1
|
Sosiak C, Janovitz T, Perrichot V, Timonera JP, Barden P. Trait-Based Paleontological Niche Prediction Recovers Extinct Ecological Breadth of the Earliest Specialized Ant Predators. Am Nat 2023; 202:E147-E162. [PMID: 38033183 DOI: 10.1086/726739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractPaleoecological estimation is fundamental to the reconstruction of evolutionary and environmental histories. The ant fossil record preserves a range of species in three-dimensional fidelity and chronicles faunal turnover across the Cretaceous and Cenozoic; taxonomically rich and ecologically diverse, ants are an exemplar system to test new methods of paleoecological estimation in evaluating hypotheses. We apply a broad extant ecomorphological dataset to evaluate random forest machine learning classification in predicting the total ecological breadth of extinct and enigmatic hell ants. In contrast to previous hypotheses of extinction-prone arboreality, we find that hell ants were primarily leaf litter or ground-nesting and foraging predators, and by comparing ecospace occupations of hell ants and their extant analogs, we recover a signature of ecomorphological turnover across temporally and phylogenetically distinct lineages on opposing sides of the Cretaceous-Paleogene boundary. This paleoecological predictive framework is applicable across lineages and may provide new avenues for testing hypotheses over deep time.
Collapse
|
2
|
Gaillard C, MacPhee RDE, Forasiepi AM. Seeing through the eyes of the sabertooth Thylacosmilus atrox (Metatheria, Sparassodonta). Commun Biol 2023; 6:257. [PMID: 36944801 PMCID: PMC10030895 DOI: 10.1038/s42003-023-04624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
The evolution of mammalian vision is difficult to study because the actual receptor organs-the eyes-are not preserved in the fossil record. Orbital orientation and size are the traditional proxies for inferring aspects of ocular function, such as stereoscopy. Adaptations for good stereopsis have evolved in living predaceous mammals, and it is reasonable to infer that fossil representatives would follow the same pattern. This applies to the sparassodonts, an extinct group of South American hypercarnivores related to marsupials, with one exception. In the sabertooth Thylacosmilus atrox, the bony orbits were notably divergent, like those of a cow or a horse, and thus radically differing from conditions in any other known mammalian predator. Orbital convergence alone, however, does not determine presence of stereopsis; frontation and verticality of the orbits also play a role. We show that the orbits of Thylacosmilus were frontated and verticalized in a way that favored some degree of stereopsis and compensated for limited convergence in orbital orientation. The forcing function behind these morphological tradeoffs was the extraordinary growth of its rootless canines, which affected skull shape in Thylacosmilus in numerous ways, including relative orbital displacement.
Collapse
Affiliation(s)
- Charlène Gaillard
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina.
| | - Ross D E MacPhee
- Department of Mammalogy, American Museum of Natural History, 200 Central Park West, 10024-5102, New York, NY, USA
| | - Analía M Forasiepi
- Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CCT-CONICET Mendoza, Av. Ruiz Leal s/n, Parque General San Martín, CP5500, Mendoza, Argentina
| |
Collapse
|
3
|
Anatomy and phylogeny of a new small macraucheniid (Mammalia: Litopterna) from the Bahía Inglesa Formation (late Miocene), Atacama Region, Northern Chile. J MAMM EVOL 2023. [DOI: 10.1007/s10914-022-09646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
AbstractWe describe a new macraucheniine macraucheniid, Micrauchenia saladensis gen. et sp. nov., from the late Miocene (Huayquerian SALMA). This is the first litoptern from Bahía Inglesa Formation, Chile. The specimen includes a partial mandible, cervical and thoracic vertebrae fragments, and portions of the forelimbs (a scapula fragment, an ulna-radius fragment, seven carpals, three metapodials, two proximal phalanges and four intermediate phalanges). The postcranial anatomy of Micrauchenia saladensis is consistent with terrestrial and cursorial locomotion, which suggests an allochthonous position of this specimen within the marine Bahía Inglesa Formation. The fusion of the ulna and radius and the presence of a radial aliform expansion align Micrauchenia with other macraucheniines, with which it shares these features. We interpret the fusion of the ulna and radius as a cursorial specialization and the aliform expansion as an adaptation for strong flexion movements and to resist higher transverse stresses during locomotion. In addition, Micrauchenia saladensis is the smallest member of the subfamily Macraucheniinae. To test the systematics and phylogenetics of this specimen, we expanded previous morphological matrices of macraucheniids by adding one dental and eight postcranial characters and scoring Micrauchenia saladensis. We performed maximum parsimony and Bayesian phylogenetic analyses, the latter applied for the first time to macraucheniid phylogeny. Our analyses confirm Micrauchenia saladensis as a member of the subfamily Macraucheniinae, although with uncertain affinities within this subfamily.
