1
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Ruqa WA, Pennacchia F, Rusi E, Zoccali F, Bruno G, Talarico G, Barbato C, Minni A. Smelling TNT: Trends of the Terminal Nerve. Int J Mol Sci 2024; 25:3920. [PMID: 38612730 PMCID: PMC11011448 DOI: 10.3390/ijms25073920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
There is very little knowledge regarding the terminal nerve, from its implications in the involvement and pathogenesis of certain conditions, to its embryological origin. With this review, we try to summarize the most important evidence on the terminal nerve, aiming to clarify its anatomy and the various functions attributed to it, to better interpret its potential involvement in pathological processes. Recent studies have also suggested its potential role in the control of human reproductive functions and behaviors. It has been hypothesized that it plays a role in the unconscious perception of specific odors that influence autonomic and reproductive hormonal systems through the hypothalamic-pituitary-gonadal axis. We used the PubMed database and found different articles which were then selected independently by three authors. We found 166 articles, of which, after careful selection, only 21 were analyzed. The terminal nerve was always thought to be unimportant in our body. It was well studied in different types of animals, but few studies have been completed in humans. For this reason, its function remains unknown. Studies suggest a possible implication in olfaction due to the anatomical proximity with the olfactive nerve. Others suggest a more important role in reproduction and sexual behaviors. New emerging information suggests a possible role in Kallmann syndrome and COVID-19.
Collapse
Affiliation(s)
- Wael Abu Ruqa
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
| | - Fiorenza Pennacchia
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
| | - Eqrem Rusi
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (E.R.); (G.B.); (G.T.)
| | - Federica Zoccali
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
| | - Giuseppe Bruno
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (E.R.); (G.B.); (G.T.)
| | - Giuseppina Talarico
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Rome, Italy; (E.R.); (G.B.); (G.T.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Sapienza University Rome, Policlinico Umberto I, 00161 Roma, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Policlinico Umberto I, 00161 Roma, Italy; (W.A.R.); (F.P.); (F.Z.)
- Division of Otolaryngology-Head and Neck Surgery, ASL Rieti-Sapienza University, Ospedale San Camillo de Lellis, 02100 Rieti, Italy
| |
Collapse
|
3
|
Li L, Yin X, Wan Q, Rusitanmu D, Han J. Diet Diversity of the Fluviatile Masu Salmon, Oncorhynchus masou (Brevoort 1856) Revealed via Gastrointestinal Environmental DNA Metabarcoding and Morphological Identification of Contents. BIOLOGY 2024; 13:129. [PMID: 38392347 PMCID: PMC10887057 DOI: 10.3390/biology13020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Masu salmon, Oncorhynchus masou (Brevoort 1856), a commercially important fish species endemic to the North Pacific Ocean, attained national second-level protected animal status in China in 2021. Despite this recognition, knowledge about the trophic ecology of this fish remains limited. This study investigated the diet diversity of fluviatile Masu salmon in the Mijiang River, China, utilizing the gastrointestinal tract environmental DNA (GITeDNA) metabarcoding and morphological identification. The results revealed a diverse prey composition, ranging from terrestrial and aquatic invertebrates to small fishes. The fluviatile Masu salmon in general consumed noteworthily more aquatic prey than terrestrial prey. There were much more prey taxa and a higher diet diversity detected by GITeDNA metabarcoding than by morphological identification. GITeDNA metabarcoding showed that larger and older Masu salmon consumed significantly more terrestrial insects than aquatic prey species did, with 7366 verses 5012 sequences in the group of ≥20 cm, 9098 verses 4743 sequences in the group of ≥100 g and 11,540 verses 729 sequences in the group of age 3+. GITeDNA metabarcoding also showed size- and age-related diet diversity, indicating that the dietary niche breadth and trophic diversity of larger and older Masu salmon increased with food resources expanding to more terrestrial prey. Terrestrial invertebrates of riparian habitats play a vital role in the diet of fluviatile Masu salmon, especially larger individuals, highlighting their importance in connecting aquatic and terrestrial food webs. Conservation plans should prioritize the protection and restoration of riparian habitats. This study advocates the combined use of GITeDNA metabarcoding and morphological observation for a comprehensive understanding of fish diet diversity.
