerman
- School of Biosciences, The University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| |
Collapse
|
4
|
Bonnefond H, Lie Y, Lacour T, Saint-Jean B, Carrier G, Pruvost E, Talec A, Bernard O, Sciandra A. Dynamical Darwinian selection of a more productive strain of Tisochrysis lutea. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Melero-Jiménez IJ, Bañares-España E, Reul A, Flores-Moya A, García-Sánchez MJ. Detection of the maximum resistance to the herbicides diuron and glyphosate, and evaluation of its phenotypic cost, in freshwater phytoplankton. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105973. [PMID: 34600397 DOI: 10.1016/j.aquatox.2021.105973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
One of the most important anthropogenic impacts on freshwater aquatic ecosystems close to intensive agriculture areas is the cumulative increase in herbicide concentrations. The threat is especially relevant for phytoplankton organisms because they have the same physiological targets as the plants for which herbicides have been designed. This led us to explore the evolutionary response of three phytoplanktonic species to increasing concentrations of two herbicides and its consequences in terms of growth and photosynthesis performance. Specifically, we used an experimental ratchet protocol to investigate the differential evolution and the limit of resistance of a cyanobacterium (Microcystis aeruginosa) and two chlorophyceans (Chlamydomonas reinhardtii and Dictyosphaerium chlorelloides) to two herbicides in worldwide use: glyphosate and diuron. Initially, the growth rate of M. aeruginosa and D. chlorelloides was completely inhibited when they were exposed to a dose of 0.23 ppm diuron or 40 ppm glyphosate, whereas a higher concentration of both herbicides (0.46 ppm diuron or 90 ppm glyphosate) was necessary to abolish C. reinhardtii growth. However, after running a ratchet protocol, the resistance of the three species to both herbicides increased by an adaptation process. M. aeruginosa and D. chlorelloides were able to grow at 1.84 ppm diuron and 80 ppm glyphosate and C. reinhardtii proliferated at twice these concentrations. Herbicide-resistant strains showed lower growth rates than their wild-type counterparts in the absence of herbicides, as well as changes on morphology and differences on photosynthetic pigment content. Besides, herbicide-resistant cells generally showed a lower photosynthetic performance than wild-type strains in the three species. These results indicate that the introduction of both herbicides in freshwater ecosystems could produce a diminution of primary production due to the selection of herbicide-resistant mutants, that would exhibit lower photosynthetic performance than wild-type populations.
Collapse
Affiliation(s)
- Ignacio J Melero-Jiménez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - Elena Bañares-España
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Andreas Reul
- Departamento de Ecología y Geología, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Antonio Flores-Moya
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María J García-Sánchez
- Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
6
|
LaPanse AJ, Krishnan A, Posewitz MC. Adaptive Laboratory Evolution for algal strain improvement: methodologies and applications. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Melero‐Jiménez IJ, Martín‐Clemente E, García‐Sánchez MJ, Bañares‐España E, Flores‐Moya A. The limit of resistance to salinity in the freshwater cyanobacterium Microcystis aeruginosa is modulated by the rate of salinity increase. Ecol Evol 2020; 10:5045-5055. [PMID: 32551080 PMCID: PMC7297762 DOI: 10.1002/ece3.6257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
The overall mean levels of different environmental variables are changing rapidly in the present Anthropocene, in some cases creating lethal conditions for organisms. Under this new scenario, it is crucial to know whether the adaptive potential of organisms allows their survival under different rates of environmental change. Here, we used an eco-evolutionary approach, based on a ratchet protocol, to investigate the effect of environmental change rate on the limit of resistance to salinity of three strains of the toxic cyanobacterium Microcystis aeruginosa. Specifically, we performed two ratchet experiments in order to simulate two scenarios of environmental change. In the first scenario, the salinity increase rate was slow (1.5-fold increase), while in the second scenario, the rate was faster (threefold increase). Salinity concentrations ranging 7-10 gL-1 NaCl (depending on the strain) inhibited growth completely. However, when performing the ratchet experiment, an increase in salinity resistance (9.1-13.6 gL-1 NaCl) was observed in certain populations. The results showed that the limit of resistance to salinity that M. aeruginosa strains were able to reach depended on the strain and on the rate of environmental change. In particular, a higher number of populations were able to grow under their initial lethal salinity levels when the rate of salinity increment was slow. In future scenarios of increased salinity in natural freshwater bodies, this could have toxicological implications due to the production of microcystin by this species.