Collapse
|
4
|
Arlegi M, Pantoja-Pérez A, Veschambre-Couture C, Gómez-Olivencia A. Covariation between the cranium and the cervical vertebrae in hominids. J Hum Evol 2021; 162:103112. [PMID: 34894608 DOI: 10.1016/j.jhevol.2021.103112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
The analysis of patterns of integration is crucial for the reconstruction and understanding of how morphological changes occur in a taxonomic group throughout evolution. These patterns are relatively constant; however, both patterns and the magnitudes of integration may vary across species. These differences may indicate morphological diversification, in some cases related to functional adaptations to the biomechanics of organisms. In this study, we analyze patterns of integration between two functional and developmental structures, the cranium and the cervical spine in hominids, and we quantify the amount of divergence of each anatomical element through phylogeny. We applied these methods to three-dimensional data from 168 adult hominid individuals, summing a total of more than 1000 cervical vertebrae. We found the atlas (C1) and axis (C2) display the lowest covariation with the cranium in hominids (Homo sapiens, Pan troglodytes, Pan paniscus, Gorilla gorilla, Gorilla beringei, Pongo pygmaeus). H. sapiens show a relatively different pattern of craniocervical correlation compared with chimpanzees and gorillas, especially in variables implicated in maintaining the balance of the head. Finally, the atlas and axis show lower magnitude of shape change during evolution than the rest of the cervical vertebrae, especially those located in the middle of the subaxial cervical spine. Overall, results suggest that differences in the pattern of craniocervical correlation between humans and gorillas and chimpanzees could reflect the postural differences between these groups. Also, the stronger craniocervical integration and larger magnitude of shape change during evolution shown by the middle cervical vertebrae suggests that they have been selected to play an active role in maintaining head balance.
Collapse
Affiliation(s)
- Mikel Arlegi
- Institut Català de Paleoecologia Humana i Evolució Social (IPHES-CERCA), Zona Educacional 4, Campus Sescelades URV (Edifici W3), 43007 Tarragona, Spain; Universitat Rovira i Virgili, Department d'Història i Història de l'Art, Avinguda de Catalunya 35, 43002 Tarragona, Spain.
| | - Ana Pantoja-Pérez
- Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| | - Christine Veschambre-Couture
- UMR 5199 PACEA, Université de Bordeaux, Allée Geoffroy Saint Hilaire, Bâtiment B8, CS 50023, 33615, Pessac Cedex, France
| | - Asier Gómez-Olivencia
- Departamento de Geología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena S/n, 48940 Leioa, Spain; Sociedad de Ciencias Aranzadi, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain; Centro UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| |
Collapse
|
5
|
Frank LR, Rowe TB, Boyer DM, Witmer LM, Galinsky VL. Unveiling the third dimension in morphometry with automated quantitative volumetric computations. Sci Rep 2021; 11:14438. [PMID: 34262066 PMCID: PMC8280169 DOI: 10.1038/s41598-021-93490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
As computed tomography and related technologies have become mainstream tools across a broad range of scientific applications, each new generation of instrumentation produces larger volumes of more-complex 3D data. Lagging behind are step-wise improvements in computational methods to rapidly analyze these new large, complex datasets. Here we describe novel computational methods to capture and quantify volumetric information, and to efficiently characterize and compare shape volumes. It is based on innovative theoretical and computational reformulation of volumetric computing. It consists of two theoretical constructs and their numerical implementation: the spherical wave decomposition (SWD), that provides fast, accurate automated characterization of shapes embedded within complex 3D datasets; and symplectomorphic registration with phase space regularization by entropy spectrum pathways (SYMREG), that is a non-linear volumetric registration method that allows homologous structures to be correctly warped to each other or a common template for comparison. Together, these constitute the Shape Analysis for Phenomics from Imaging Data (SAPID) method. We demonstrate its ability to automatically provide rapid quantitative segmentation and characterization of single unique datasets, and both inter-and intra-specific comparative analyses. We go beyond pairwise comparisons and analyze collections of samples from 3D data repositories, highlighting the magnified potential our method has when applied to data collections. We discuss the potential of SAPID in the broader context of generating normative morphologies required for meaningfully quantifying and comparing variations in complex 3D anatomical structures and systems.