Collapse
Affiliation(s)
- Lijuan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No. 19 Xin Jie Kou Wai Avenue, Beijing 100875, China
| | - Xuwang Yin
- Liaoning Provincial Key Laboratory for Hydrobiology, College of Fisheries and Life Science, Dalian Ocean University, No. 52 Hei Shi Jiao Avenue, Dalian 116000, China
| | - Qianruo Wan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No. 19 Xin Jie Kou Wai Avenue, Beijing 100875, China
| | - Dilina Rusitanmu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No. 19 Xin Jie Kou Wai Avenue, Beijing 100875, China
| | - Jie Han
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, No. 19 Xin Jie Kou Wai Avenue, Beijing 100875, China
| |
Collapse
|
4
|
Rheinsmith SE, Quinn TP, Dittman AH, Yopak KE. Ontogenetic shifts in olfactory rosette morphology of the sockeye salmon, Oncorhynchus nerka. J Morphol 2023; 284:e21539. [PMID: 36433755 PMCID: PMC10107999 DOI: 10.1002/jmor.21539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/09/2022] [Accepted: 11/25/2022] [Indexed: 11/28/2022]
Abstract
Sockeye salmon, Oncorhynchus nerka, are anadromous, semelparous fish that breed in freshwater-typically in streams, and juveniles in most populations feed in lakes for 1 or 2 years, then migrate to sea to feed for 2 or 3 additional years, before returning to their natal sites to spawn and die. This species undergoes important changes in behavior, habitat, and morphology through these multiple life history stages. However, the sensory systems that mediate these migratory patterns are not fully understood, and few studies have explored changes in sensory function and specialization throughout ontogeny. This study investigates changes in the olfactory rosette of sockeye salmon across four different life stages (fry, parr, smolt, and adult). Development of the olfactory rosette was assessed by comparing total rosette size (RS), lamellae number, and lamellae complexity from scanning electron microscopy images across life stages, as a proxy for olfactory capacity. Olfactory RS increased linearly with lamellae number and body size (p < .001). The complexity of the rosette, including the distribution of sensory and nonsensory epithelia and the appearance of secondary lamellar folding, varied between fry and adult life stages. These differences in epithelial structure may indicate variation in odor-processing capacity between juveniles imprinting on their natal stream and adults using those odor memories in the final stages of homing to natal breeding sites. These findings improve our understanding of the development of the olfactory system throughout life in this species, highlighting that ontogenetic shifts in behavior and habitat may coincide with shifts in nervous system development.
Collapse
Affiliation(s)
- Sarah E Rheinsmith
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Kara E Yopak
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| |
Collapse
|
5
|
Garlov PE, Kuzik VV. The Involvement and Functional Role of the Fish Nonapeptidergic Preoptico-Hypophysial Neurosecretory System in Spawning Migrations. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Whitlock KE, Palominos MF. The Olfactory Tract: Basis for Future Evolution in Response to Rapidly Changing Ecological Niches. Front Neuroanat 2022; 16:831602. [PMID: 35309251 PMCID: PMC8927807 DOI: 10.3389/fnana.2022.831602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/01/2022] [Indexed: 01/10/2023] Open
Abstract
Within the forebrain the olfactory sensory system is unique from other sensory systems both in the projections of the olfactory tract and the ongoing neurogenic potential, characteristics conserved across vertebrates. Olfaction plays a crucial role in behaviors such as mate choice, food selection, homing, escape from predators, among others. The olfactory forebrain is intimately associated with the limbic system, the region of the brain involved in learning, memory, and emotions through interactions with the endocrine system and the autonomic nervous system. Previously thought to lack a limbic system, we now know that teleost fishes process emotions, have exceptional memories, and readily learn, behaviors that are often associated with olfactory cues. The association of neuromodulatory hormones, and more recently, the immune system, with odor cues underlies behaviors essential for maintenance and adaptation within natural ecological niches. Increasingly anthropogenic perturbations affecting ecosystems are impacting teleost fishes worldwide. Here we examine the role of the olfactory tract as the neural basis for the integration of environmental cues and resulting behaviors necessary for the regulation of biotic interactions that allow for future adaptation as the climate spins out of control.