Collapse
Affiliation(s)
| | - Elena Martín‐Clemente
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| | | | - Elena Bañares‐España
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| | - Antonio Flores‐Moya
- Departamento de Botánica y Fisiología VegetalFacultad de CienciasUniversidad de MálagaMálagaSpain
| |
Collapse
|
8
|
Baker KG, Radford DT, Evenhuis C, Kuzhiumparam U, Ralph PJ, Doblin MA. Thermal niche evolution of functional traits in a tropical marine phototroph. JOURNAL OF PHYCOLOGY 2018; 54:799-810. [PMID: 29901841 DOI: 10.1111/jpy.12759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/10/2018] [Indexed: 05/28/2023]
Abstract
Land-based plants and ocean-dwelling microbial phototrophs known as phytoplankton, are together responsible for almost all global primary production. Habitat warming associated with anthropogenic climate change has detrimentally impacted marine primary production, with the effects observed on regional and global scales. In contrast to slower-growing higher plants, there is considerable potential for phytoplankton to evolve rapidly with changing environmental conditions. The energetic constraints associated with adaptation in phytoplankton are not yet understood, but are central to forecasting how global biogeochemical cycles respond to contemporary ocean change. Here, we demonstrate a number of potential trade-offs associated with high-temperature adaptation in a tropical microbial eukaryote, Amphidinium massartii (dinoflagellate). Most notably, the population became high-temperature specialized (higher fitness within a narrower thermal envelope and higher thermal optimum), and had a greater nutrient requirement for carbon, nitrogen and phosphorus. Evidently, the energetic constraints associated with living at elevated temperature alter competiveness along other environmental gradients. While high-temperature adaptation led to an irreversible change in biochemical composition (i.e., an increase in fatty acid saturation), the mechanisms underpinning thermal evolution in phytoplankton remain unclear, and will be crucial to understanding whether the trade-offs observed here are species-specific or are representative of the evolutionary constraints in all phytoplankton.
Collapse
Affiliation(s)
- Kirralee G Baker
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Dale T Radford
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Christian Evenhuis
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Unnikrishnan Kuzhiumparam
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Peter J Ralph
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Martina A Doblin
- C3-Climate Change Cluster, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| |
Collapse
|
9
|
Effect of Applied Pesticide on the Microbial System of Agriculture Soil. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.1.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Esperanza M, Seoane M, Rioboo C, Herrero C, Cid Á. Chlamydomonas reinhardtii cells adjust the metabolism to maintain viability in response to atrazine stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:64-72. [PMID: 26022557 DOI: 10.1016/j.aquatox.2015.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 06/04/2023]
Abstract
Chlamydomonas reinhardtii cells were exposed to a sublethal concentration of the widespread herbicide atrazine for 3 and 24h. Physiological parameters related to cellular energy status, such as cellular activity and mitochondrial and cytoplasmic membrane potentials, monitored by flow cytometry, were altered in microalgal cells exposed to 0.25μM of atrazine. Transcriptomic analyses, carried out by RNA-Seq technique, displayed 12 differentially expressed genes between control cultures and atrazine-exposed cultures at both tested times. Many cellular processes were affected, but the most significant changes were observed in genes implicated in amino acid catabolism and respiratory cellular process. Obtained results suggest that photosynthesis inhibition by atrazine leads cells to get energy through a heterotrophic metabolism to maintain their viability.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
11
|
Coe S, Pereira N, Geden JV, Clarkson GJ, Fox DJ, Napier RM, Neve P, Shipman M. Ring closing metathesis reactions of α-methylene-β-lactams: application to the synthesis of a simplified phyllostictine analogue with herbicidal activity. Org Biomol Chem 2015; 13:7655-63. [DOI: 10.1039/c5ob00890e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first RCM reactions of α-methylene-β-lactams are used to construct strained macrocycles that mimic elements of phyllostictine A.