Collapse
Affiliation(s)
- Lawrence R Frank
- Institute for Engineering in Medicine, Center for Scientific Computation in Imaging, University of California San Diego, 8950 Villa La Jolla Dr., Suite B227, La Jolla, CA, 92037, USA.
- Department of Radiology, Center for Functional MRI, University of California San Diego, 9500 Gilman Dr., #0677, La Jolla, CA, 92093-0677, USA.
| | - Timothy B Rowe
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, 78712, USA
| | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Chapel Hill, NC, USA
| | - Lawrence M Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Vitaly L Galinsky
- Institute for Engineering in Medicine, Center for Scientific Computation in Imaging, University of California San Diego, 8950 Villa La Jolla Dr., Suite B227, La Jolla, CA, 92037, USA
| |
Collapse
|
6
|
Gardin A, Salesa MJ, Siliceo G, Antón M, Pastor JF, de Bonis L. Climbing Adaptations of an Enigmatic Early Arctoid Carnivoran: the Functional Anatomy of the Forelimb of Amphicynodon leptorhynchus From the Lower Oligocene of the Quercy Phosphorites (France). J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09553-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Janis CM, Martín-Serra A. Postcranial elements of small mammals as indicators of locomotion and habitat. PeerJ 2020; 8:e9634. [PMID: 32953256 PMCID: PMC7474524 DOI: 10.7717/peerj.9634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/09/2020] [Indexed: 11/20/2022] Open
Abstract
Many studies have shown a correlation between postcranial anatomy and locomotor behavior in mammals, but the postcrania of small mammals (<5 kg) is often considered to be uninformative of their mode of locomotion due to their more generalized overall anatomy. Such small body size was true of all mammals during the Mesozoic. Anatomical correlates of locomotor behavior are easier to determine in larger mammals, but useful information can be obtained from the smaller ones. Limb bone proportions (e.g., brachial index) can be useful locomotor indicators; but complete skeletons, or even complete long bones, are rare for Mesozoic mammals, although isolated articular surfaces are often preserved. Here we examine the correlation of the morphology of long bone joint anatomy (specifically articular surfaces) and locomotor behavior in extant small mammals and demonstrate that such anatomy may be useful for determining the locomotor mode of Mesozoic mammals, at least for the therian mammals.
Collapse
Affiliation(s)
- Christine M. Janis
- School of Earth Sciences, University of Bristol, Bristol, Avon, UK
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA
| | | |
Collapse
|
8
|
|
9
|
M Janis C, Figueirido B, DeSantis L, Lautenschlager S. An eye for a tooth: Thylacosmilus was not a marsupial "saber-tooth predator". PeerJ 2020; 8:e9346. [PMID: 32617190 PMCID: PMC7323715 DOI: 10.7717/peerj.9346] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/21/2020] [Indexed: 11/20/2022] Open
Abstract
Background Saber-toothed mammals, now all extinct, were cats or “cat-like” forms with enlarged, blade-like upper canines, proposed as specialists in taking large prey. During the last 66 Ma, the saber-tooth ecomorph has evolved convergently at least in five different mammalian lineages across both marsupials and placentals. Indeed, Thylacosmilus atrox, the so-called “marsupial saber-tooth,” is often considered as a classic example of convergence with placental saber-tooth cats such as Smilodon fatalis. However, despite its superficial similarity to saber-toothed placentals, T. atrox lacks many of the critical anatomical features related to their inferred predatory behavior—that of employing their enlarged canines in a killing head strike. Methods Here we follow a multi-proxy approach using canonical correspondence analysis of discrete traits, biomechanical models of skull function using Finite Element Analysis, and 3D dental microwear texture analysis of upper and lower postcanine teeth, to investigate the degree of evolutionary convergence between T. atrox and placental saber-tooths, including S. fatalis. Results Correspondence analysis shows that the craniodental features of T. atrox are divergent from those of placental saber-tooths. Biomechanical analyses indicate a superior ability of T. atrox to placental saber-tooths in pulling back with the canines, with the unique lateral ridge of the canines adding strength to this function. The dental microwear of T. atrox indicates a soft diet, resembling that of the meat-specializing cheetah, but its blunted gross dental wear is not indicative of shearing meat. Conclusions Our results indicate that despite its impressive canines, the “marsupial saber-tooth” was not the ecological analogue of placental saber-tooths, and likely did not use its canines to dispatch its prey. This oft-cited example of convergence requires reconsideration, and T. atrox may have had a unique type of ecology among mammals.