Collapse
Affiliation(s)
- Kathleen E. Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaíso, Chile
- Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
- *Correspondence: Kathleen E. Whitlock
| | - M. Fernanda Palominos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de ValparaísoValparaíso, Chile
- Instituto de Neurociencia, Universidad de ValparaísoValparaíso, Chile
| |
Collapse
|
7
|
Gerlach G, Wullimann MF. Neural pathways of olfactory kin imprinting and kin recognition in zebrafish. Cell Tissue Res 2021; 383:273-287. [PMID: 33515290 PMCID: PMC7873017 DOI: 10.1007/s00441-020-03378-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Teleost fish exhibit extraordinary cognitive skills that are comparable to those of mammals and birds. Kin recognition based on olfactory and visual imprinting requires neuronal circuits that were assumed to be necessarily dependent on the interaction of mammalian amygdala, hippocampus, and isocortex, the latter being a structure that teleost fish are lacking. We show that teleosts—beyond having a hippocampus and pallial amygdala homolog—also have subpallial amygdalar structures. In particular, we identify the medial amygdala and neural olfactory central circuits related to kin imprinting and kin recognition corresponding to an accessory olfactory system despite the absence of a separate vomeronasal organ.
Collapse
Affiliation(s)
- Gabriele Gerlach
- Institute of Biology and Environmental Sciences, Carl-von-Ossietzky University, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity Oldenburg (HIFMB), 26129, Oldenburg, Germany.,Centre of Excellence for Coral Reef Studies and School of Marine and Tropical Biology, James Cook University, QLD, 4811, Townsville, Australia
| | - Mario F Wullimann
- Graduate School of Systemic Neurosciences & Department Biology II, Ludwig-Maximilians-Universität Munich, 82152, Planegg-Martinsried, Germany. .,Max-Planck-Institute for Neurobiology, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
8
|
Kato-Unoki Y, Umemura K, Tashiro K. Fingerprinting of hatchery haplotypes and acquisition of genetic information by whole-mitogenome sequencing of masu salmon, Oncorhynchus masou masou, in the Kase River system, Japan. PLoS One 2020; 15:e0240823. [PMID: 33147284 PMCID: PMC7641346 DOI: 10.1371/journal.pone.0240823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Stocking hatchery fish can lead to disturbance and extinction of the local indigenous population. Masu salmon Oncorhynchus masou masou, which is endemic across Japan, is a commonly stocked fish for recreational fishing in Japan. To conserve the indigenous resource, their genetic information is required, however, especially on Kyushu Island, the paucity of genetic information for this species has hindered proper resource management. Here, to identify hatchery mitogenome haplotypes of this species, stocked in the Kase River system, Kyushu Island, Japan, and to provide mitogenomic information for the resource management of this species, we analyzed the whole-mitogenome of masu salmon in this river system and several hatcheries potentially used for stocking. Whole-mitogenome sequencing clearly identified hatchery haplotypes, like fingerprints: among the 21 whole-mitogenome haplotypes obtained, six were determined to be hatchery haplotypes. These hatchery haplotypes were distributed in 13 out of 17 sites, suggesting that informal stocking of O. m. masou has been performed widely across this river system. The population of no hatchery haplotypes mainly belonged to clade I, a clade not found in Hokkaido Island in previous studies. Sites without hatchery haplotypes, and the non-hatchery haplotypes in clade I might be candidates for conservation as putative indigenous resources. The whole-mitogenome haplotype analysis also clarified that the same reared strain was used in multiple hatcheries. Analysis of molecular variance suggested that stocked hatchery haplotypes reduce the genetic variation among populations in this river system. It will be necessary to pay attention to genetic fluctuations so that the resources of this river system will not deteriorate further. The single nucleotide polymorphism data obtained here could be used for resource management in this and other rivers: e.g., for monitoring of informal stocking and stocked hatchery fishes, and/or putative indigenous resources.