Collapse
Affiliation(s)
- Samuel Coe
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | | - David J. Fox
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | - Paul Neve
- School of Life Sciences
- University of Warwick
- Coventry
- UK
- Rothamsted Research
| | | |
Collapse
|
12
|
Neve P, Busi R, Renton M, Vila-Aiub MM. Expanding the eco-evolutionary context of herbicide resistance research. PEST MANAGEMENT SCIENCE 2014; 70:1385-93. [PMID: 24723489 DOI: 10.1002/ps.3757] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 05/26/2023]
Abstract
The potential for human-driven evolution in economically and environmentally important organisms in medicine, agriculture and conservation management is now widely recognised. The evolution of herbicide resistance in weeds is a classic example of rapid adaptation in the face of human-mediated selection. Management strategies that aim to slow or prevent the evolution of herbicide resistance must be informed by an understanding of the ecological and evolutionary factors that drive selection in weed populations. Here, we argue for a greater focus on the ultimate causes of selection for resistance in herbicide resistance studies. The emerging fields of eco-evolutionary dynamics and applied evolutionary biology offer a means to achieve this goal and to consider herbicide resistance in a broader and sometimes novel context. Four relevant research questions are presented, which examine (i) the impact of herbicide dose on selection for resistance, (ii) plant fitness in herbicide resistance studies, (iii) the efficacy of herbicide rotations and mixtures and (iv) the impacts of gene flow on resistance evolution and spread. In all cases, fundamental ecology and evolution have the potential to offer new insights into herbicide resistance evolution and management.
Collapse
Affiliation(s)
- Paul Neve
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
13
|
The limit of the genetic adaptation to copper in freshwater phytoplankton. Oecologia 2014; 175:1179-88. [DOI: 10.1007/s00442-014-2963-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/05/2014] [Indexed: 10/25/2022]
|
14
|
Stachowski-Haberkorn S, Jérôme M, Rouxel J, Khelifi C, Rincé M, Burgeot T. Multigenerational exposure of the microalga Tetraselmis suecica to diuron leads to spontaneous long-term strain adaptation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:380-388. [PMID: 23896289 DOI: 10.1016/j.aquatox.2013.06.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
To investigate the ability of microalgae to develop stable, long-term resistance to herbicides, the marine microalga Tetraselmis suecica was exposed to the herbicide diuron (5 μg/L) for a 43-generation exposure period followed by a 12-generation depuration phase. During the first 25 generations, diuron-exposed cultures showed doubling times ranging from 1.95 to 2.6 days, which was 2 to 2.5-fold longer than control cultures. Between generations 25 and 38, during diuron exposure, two out of the three exposed cultures exhibited a spontaneous drop in doubling time. These results provided evidence of culture adaptation to diuron. To assess persistence of the diuron adaptation observed on growth performance, one of the adapted cultures (D3) was maintained for 12 months in unexposed conditions and then tested by a second, short-term exposure to diuron 5 μg/L, in parallel with a control culture (C1) for six generations. Flow cytometry analyses were used to monitor cell density, viability, morphology, relative chlorophyll content and intracellular reactive oxygen species (ROS) level. Under these conditions, diuron induced a strong increase of doubling time in exposed-C1 cultures (2.5-fold longer than unexposed-C1 cultures), but no significant increase occurred in exposed D3-cultures compared with unexposed D3- and unexposed C1-cultures, showing the persistence of adaptation in the previously-exposed strain D3. Intracellular ROS level showed the same trend. Significant differences were observed between these strains, with weaker effects of diuron on strain D3 compared with strain C1: forward scatter (FSC), representing relative cell size, decreased in exposed cultures (67.8% and 95% of the controls for C1 and D3, respectively), whereas FL3 as relative chlorophyll content increased in exposed cultures (115.6% and 108.6% of the controls for C1 and D3, respectively). Results of second exposure to diuron revealed that the adaptation of strain D3 had persisted after 12 months of depuration, as no growth impairment was observed. This study demonstrates the possible appearance of stable diuron resistance in microalgae in cases of strong, multigenerational chronic exposure to this herbicide in polluted environments.
Collapse
|
15
|
Lagator M, Vogwill T, Mead A, Colegrave N, Neve P. Herbicide mixtures at high doses slow the evolution of resistance in experimentally evolving populations of Chlamydomonas reinhardtii. THE NEW PHYTOLOGIST 2013; 198:938-945. [PMID: 23432427 DOI: 10.1111/nph.12195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The widespread evolution of resistance to herbicides is a pressing issue in global agriculture. Evolutionary principles and practices are key to the management of this threat to global food security. The application of mixtures of herbicides has been advocated as an anti-resistance strategy, without substantial empirical support for its validation. We evolved experimentally populations of the unicellular green chlorophyte, Chlamydomonas reinhardtii, to minimum inhibitory concentrations (MICs) of single-herbicide modes of action and to pair-wise and three-way mixtures between different herbicides at various total combined doses. Herbicide mixtures were most effective when each component was applied at or close to its MIC. When doses were high, increasing the number of mixture components was also effective in reducing the evolution of resistance. Employing mixtures at low combined doses did not retard resistance evolution, even accelerating the evolution of resistance to some components. At low doses, increasing the number of herbicides in the mixture tended to select for more generalist resistance (cross-resistance). Our results reinforce findings from the antibiotic resistance literature and confirm that herbicide mixtures can be very effective for resistance management, but that mixtures should only be employed where the economic and environmental context permits the applications of high combined doses.