Collapse
Affiliation(s)
- Christine M Janis
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom.,Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States of America
| | - Borja Figueirido
- Departamento de Ecología y Geología, Universidad de Málaga, Málaga, Spain
| | - Larisa DeSantis
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States of America.,Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, United States of America
| | - Stephan Lautenschlager
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Forasiepi AM, Macphee RD, Pino SHD. Caudal Cranium of Thylacosmilus atrox (Mammalia, Metatheria, Sparassodonta), a South American Predaceous Sabertooth. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2019. [DOI: 10.1206/0003-0090.433.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Ross D.E. Macphee
- Department of Mammalogy, American Museum of Natural History, New York
| | | |
Collapse
|
11
|
Böhmer C, Fabre AC, Taverne M, Herbin M, Peigné S, Herrel A. Functional relationship between myology and ecology in carnivores: do forelimb muscles reflect adaptations to prehension? Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Christine Böhmer
- UMR 7179 CNRS/MNHN, Bâtiment d’Anatomie Comparée, Muséum National d’Histoire Naturelle, Paris, France
| | | | - Maxime Taverne
- UMR 7179 CNRS/MNHN, Bâtiment d’Anatomie Comparée, Muséum National d’Histoire Naturelle, Paris, France
| | - Marc Herbin
- UMR 7179 CNRS/MNHN, Bâtiment d’Anatomie Comparée, Muséum National d’Histoire Naturelle, Paris, France
| | - Stéphane Peigné
- UMR 7207 CR 2P, MNHN/CNRS/UPMC, Muséum National d’Histoire Naturelle, Paris, France
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Bâtiment d’Anatomie Comparée, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
12
|
Tarquini J, Morgan CC, Toledo N, Soibelzon LH. Comparative osteology and functional morphology of the forelimb ofCyonasua(Mammalia, Procyonidae), the first South American carnivoran. J Morphol 2019; 280:446-470. [DOI: 10.1002/jmor.20956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/27/2018] [Accepted: 01/13/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Juliana Tarquini
- Laboratorio de Paleontología de Vertebrados; Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (CICYTTP-CONICET-Entre Ríos-UADER), Matteri y España s/n.; E3105BWA, Diamante Entre Ríos Argentina
| | - Cecilia C. Morgan
- División Zoología de Vertebrados, Sección Mastozoología, CONICET; Museo de La Plata, FCNyM-UNLP, Paseo del Bosque s/n., B1900FWA, La Plata; Buenos Aires Argentina
| | - Néstor Toledo
- División Paleontología Vertebrados; Unidades de Investigación Anexo Museo de La Plata, FCNyM-UNLP, CONICET; Buenos Aires Argentina
| | - Leopoldo H. Soibelzon
- División Paleontología Vertebrados, CONICET; Museo de La Plata, FCNyM-UNLP, Paseo del Bosque s/n., B1900FWA, La Plata; Buenos Aires Argentina
| |
Collapse
|
13
|
Taverne M, Fabre AC, Herbin M, Herrel A, Peigné S, Lacroux C, Lowie A, Pagès F, Theil JC, Böhmer C. Convergence in the functional properties of forelimb muscles in carnivorans: adaptations to an arboreal lifestyle? Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Maxime Taverne
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Anne-Claire Fabre
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Marc Herbin
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Anthony Herrel
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Stéphane Peigné
- UMR 7207 – CR2P, CNRS/MNHN, Département Origines et Evolution, rue Buffon, Paris, France
| | - Camille Lacroux
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Aurélien Lowie
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Fanny Pagès
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Jean-Christophe Theil
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| | - Christine Böhmer