Collapse
Affiliation(s)
- Yoko Kato-Unoki
- Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Keitaro Umemura
- Fishery Research Laboratory, Kyushu University, Fukuoka, Japan
| | - Kosuke Tashiro
- Laboratory of Molecular Gene Technology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
A sensitive period for the induction of host plant preference in a generalist herbivorous insect. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Hosseinzadeh M, Amiri BM, Poorbagher H, Perelló-Amorós M, Schlenk D. The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110809. [PMID: 32971289 DOI: 10.1016/j.cbpa.2020.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/07/2022]
Abstract
The olfactory function and imprinting of odorant information of the native stream play a critical role during the homing migration in fish. Pesticides may impair olfactory imprinting by altering olfaction and hormone functions. The present study aimed to determine how diazinon impacts olfactory epithelium morphology and cell composition, as well as hormone concentrations in Persian sturgeon (Acipenser persicus) during their lifetime in freshwater and, also during diazinon-free saltwater acclimation. Fingerlings were exposed to 0, 150, 300, and 450 μg·L-1 of diazinon in freshwater for 7 days and then were transferred to diazinon-free saltwater by gradually increasing salinity up to 12 ppt. After diazinon exposure, the number of olfactory receptor cells (ORCs) and goblet cells (GCs) decreased and increased, respectively, and the expression of G-protein αolf (GPαolf) and calmodulin-dependent kinase II delta (CAMKIId) was down-regulated and up-regulated, respectively. Transferring the fish to diazinon-free saltwater (8 and 12 ppt) raised the number of ORCs, supporting cells (SCs), GCs, and GPαolf expression, and down-regulated CAMKIId without any significant differences among treatments. Exposure to diazinon increased whole-body cortisol at the high concentration, while decreased whole-body thyroxin (T4) and triiodothyronine (T3) in a dose-dependent manner. Although whole-body T4 and T3 increased in all the treatments after saltwater acclimation (8 and 12 ppt), the level of these hormones was lower in fish that had been exposed to diazinon than in the control. These results showed that diazinon can disrupt olfactory epithelium morphology and cell composition as well as hormone concentrations, which in turn may affect the olfactory imprinting in Persian sturgeon fingerlings.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Bagher Mojazi Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran.
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Cresci A. A comprehensive hypothesis on the migration of European glass eels (Anguilla anguilla). Biol Rev Camb Philos Soc 2020; 95:1273-1286. [PMID: 32406196 DOI: 10.1111/brv.12609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
The European eel (Anguilla anguilla) is a catadromous fish that spawns in the Sargasso Sea. As larvae, eels cross the Atlantic Ocean and reach the continental slope of Europe, where they metamorphose into post-larval glass eels. These reach the continent, where some enter fresh water, some remain in marine waters, and others move between fresh and marine waters. After 5-25 years, as adult silver eels, they migrate back from fresh water to the Sargasso Sea to spawn and die. The glass eel stage is a critical step during which the eels cross the continental shelf and recruit to estuaries, where they facultatively transition to fresh water. Extensive research has been conducted to understand the behavioural mechanisms and environmental cues that aid and guide glass eels' migration. Glass eels follow odours and salinity gradients, they avoid light, and they change orientation and depth according to the tides. Recent work revealed that European glass eels also use Earth's magnetic field and lunar cues to orient. However, while we understand many aspects of their orientation behaviour, a unifying theory describing how glass eels migrate from the continental slope to fresh water is lacking. The goal of this review is to develop a comprehensive hypothesis on the migration of European glass eels, integrating previous knowledge on their orientation behaviour with recent findings on magnetic and celestial orientation. This review follows the journey of a hypothetical glass eel, describing the nature and the role of orientation cues involved at each step. I propose that, although glass eels have the sensory capacity to use multiple cues at any given time, their migration is based on a hierarchical succession of orientation mechanisms dictated by the physical properties of the environments that they occupy: (i) lunar and magnetic cues in pelagic water; (ii) chemical and magnetic cues in coastal areas; and (iii) odours, salinity, water current and magnetic cues in estuaries.
Collapse
Affiliation(s)
- Alessandro Cresci
- Department of Ocean Sciences, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL, 33149-1098, U.S.A.,Institute of Marine Research, Austevoll Research Station, Sauganeset 16, Storebø, N-5392, Norway
| |
Collapse
|
12
|
Cresci A, Durif CM, Paris CB, Shema SD, Skiftesvik AB, Browman HI. Glass eels ( Anguilla anguilla) imprint the magnetic direction of tidal currents from their juvenile estuaries. Commun Biol 2019; 2:366. [PMID: 31602415 PMCID: PMC6783477 DOI: 10.1038/s42003-019-0619-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.