Collapse
Affiliation(s)
- Mato Lagator
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tom Vogwill
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Andrew Mead
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nick Colegrave
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | - Paul Neve
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
16
|
Liang Y, Zhao X, Chi Z, Rover M, Johnston P, Brown R, Jarboe L, Wen Z. Utilization of acetic acid-rich pyrolytic bio-oil by microalga Chlamydomonas reinhardtii: reducing bio-oil toxicity and enhancing algal toxicity tolerance. BIORESOURCE TECHNOLOGY 2013; 133:500-506. [PMID: 23455221 DOI: 10.1016/j.biortech.2013.01.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 06/01/2023]
Abstract
This work was to utilize acetic acid contained in bio-oil for growth and lipid production of the microalga Chlamydomonas reinhardtii. The acetic acid-rich bio-oil fraction derived from fast pyrolysis of softwood contained 26% (w/w) acetic acid, formic acid, methanol, furfural, acetol, and phenolics as identified compounds, and 13% (w/w) unidentified compounds. Among those identified compounds, phenolics were most inhibitory to algal growth, followed by furfural and acetol. To enhance the fermentability of the bio-oil fraction, activated carbon was used to reduce the toxicity of the bio-oil, while metabolic evolution was used to enhance the toxicity tolerance of the microalgae. Combining activated carbon treatment and using evolved algal strain resulted in significant algal growth improvement. The results collectively showed that fast pyrolysis-fermentation process was a viable approach for converting biomass into fuels and chemicals.
Collapse
Affiliation(s)
- Yi Liang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Romero-Lopez J, Lopez-Rodas V, Costas E. Estimating the capability of microalgae to physiological acclimatization and genetic adaptation to petroleum and diesel oil contamination. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 124-125:227-237. [PMID: 22982500 DOI: 10.1016/j.aquatox.2012.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/02/2012] [Accepted: 08/04/2012] [Indexed: 06/01/2023]
Abstract
There is increasing scientific interest in how phytoplankton reacts to petroleum contamination, since crude oil and its derivatives are generating extensive contamination of aquatic environments. However, toxic effects of short-term petroleum exposure are more widely known than the adaptation of phytoplankton to long-term petroleum exposure. An analysis of short-term and long-term effects of petroleum exposure was done using experimental populations of freshwater (Scenedesmus intermedius and Microcystis aeruginosa) and marine (Dunaliella tertiolecta) microalgae isolated from pristine sites without crude oil product contamination. These strains were exposed to increased levels of petroleum and diesel oil. Short-term exposure to petroleum or diesel oil revealed a rapid inhibition of photosynthetic performance and cell proliferation in freshwater and marine phytoplankton species. A broad degree of inter-specific variation in lethal contamination level was observed. When different strains were exposed to petroleum or diesel oil over the long-term, the cultures showed massive destruction of the sensitive cells. Nonetheless, after further incubation, some cultures were able to grow again due to cells that were resistant to the toxins. By means of a fluctuation analysis, discrimination between cells that had become resistant due to physiological acclimatization and resistant cells arising from rare spontaneous mutations was accomplished. In addition, an analysis was done as to the maximum capacity of adaptation to a gradual contamination process. An experimental ratchet protocol was used, which maintains a strong selection pressure in a temporal scale up to several months over very large experimental populations of microalgae. Microalgae are able to survive to petroleum contamination as a result of physiological acclimatization without genetic changes. However, when petroleum concentration exceeds the physiological limits, survival depends exclusively on the occurrence on mutations that confer resistance and subsequent selection of these mutants. Finally, it is certain that further mutations and selection will ultimately determine adaptation of microalgae to the environmental forcing.