- UMR 7179, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Département Adaptations du Vivant, rue Buffon, Paris, France
| |
Collapse
|
14
|
de Oliveira AM, Santos CMD. Functional morphology and paleoecology of Pilosa (Xenarthra, Mammalia) based on a two-dimensional geometric Morphometrics study of the Humerus. J Morphol 2018; 279:1455-1467. [PMID: 30105869 DOI: 10.1002/jmor.20882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 06/12/2018] [Accepted: 07/08/2018] [Indexed: 11/09/2022]
Abstract
The relationship between humerus shape and the modes of exploring substrate among extinct and extant Pilosa (especially anteaters and ground sloths) were investigated here. We used geometric morphometrics and discriminant analyses to relate morphological patterns and their possible ecological categories. Our results suggest that plesiomorphic taxa such as Nothrotheriidae, most Megalonychidae and basal Megatheriidae tend to have more slender humerus, associated to generalist habitus (climbing, swimming and digging activities), and while Mylodontidae developed specialized digging habitus. Additionally, we inferred ground sloths which inhabited the Brazilian territory during the Quaternary likely occupied at least four different niches. Mammals display morphofunctional adaptations on the limbs which are reflected on their modes of substrate exploration. Herein, we analyzed the humerus morphology of ground sloths and anteaters. Our results suggest that most of the Pleistocene Mylodonts were fossorial taxa, while most of the Santacrucian sloths plus extant anteaters were semiarboreal or semiaquatic taxa. The Pleistocene Megatheriidae should be ambulatory.
Collapse
|
15
|
Shape Covariation (or the Lack Thereof) Between Vertebrae and Other Skeletal Traits in Felids: The Whole is Not Always Greater than the Sum of Parts. Evol Biol 2018; 45:196-210. [PMID: 29755151 PMCID: PMC5938317 DOI: 10.1007/s11692-017-9443-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022]
Abstract
Within carnivorans, cats show comparatively little disparity in overall morphology, with species differing mainly in body size. However, detailed shape analyses of individual osteological structures, such as limbs or skulls, have shown that felids display significant morphological differences that correlate with their observed ecological and behavioural ranges. Recently, these shape analyses have been extended to the felid axial skeleton. Results demonstrate a functionally-partitioned vertebral column, with regions varying greatly in level of correlation between shape and ecology. Moreover, a clear distinction is evident between a phylogenetically-constrained neck region and a selection-responsive posterior spine. Here, we test whether this regionalisation of function reflected in vertebral column shape is also translated into varying levels of phenotypic integration between this structure and most other skeletal elements. We accomplish this comparison by performing pairwise tests of integration between vertebral and other osteological units, quantified with 3D geometric morphometric data and analysed both with and without phylogenetic correction. To our knowledge, this is the first study to test for integration across a comprehensive sample of whole-skeleton elements. Our results show that, prior to corrections, strong covariation is present between vertebrae across the vertebral column and all other elements, with the exception of the femur. However, most of these significant correlations disappear after correcting for phylogeny, which is a significant influence on cranial and limb morphology of felids and other carnivorans. Our results thus suggest that the vertebral column of cats displays relative independence from other skeletal elements and may represent several distinct evolutionary morphological modules.