Collapse
Affiliation(s)
- Alessandro Cresci
- Department of Ocean Sciences, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker, Causeway, FL 33149-1098 USA
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| | - Caroline M. Durif
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| | - Claire B. Paris
- Department of Ocean Sciences, Rosenstiel School of Marine & Atmospheric Science, 4600 Rickenbacker, Causeway, FL 33149-1098 USA
| | | | - Anne Berit Skiftesvik
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| | - Howard I. Browman
- Institute of Marine Research, Austevoll Research Station, Sauganeset 16, N-5392 Storebø, Norway
| |
Collapse
|
13
|
Ueda H. Sensory mechanisms of natal stream imprinting and homing in Oncorhynchus spp. JOURNAL OF FISH BIOLOGY 2019; 95:293-303. [PMID: 30101534 DOI: 10.1111/jfb.13775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Juvenile Oncorhynchus spp. can memorise their natal stream during downstream migration; juveniles migrate to feed during their growth phase and then they migrate long distances from their feeding habitat to their natal stream to reproduce as adults. Two different sensory mechanisms, olfaction and navigation, are involved in the imprinting and homing processes during short-distance migration within the natal stream and long-distance migration in open water, respectively. Here, olfactory functions are reviewed from both neurophysiological studies on the olfactory discrimination ability of natal stream odours and neuroendocrinological studies on the hormonal controlling mechanisms of olfactory memory formation and retrieval in the brain. These studies revealed that the long-term stability of dissolved free amino-acid composition in the natal stream is crucial for olfactory imprinting and homing. Additionally, the brain-pituitary-thyroid and brain-pituitary-gonadal hormones play important roles in olfactory memory formation and retrieval, respectively. Navigation functions were reviewed from physiological biotelemetry techniques with sensory interference experiments during the homing migration of anadromous and lacustrine Oncorhynchus spp. The experiments demonstrated that Oncorhynchus spp. used compass navigation mechanisms in the open water. These findings are discussed in relation to the sensory mechanisms involved in natal stream imprinting and homing in Oncorhynchus spp.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Hokkaido University, Sapporo, Japan
- Hokkaido Aquaculture Promotion Corporate, Sapporo, Japan
| |
Collapse
|
14
|
|
15
|
Foretich MA, Paris CB, Grosell M, Stieglitz JD, Benetti DD. Dimethyl Sulfide is a Chemical Attractant for Reef Fish Larvae. Sci Rep 2017; 7:2498. [PMID: 28566681 PMCID: PMC5451384 DOI: 10.1038/s41598-017-02675-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/18/2017] [Indexed: 11/29/2022] Open
Abstract
Transport of coral reef fish larvae is driven by advection in ocean currents and larval swimming. However, for swimming to be advantageous, larvae must use external stimuli as guides. One potential stimulus is "odor" emanating from settlement sites (e.g., coral reefs), signaling the upstream location of desirable settlement habitat. However, specific chemicals used by fish larvae have not been identified. Dimethyl sulfide (DMS) is produced in large quantities at coral reefs and may be important in larval orientation. In this study, a choice-chamber (shuttle box) was used to assess preference of 28 pre-settlement stage larvae from reef fish species for seawater with DMS. Swimming behavior was examined by video-tracking of larval swimming patterns in control and DMS seawater. We found common responses to DMS across reef fish taxa - a preference for water with DMS and change in swimming behavior - reflecting a switch to "exploratory behavior". An open water species displayed no response to DMS. Affinity for and swimming response to DMS would allow a fish larva to locate its source and enhance its ability to find settlement habitat. Moreover, it may help them locate prey accumulating in fronts, eddies, and thin layers, where DMS is also produced.
Collapse
Affiliation(s)
- Matthew A Foretich
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA.
| | - Claire B Paris
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| | - Daniel D Benetti
- Department of Marine Ecosystems and Society, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, 33149, USA
| |
Collapse
|
16
|
Ochs CL, Suntres T, Zygowska A, Pitcher T, Zielinski BS. Organization of glomerular territories in the olfactory bulb of post-embryonic wild chinook salmonOncorhynchus tshawytscha. J Morphol 2017; 278:464-474. [DOI: 10.1002/jmor.20641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Cory L. Ochs
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
| | - Tina Suntres
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
| | - Alexandra Zygowska
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
| | - Trevor Pitcher
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor; 2990 Riverside Dr. W. Windsor Ontario N9C 1A2
| | - Barbara S. Zielinski
- Department of Biological Sciences; University of Windsor; 401 Sunset Avenue Windsor Ontario Canada N9B 3P4
- Great Lakes Institute for Environmental Research, University of Windsor; 2990 Riverside Dr. W. Windsor Ontario N9C 1A2
| |
Collapse
|
17
|
Lennox RJ, Chapman JM, Souliere CM, Tudorache C, Wikelski M, Metcalfe JD, Cooke SJ. Conservation physiology of animal migration. CONSERVATION PHYSIOLOGY 2016; 4:cov072. [PMID: 27293751 PMCID: PMC4772791 DOI: 10.1093/conphys/cov072] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/09/2015] [Accepted: 12/24/2015] [Indexed: 05/21/2023]
Abstract
Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals.