Collapse
Affiliation(s)
- Julia Romero-Lopez
- Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
18
|
Vogwill T, Lagator M, Colegrave N, Neve P. The experimental evolution of herbicide resistance in
Chlamydomonas reinhardtii
results in a positive correlation between fitness in the presence and absence of herbicides. J Evol Biol 2012; 25:1955-1964. [DOI: 10.1111/j.1420-9101.2012.02558.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T. Vogwill
- School of Life Sciences, University of Warwick, Coventry, UK
| | - M. Lagator
- School of Life Sciences, University of Warwick, Coventry, UK
| | - N. Colegrave
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - P. Neve
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
19
|
Lagator M, Vogwill T, Colegrave N, Neve P. Herbicide cycling has diverse effects on evolution of resistance in Chlamydomonas reinhardtii. Evol Appl 2012; 6:197-206. [PMID: 23467494 PMCID: PMC3586617 DOI: 10.1111/j.1752-4571.2012.00276.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/02/2012] [Indexed: 11/28/2022] Open
Abstract
Cycling pesticides has been proposed as a means of retarding the evolution of resistance, but its efficacy has rarely been empirically tested. We evolved populations of Chlamydomonas reinhardtii in the presence of three herbicides: atrazine, glyphosate and carbetamide. Populations were exposed to a weekly, biweekly and triweekly cycling between all three pairwise combinations of herbicides and continuously to each of the three herbicides. We explored the impacts of herbicide cycling on the rate of resistance evolution, the level of resistance selected, the cost of resistance and the degree of generality (cross-resistance) observed. Herbicide cycling resulted in a diversity of outcomes: preventing evolution of resistance for some combinations of herbicides, having no impacts for others and increasing rates of resistance evolution in some instances. Weekly cycling of atrazine and carbetamide resulted in selection of a generalist population. This population had a higher level of resistance, and this generalist resistance was associated with a cost. The level of resistance selected did not vary amongst other regimes. Costs of resistance were generally highest when cycling was more frequent. Our data suggest that the effects of herbicide cycling on the evolution of resistance may be more complex and less favourable than generally assumed.
Collapse
Affiliation(s)
- Mato Lagator
- School of Life Sciences, University of Warwick Coventry, UK
| | | | | | | |
Collapse
|
20
|
Huertas IE, Rouco M, López-Rodas V, Costas E. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc Biol Sci 2011; 278:3534-43. [PMID: 21508031 PMCID: PMC3189365 DOI: 10.1098/rspb.2011.0160] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the consequences of global warming in aquatic ecosystems are only beginning to be revealed, a key to forecasting the impact on aquatic communities is an understanding of individual species' vulnerability to increased temperature. Despite their microscopic size, phytoplankton support about half of the global primary production, drive essential biogeochemical cycles and represent the basis of the aquatic food web. At present, it is known that phytoplankton are important targets and, consequently, harbingers of climate change in aquatic systems. Therefore, investigating the capacity of phytoplankton to adapt to the predicted warming has become a relevant issue. However, considering the polyphyletic complexity of the phytoplankton community, different responses to increased temperature are expected. We experimentally tested the effects of warming on 12 species of phytoplankton isolated from a variety of environments by using a mechanistic approach able to assess evolutionary adaptation (the so-called ratchet technique). We found different degrees of tolerance to temperature rises and an interspecific capacity for genetic adaptation. The thermal resistance level reached by each species is discussed in relation to their respective original habitats. Our study additionally provides evidence on the most resistant phytoplankton groups in a future warming scenario.
Collapse
Affiliation(s)
- I Emma Huertas
- Instituto de Ciencias Marinas de Andalucía, CSIC, Polígono Río San Pedro, Puerto Real, Cádiz, Spain.
| | | | | | | |
Collapse
|
21
|
Huertas IE, Rouco M, López-Rodas V, Costas E. Estimating the capability of different phytoplankton groups to adapt to contamination: herbicides will affect phytoplankton species differently. THE NEW PHYTOLOGIST 2010; 188:478-487. [PMID: 20630023 DOI: 10.1111/j.1469-8137.2010.03370.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
• Investigating the differential capacity of the response of phytoplankton to human-induced environmental forcing has become a key issue to understanding further the future repercussions on the functioning of aquatic ecosystems. • The initial tolerance to the widely dispersed herbicide simazine was measured in diverse phytoplankton species. An experimental ratchet system maintaining large populations of dividing cells (which ensures the occurrence of rare spontaneous mutations that confer adaptation) and a strong selection pressure (which ensures the preservation of such mutations within the population) was later applied to estimate the capability of different groups of phytoplankton to adapt to simazine. • Initially, simazine doses between 0.05 and 0.15 ppm were able to inhibit 100% growth in all the species tested. However, a significant increase in simazine resistance was achieved in all derived populations during the ratchet experiment. The differential capacity for simazine adaptation was observed among the different species. • The capacity of different species to adapt to simazine can be explained in relation to taxonomic group, ploidy, growth rate and habitat preference. Haploid populations of continental Chlorophyta showed the greatest capacity to adapt to simazine. By contrast, populations of Haptophyta of open ocean regions were the group least capable of adapting to the herbicide.