Collapse
|
16
|
Elbow Joint Geometry in Bears (Ursidae, Carnivora): a Tool to Infer Paleobiology and Functional Adaptations of Quaternary Fossils. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9413-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Vidal-García M, Scott Keogh J. Phylogenetic conservatism in skulls and evolutionary lability in limbs - morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing. BMC Evol Biol 2017; 17:165. [PMID: 28693418 PMCID: PMC5504843 DOI: 10.1186/s12862-017-0993-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 11/23/2022] Open
Abstract
Background Quantifying morphological diversity across taxa can provide valuable insight into evolutionary processes, yet its complexities can make it difficult to identify appropriate units for evaluation. One of the challenges in this field is identifying the processes that drive morphological evolution, especially when accounting for shape diversification across multiple structures. Differential levels of co-varying phenotypic diversification can conceal selective pressures on traits due to morphological integration or modular shape evolution of different structures, where morphological evolution of different modules is explained either by co-variation between them or by independent evolution, respectively. Methods Here we used a 3D geometric morphometric approach with x-ray micro CT scan data of the skull and bones of forelimbs and hindlimbs of representative species from all 21 genera of the ancient Australo-Papuan myobatrachid frogs and analysed their shape both as a set of distinct modules and as a multi-modular integrative structure. We then tested three main questions: (i) are evolutionary patterns and the amount and direction of morphological changes similar in different structures and subfamilies?, (ii) do skulls and limbs show different levels of integration?, and (iii) is morphological diversity of skulls and limbs shaped by diet, locomotion, burrowing behavior, and ecology?. Results Our results in both skulls and limbs support a complex evolutionary pattern typical of an adaptive radiation with an early burst of phenotypic variation followed by slower rates of morphological change. Skull shape diversity was phylogenetically conserved and correlated with diet whereas limb shape was more labile and associated with diet, locomotion, and burrowing behaviour. Morphological changes between different limb bones were highly correlated, depicting high morphological integration. In contrast, overall limb and skull shape displayed semi-independence in morphological evolution, indicating modularity. Conclusions Our results illustrate how morphological diversification in animal clades can follow complex processes, entailing selective pressures from the environment as well as multiple trait covariance with varying degrees of independence across different structures. We suggest that accurately quantifying shape diversity across multiple structures is crucial in order to understand complex evolutionary processes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0993-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Vidal-García
- Research School of Biology, The Australian National University, Canberra, Australia.
| | - J Scott Keogh
- Research School of Biology, The Australian National University, Canberra, Australia
| |
Collapse
|
18
|
Botton-Divet L, Cornette R, Fabre AC, Herrel A, Houssaye A. Morphological Analysis of Long Bones in Semi-aquatic Mustelids and their Terrestrial Relatives. Integr Comp Biol 2016; 56:1298-1309. [DOI: 10.1093/icb/icw124] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0304-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Integrating locomotion, postures and morphology: The case of the tayra, Eira barbara (Carnivora, Mustelidae). Mamm Biol 2016. [DOI: 10.1016/j.mambio.2016.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Martín-Serra A, Figueirido B, Palmqvist P. In the Pursuit of the Predatory Behavior of Borophagines (Mammalia, Carnivora, Canidae): Inferences from Forelimb Morphology. J MAMM EVOL 2016. [DOI: 10.1007/s10914-016-9321-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Fabre AC, Cornette R, Goswami A, Peigné S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J Anat 2015; 226:596-610. [PMID: 25994128 PMCID: PMC4450962 DOI: 10.1111/joa.12315] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 11/28/2022] Open
Abstract
Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers.
Collapse
Affiliation(s)
| | - Raphael Cornette
- UMR CNRS/MNHN 7205, ‘Origine, Structure et Evolution de la Biodiversité’, Muséum National d'Histoire NaturelleParis, France
| | - Anjali Goswami
- Department of Genetics, Evolution, and Environment and Department of Earth Sciences, University College LondonLondon, UK
| | | |
Collapse
|
23
|
Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, Late Miocene, Spain). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2015; 102:30. [DOI: 10.1007/s00114-015-1280-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