Collapse
Affiliation(s)
- Robert J. Lennox
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Jacqueline M. Chapman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Christopher M. Souliere
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Christian Tudorache
- The Sylvius Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, Leiden 2333 BE, The Netherlands
| | - Martin Wikelski
- Department of Migration and Immuno-ecology, Max-Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Julian D. Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
- Institute of Environmental Science, Carleton University, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|
18
|
Palstra AP, Fukaya K, Chiba H, Dirks RP, Planas JV, Ueda H. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta. PLoS One 2015; 10:e0137404. [PMID: 26397372 PMCID: PMC4580453 DOI: 10.1371/journal.pone.0137404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.
Collapse
Affiliation(s)
- Arjan P. Palstra
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
- * E-mail:
| | - Kosuke Fukaya
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| | - Hiroaki Chiba
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ron P. Dirks
- ZF-screens BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Hiroshi Ueda
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| |
Collapse
|
19
|
Dufour K, Gutowsky LFG, Algera D, Zolderdo A, Magel JMT, Pleizier N, Dick M, Cooke SJ. An experimental test of in-season homing mechanisms used by nest-guarding male Largemouth Bass following displacement. Behav Processes 2015; 120:87-93. [PMID: 26327685 DOI: 10.1016/j.beproc.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/31/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022]
Abstract
Through manipulations of sensory functions, researchers have evaluated the various mechanisms by which migratory fish, particularly in lotic systems, locate natal spawning grounds. Comparatively less work has occurred on the ways by which fish in lentic systems locate spawning sites, and more specifically, the ways by which displaced fish in these systems locate their broods post spawning. The primary goal of this research was to determine the sensory mechanisms used by nesting, male Largemouth Bass to navigate back to their brood following displacement. This was accomplished by comparing the ability of visually impaired, olfactory impaired and geomagnetically impaired individuals to return to their nests after a 200 m displacement, relative to control males. All treatments were designed to be temporary and harmless. We analyzed the data using a generalized linear mixed model, and found that the probability of an olfactory impaired individual returning to his nest within a given time interval was significantly lower than the probability of a geomagnetically impaired individual returning. Overall, it appears as though olfaction is the most important sensory mechanism used for homing in Largemouth Bass.
Collapse
Affiliation(s)
- Kathryn Dufour
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Lee F G Gutowsky
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Dirk Algera
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Aaron Zolderdo
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jennifer M T Magel
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Naomi Pleizier
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Melissa Dick
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; Institute of Environmental Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
20
|
Genomic organization and evolution of the trace amine-associated receptor (TAAR) repertoire in Atlantic salmon (Salmo salar). G3-GENES GENOMES GENETICS 2014; 4:1135-41. [PMID: 24760389 PMCID: PMC4065256 DOI: 10.1534/g3.114.010660] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is strong evidence that olfaction plays a key role in the homing of salmonids to their natal spawning grounds, particularly in the freshwater phase. However, the physiological and genetic mechanisms behind this biological phenomenon are largely unknown. It has been shown that Pacific salmon respond to dissolved free amino acids from their natal streams. This indicates that amino acids comprise part of the olfcatory cues for imprinting and homing in salmonids. As trace amine-associated receptors (TAARs), a class of olfactory receptors that are close relatives of the G protein-coupled aminergic neurotransmitter receptors, recognize amino acid metabolites, we hypothesize that TAARs play an important role in salmon homing by recognizing olfactory cues. Therefore, to better understand homing in Atlantic salmon, we set out to characterize the TAAR genes in this species. We searched the first assembly of the Atlantic salmon genome for sequences resembling TAARs previously characterized in other teleosts. We identified 27 putatively functional TAAR genes and 25 putative TAAR pseudogenes, which cluster primarily on chromosome 21 (Ssa21). Phylogenetic analysis of TAAR amino acid sequences from 15 vertebrate species revealed the TAAR gene family arose after the divergence of jawed and jawless vertebrates. The TAARs group into three classes with salmon possessing class I and class III TAARs. Within each class, evolution is characterized by species-specific gene expansions, which is in contrast to what is observed in other olfactory receptor families (e.g., OlfCs and oras).