Collapse
Affiliation(s)
- I E Huertas
- Instituto de Ciencias Marinas de Andalucía (CSIC), Polígono Río San Pedro s/n 11519 Puerto Real, Cádiz, Spain
| | | | | | | |
Collapse
|
22
|
Peña-Vázquez E, Pérez-Conde C, Costas E, Moreno-Bondi MC. Development of a microalgal PAM test method for Cu(II) in waters: comparison of using spectrofluorometry. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:1059-1065. [PMID: 20354900 DOI: 10.1007/s10646-010-0487-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/14/2010] [Indexed: 05/29/2023]
Abstract
Test methods are needed to monitor Cu concentrations in reservoirs and water supplies. Dictyosphaerium chlorelloides (Chlorophyta) cells were immobilized in a silicate sol-gel and the toxic effects of Cu(II) were examined using different techniques: fluorescence measurements (using a spectrofluorometer with an optic fiber coupled to a flow cell or a 96-well-plate reader) or by Pulse Amplitude Modulation (PAM) parameters using a portable instrument and the pulse saturation method. Fm' and qN were the most sensitive indicator parameters when performing Cu analysis in water. D. chlorelloides PAM biosensor presented a detection limit of 0.6 mg l(-1) for Cu(II), within the limits to establish if Cu concentrations exceeded regulatory levels. Moreover, a 1.9 mg Cu l(-1) (30 microM) resistant strain of the D. chlorelloides microalgae was produced in order to obtain more selectivity on the metal determination.
Collapse
Affiliation(s)
- E Peña-Vázquez
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
23
|
Abstract
Modern herbicides make major contributions to global food production by easily removing weeds and substituting for destructive soil cultivation. However, persistent herbicide selection of huge weed numbers across vast areas can result in the rapid evolution of herbicide resistance. Herbicides target specific enzymes, and mutations are selected that confer resistance-endowing amino acid substitutions, decreasing herbicide binding. Where herbicides bind within an enzyme catalytic site very few mutations give resistance while conserving enzyme functionality. Where herbicides bind away from a catalytic site many resistance-endowing mutations may evolve. Increasingly, resistance evolves due to mechanisms limiting herbicide reaching target sites. Especially threatening are herbicide-degrading cytochrome P450 enzymes able to detoxify existing, new, and even herbicides yet to be discovered. Global weed species are accumulating resistance mechanisms, displaying multiple resistance across many herbicides and posing a great challenge to herbicide sustainability in world agriculture. Fascinating genetic issues associated with resistance evolution remain to be investigated, especially the possibility of herbicide stress unleashing epigenetic gene expression. Understanding resistance and building sustainable solutions to herbicide resistance evolution are necessary and worthy challenges.
Collapse
Affiliation(s)
- Stephen B Powles
- Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|
24
|
Neve P, Vila-Aiub M, Roux F. Evolutionary-thinking in agricultural weed management. THE NEW PHYTOLOGIST 2009; 184:783-793. [PMID: 19780985 DOI: 10.1111/j.1469-8137.2009.03034.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Agricultural weeds evolve in response to crop cultivation. Nevertheless, the central importance of evolutionary ecology for understanding weed invasion, persistence and management in agroecosystems is not widely acknowledged. This paper calls for more evolutionarily-enlightened weed management, in which management principles are informed by evolutionary biology to prevent or minimize weed adaptation and spread. As a first step, a greater knowledge of the extent, structure and significance of genetic variation within and between weed populations is required to fully assess the potential for weed adaptation. The evolution of resistance to herbicides is a classic example of weed adaptation. Even here, most research focuses on describing the physiological and molecular basis of resistance, rather than conducting studies to better understand the evolutionary dynamics of selection for resistance. We suggest approaches to increase the application of evolutionary-thinking to herbicide resistance research. Weed population dynamics models are increasingly important tools in weed management, yet these models often ignore intrapopulation and interpopulation variability, neglecting the potential for weed adaptation in response to management. Future agricultural weed management can benefit from greater integration of ecological and evolutionary principles to predict the long-term responses of weed populations to changing weed management, agricultural environments and global climate.
Collapse
Affiliation(s)
- Paul Neve
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire, UK.
| | | | | |
Collapse
|
25
|
Collins S, Gardner A. Integrating physiological, ecological and evolutionary change: a Price equation approach. Ecol Lett 2009; 12:744-57. [DOI: 10.1111/j.1461-0248.2009.01340.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|