|
24
|
|
25
|
Janis CM, Figueirido B. Forelimb anatomy and the discrimination of the predatory behavior of carnivorous mammals: The thylacine as a case study. J Morphol 2014; 275:1321-38. [DOI: 10.1002/jmor.20303] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/28/2014] [Accepted: 05/25/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Christine M. Janis
- Department of Ecology and Evolutionary Biology; Brown University; Providence Rhode Island 02012
| | - Borja Figueirido
- Departamento de Ecología y Geología; Facultad de Ciencias, Universidad de Málaga; 29071-Málaga Spain
| |
Collapse
|
26
|
Martín-Serra A, Figueirido B, Palmqvist P. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb. BMC Evol Biol 2014; 14:129. [PMID: 24927753 PMCID: PMC4065579 DOI: 10.1186/1471-2148-14-129] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 06/10/2014] [Indexed: 11/22/2022] Open
Abstract
Background The shape of the appendicular bones in mammals usually reflects adaptations towards different locomotor abilities. However, other aspects such as body size and phylogeny also play an important role in shaping bone design. We used 3D landmark-based geometric morphometrics to analyse the shape of the hind limb bones (i.e., femur, tibia, and pelvic girdle bones) of living and extinct terrestrial carnivorans (Mammalia, Carnivora) to quantitatively investigate the influence of body size, phylogeny, and locomotor behaviour in shaping the morphology of these bones. We also investigated the main patterns of morphological variation within a phylogenetic context. Results Size and phylogeny strongly influence the shape of the hind limb bones. In contrast, adaptations towards different modes of locomotion seem to have little influence. Principal Components Analysis and the study of phylomorphospaces suggest that the main source of variation in bone shape is a gradient of slenderness-robustness. Conclusion The shape of the hind limb bones is strongly influenced by body size and phylogeny, but not to a similar degree by locomotor behaviour. The slender-robust “morphological bipolarity” found in bone shape variability is probably related to a trade-off between maintaining energetic efficiency and withstanding resistance to stresses. The balance involved in this trade-off impedes the evolution of high phenotypic variability. In fact, both morphological extremes (slender/robust) are adaptive in different selective contexts and lead to a convergence in shape among taxa with extremely different ecologies but with similar biomechanical demands. Strikingly, this “one-to-many mapping” pattern of evolution between morphology and ecology in hind limb bones is in complete contrast to the “many-to-one mapping” pattern found in the evolution of carnivoran skull shape. The results suggest that there are more constraints in the evolution of the shape of the appendicular skeleton than in that of skull shape because of the strong biomechanical constraints imposed by terrestrial locomotion.
Collapse
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 20971 Málaga, Spain.
| | | | | |
Collapse
|
27
|
Zimicz N. Avoiding Competition: the Ecological History of Late Cenozoic Metatherian Carnivores in South America. J MAMM EVOL 2014. [DOI: 10.1007/s10914-014-9255-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Martín-Serra A, Figueirido B, Palmqvist P. A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PLoS One 2014; 9:e85574. [PMID: 24454891 PMCID: PMC3893248 DOI: 10.1371/journal.pone.0085574] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 11/28/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, three-dimensional landmark-based methods of geometric morphometrics are used for estimating the influence of phylogeny, allometry and locomotor performance on forelimb shape in living and extinct carnivorans (Mammalia, Carnivora). The main objective is to investigate morphological convergences towards similar locomotor strategies in the shape of the major forelimb bones. Results indicate that both size and phylogeny have strong effects on the anatomy of all forelimb bones. In contrast, bone shape does not correlate in the living taxa with maximum running speed or daily movement distance, two proxies closely related to locomotor performance. A phylomorphospace approach showed that shape variation in forelimb bones mainly relates to changes in bone robustness. This indicates the presence of biomechanical constraints resulting from opposite demands for energetic efficiency in locomotion -which would require a slender forelimb- and resistance to stress -which would be satisfied by a robust forelimb-. Thus, we interpret that the need of maintaining a trade-off between both functional demands would limit shape variability in forelimb bones. Given that different situations can lead to one or another morphological solution, depending on the specific ecology of taxa, the evolution of forelimb morphology represents a remarkable "one-to-many mapping" case between anatomy and ecology.