Collapse
|
21
|
Geurden I, Borchert P, Balasubramanian MN, Schrama JW, Dupont-Nivet M, Quillet E, Kaushik SJ, Panserat S, Médale F. The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS One 2013; 8:e83162. [PMID: 24386155 PMCID: PMC3873907 DOI: 10.1371/journal.pone.0083162] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/30/2013] [Indexed: 01/02/2023] Open
Abstract
Sustainable aquaculture, which entails proportional replacement of fish-based feed sources by plant-based ingredients, is impeded by the poor growth response frequently seen in fish fed high levels of plant ingredients. This study explores the potential to improve, by means of early nutritional exposure, the growth of fish fed plant-based feed. Rainbow trout swim-up fry were fed for 3 weeks either a plant-based diet (diet V, V-fish) or a diet containing fishmeal and fish oil as protein and fat source (diet M, M-fish). After this 3-wk nutritional history period, all V- or M-fish received diet M for a 7-month intermediate growth phase. Both groups were then challenged by feeding diet V for 25 days during which voluntary feed intake, growth, and nutrient utilisation were monitored (V-challenge). Three isogenic rainbow trout lines were used for evaluating possible family effects. The results of the V-challenge showed a 42% higher growth rate (P = 0.002) and 30% higher feed intake (P = 0.005) in fish of nutritional history V compared to M (averaged over the three families). Besides the effects on feed intake, V-fish utilized diet V more efficiently than M-fish, as reflected by the on average 18% higher feed efficiency (P = 0.003). We noted a significant family effect for the above parameters (P<0.001), but the nutritional history effect was consistent for all three families (no interaction effect, P>0.05). In summary, our study shows that an early short-term exposure of rainbow trout fry to a plant-based diet improves acceptance and utilization of the same diet when given at later life stages. This positive response is encouraging as a potential strategy to improve the use of plant-based feed in fish, of interest in the field of fish farming and animal nutrition in general. Future work needs to determine the persistency of this positive early feeding effect and the underlying mechanisms.
Collapse
Affiliation(s)
- Inge Geurden
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
- * E-mail:
| | - Peter Borchert
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences (WIAS), Wageningen University, Wageningen, The Netherlands
| | | | - Johan W. Schrama
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | | | - Edwige Quillet
- INRA, UMR1313 GABI Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Sadasivam J. Kaushik
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| | - Françoise Médale
- INRA, UR1067 NUMEA Nutrition, Métabolisme et Aquaculture, Aquapôle INRA, Saint Pée-sur-Nivelle, France
| |
Collapse
|
22
|
Dixson DL, Jones GP, Munday PL, Planes S, Pratchett MS, Thorrold SR. Experimental evaluation of imprinting and the role innate preference plays in habitat selection in a coral reef fish. Oecologia 2013; 174:99-107. [PMID: 23996231 DOI: 10.1007/s00442-013-2755-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
When facing decisions about where to live, juveniles have a strong tendency to choose habitats similar to where their parents successfully bred. Developing larval fishes can imprint on the chemical cues from their natal habitat. However, to demonstrate that imprinting is ecologically important, it must be shown that settlers respond and distinguish among different imprinted cues, and use imprinting for decisions in natural environments. In addition, the potential role innate preferences play compared to imprinted choices also needs to be examined. As environmental variability increases due to anthropogenic causes these two recognition mechanisms, innate and imprinting, could provide conflicting information. Here we used laboratory rearing and chemical choice experiments to test imprinting in larval anemonefish (Amphiprion percula). Individuals exposed to a variety of benthic habitat or novel olfactory cues as larvae either developed a preference for (spent >50% of their time in the cue) or increased their attraction to (increased preference but did not spend >50% of their time in the cue) the cue when re-exposed as settlers. Results indicate not only the capacity for imprinting but also the ability to adjust innate preferences after early exposure to a chemical cue. To test ecological relevance in the natural system, recruits were collected from anemones and related to their parents, using genetic parentage analysis, providing information on the natal anemone species and the species chosen at settlement. Results demonstrated that recruits did not preferentially return to their natal species, conflicting with laboratory results indicating the importance imprinting might have in habitat recognition.
Collapse
Affiliation(s)
- Danielle L Dixson
- School of Marine and Tropical Biology, James Cook University, 4811, Townsville, QLD, Australia,
| | | | | | | | | | | |
Collapse
|
23
|
Metcalfe J, Craig JF. Fish migration in the 21st century: opportunities and challenges. JOURNAL OF FISH BIOLOGY 2012; 81:361-364. [PMID: 22803714 DOI: 10.1111/j.1095-8649.2012.03388.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|