Collapse
Affiliation(s)
- Alberto Martín-Serra
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
- * E-mail:
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Paul Palmqvist
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
29
|
Carrizo LV, Tulli MJ, Dos Santos DA, Abdala V. Interplay between postcranial morphology and locomotor types in Neotropical sigmodontine rodents. J Anat 2013; 224:469-81. [PMID: 24372154 DOI: 10.1111/joa.12152] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2013] [Indexed: 11/29/2022] Open
Abstract
Sigmodontine rats are one of the most diverse components of the Neotropical mammal fauna. They exhibit a wide ecological diversity and a variety of locomotor types that allow them to occupy different environments. To explore the relationship between morphology and locomotor types, we analyzed traits of the postcranial osteology (axial and appendicular skeletons) of 329 specimens belonging to 51 species and 29 genera of sigmodontines exhibiting different locomotor types. In this work, postcranial skeletal characters of these rats are considered in an ecomorphological study for the first time. Statistical analyses showed that of the 34 osteological characters considered, 15 were related to the locomotor types studied, except for ambulatory. However, character mapping showed that climbing and jumping sigmodontines are the only taxa exhibiting clear adaptations in their postcranial osteology, which are highly consistent with the tendencies described in many other mammal taxa. Climbing, digging and swimming rats presented statistically differences in traits associated with their vertebral column and limbs, whereas jumping rats showed modifications associated with all the skeletal regions. Our data suggest that sigmodontine rats retain an all-purpose morphology that allows them to use a variety of habitats. This versatility is particularly important when considering the lack of specialization of sigmodontines for a specific locomotor mode. Another possible interpretation is that our dataset probably did not consider relevant information about these groups and should be increased with other types of characters (e.g. characters from the external morphology, myology, etc.).
Collapse
Affiliation(s)
- Luz V Carrizo
- Cátedra de Biología General, Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | | | |
Collapse
|
30
|
Álvarez A, Ercoli MD, Prevosti FJ. Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. ZOOLOGY 2013; 116:356-71. [DOI: 10.1016/j.zool.2013.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 06/25/2013] [Accepted: 08/03/2013] [Indexed: 12/01/2022]
|
31
|
Pleistocene Extinctions and the Perceived Morphofunctional Structure of the Neotropical Felid Ensemble. J MAMM EVOL 2013. [DOI: 10.1007/s10914-013-9244-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
The Structure of the Mammalian Predator Guild in the Santa Cruz Formation (Late Early Miocene). J MAMM EVOL 2013. [DOI: 10.1007/s10914-013-9243-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Wroe S, Chamoli U, Parr WCH, Clausen P, Ridgely R, Witmer L. Comparative Biomechanical Modeling of Metatherian and Placental Saber-Tooths: A Different Kind of Bite for an Extreme Pouched Predator. PLoS One 2013; 8:e66888. [PMID: 23840547 PMCID: PMC3694156 DOI: 10.1371/journal.pone.0066888] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
Questions surrounding the dramatic morphology of saber-tooths, and the presumably deadly purpose to which it was put, have long excited scholarly and popular attention. Among saber-toothed species, the iconic North American placental, Smilodon fatalis, and the bizarre South American sparassodont, Thylacosmilus atrox, represent extreme forms commonly forwarded as examples of convergent evolution. For S. fatalis, some consensus has been reached on the question of killing behaviour, with most researchers accepting the canine-shear bite hypothesis, wherein both head-depressing and jaw closing musculatures played a role in delivery of the fatal bite. However, whether, or to what degree, T. atrox may have applied a similar approach remains an open question. Here we apply a three-dimensional computational approach to examine convergence in mechanical performance between the two species. We find that, in many respects, the placental S. fatalis (a true felid) was more similar to the metatherian T. atrox than to a conical-toothed cat. In modeling of both saber-tooths we found that jaw-adductor-driven bite forces were low, but that simulations invoking neck musculature revealed less cranio-mandibular stress than in a conical-toothed cat. However, our study also revealed differences between the two saber-tooths likely reflected in the modus operandi of the kill. Jaw-adductor-driven bite forces were extremely weak in T. atrox, and its skull was even better-adapted to resist stress induced by head-depressors. Considered together with the fact that the center of the arc described by the canines was closer to the jaw-joint in Smilodon, our results are consistent with both jaw-closing and neck musculature playing a role in prey dispatch for the placental, as has been previously suggested. However, for T. atrox, we conclude that the jaw-adductors probably played no major part in the killing bite. We propose that the metatherian presents a more complete commitment to the already extreme saber-tooth 'lifestyle'.
Collapse
Affiliation(s)
- Stephen Wroe
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
- School of Engineering, University of Newcastle, Callaghan, NSW, Australia
- * E-mail:
| | - Uphar Chamoli
- School of Engineering, University of Newcastle, Callaghan, NSW, Australia
- St. George Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - William C. H. Parr
- School of Engineering, University of Newcastle, Callaghan, NSW, Australia
| | - Philip Clausen
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ryan Ridgely
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| | - Lawrence Witmer
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States of America
| |
Collapse
|