1
|
Bošković M, Sokolović D, Stanković S, Ristić I, Popović J, Kocić G. The Influence of Removable Complete Denture on Pro-Oxidant Antioxidant Balance and Redox-Sensitive Inflammation Biomarker NF-ĸB in the Oral Cavity: An Interventional Follow-Up Study. Clin Exp Dent Res 2024; 10:e70007. [PMID: 39295455 PMCID: PMC11411146 DOI: 10.1002/cre2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/25/2024] [Accepted: 07/21/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES Oxidative stress, an imbalance between the body's natural antioxidant defenses and the production of reactive oxygen species (ROS), can result in serious oral diseases, including oral cancer, periodontal diseases, and oral lichen planus, through the activation of the redox-sensitive transcription factors and inflammation. The purpose of this study was to assess the potential effects of a removable complete denture on the levels of oxidative stress markers, such as lipid peroxidation (MDA), advanced oxidation protein products (AOPP), and catalase, and the quantitative expression of the redox-sensitive transcription factor NF-κB p65 subunit. MATERIALS AND METHODS This interventional follow-up study enrolled 40 participants of both sexes aged 28-78 years, with a median age of 56 years, where unstimulated saliva was collected before denture placement, immediately after the denture placement, and 24 h, 7 days, and 30 days after the denture placement. The most prominent ROS overproduction was reported on the seventh day (p < 0.05), followed by a significant fall in antioxidative defense. RESULTS The NF-κB p65 subunit, whose expression pattern was highest in the same time period on the seventh day, serves as a signaling molecule for redox imbalance due to ROS production. Over the next 30 days, its levels remained moderately increased compared to the basal value, which may influence pro-inflammatory pathways and the integrity of oral tissue components. These alterations may be induced by the dentures, which can produce high pressures on the supporting tissues or by the synthetic materials used for producing the dentures. CONCLUSION Our research may help to clarify the potential pathways by which oxidative stress and redox-sensitive inflammatory mediators, as well as mechanical and chemical irritants, may serve as risk factors for premalignant lesions in the mouth. Further research on this topic is required to understand the molecular mechanisms behind the relationship between inflammation and oral premalignant lesions caused by mechanical and chemical irritation.
Collapse
Affiliation(s)
- Mirjana Bošković
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Dušan Sokolović
- Department of Biochemistry, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Saša Stanković
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Ivan Ristić
- Department of Prosthodontics, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| | - Jordan Popović
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy at University of Gotheburg, Goteborg, Goteborg region, Sweden
| | - Gordana Kocić
- Department of Biochemistry, Medical Faculty, University of Niš, Nis, Nis region, Serbia
| |
Collapse
|
2
|
Makarczyk MJ, Hines S, Yagi H, Li ZA, Aguglia AM, Zbikowski J, Padget AM, Gao Q, Bunnell BA, Goodman SB, Lin H. Using Microphysiological System for the Development of Treatments for Joint Inflammation and Associated Cartilage Loss-A Pilot Study. Biomolecules 2023; 13:384. [PMID: 36830751 PMCID: PMC9952916 DOI: 10.3390/biom13020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
Osteoarthritis (OA) is a painful and disabling joint disease affecting millions worldwide. The lack of clinically relevant models limits our ability to predict therapeutic outcomes prior to clinical trials, where most drugs fail. Therefore, there is a need for a model that accurately recapitulates the whole-joint disease nature of OA in humans. Emerging microphysiological systems provide a new opportunity. We recently established a miniature knee joint system, known as the miniJoint, in which human bone-marrow-derived mesenchymal stem cells (hBMSCs) were used to create an osteochondral complex, synovial-like fibrous tissue, and adipose tissue analogs. In this study, we explored the potential of the miniJoint in developing novel treatments for OA by testing the hypothesis that co-treatment with anti-inflammation and chondroinducing agents can suppress joint inflammation and associated cartilage degradation. Specifically, we created a "synovitis"-relevant OA model in the miniJoint by treating synovial-like tissues with interleukin-1β (IL-1β), and then a combined treatment of oligodeoxynucleotides (ODNs) suppressing the nuclear factor kappa beta (NF-κB) genetic pathway and bone morphogenic protein-7 (BMP-7) was introduced. The combined treatment with BMP-7 and ODNs reduced inflammation in the synovial-like fibrous tissue and showed an increase in glycosaminoglycan formation in the cartilage portion of the osteochondral complex. For the first time, this study demonstrated the potential of the miniJoint in developing disease-modifying OA drugs. The therapeutic efficacy of co-treatment with NF-κB ODNs and BMP-7 can be further validated in future clinical studies.
Collapse
Affiliation(s)
- Meagan J. Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Sophie Hines
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Haruyo Yagi
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Zhong Alan Li
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Alyssa M. Aguglia
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Justin Zbikowski
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Anne-Marie Padget
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94350, USA
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Stuart B. Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94350, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Rm 217, Pittsburgh, PA 15219, USA
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA 94350, USA
| |
Collapse
|
3
|
Fukuta T, Tanaka D, Inoue S, Michiue K, Kogure K. Overcoming thickened pathological skin in psoriasis via iontophoresis combined with tight junction-opening peptide AT1002 for intradermal delivery of NF-κB decoy oligodeoxynucleotide. Int J Pharm 2021; 602:120601. [PMID: 33905867 DOI: 10.1016/j.ijpharm.2021.120601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
Transdermal delivery of nucleic acid therapeutics has been demonstrated to be effective for psoriasis treatment. We previously reported the utility of iontophoresis (IP) using weak electric current (0.3-0.5 mA/cm2) for intradermal delivery of nucleic acid therapeutics via weak electricity-mediated intercellular junction cleavage, and subsequent exertion of nucleic acid function. However, the thickened pathological skin in psoriasis hampers permeation of IP-administered macromolecules. Thus, approaches are needed to more strongly cleave intercellular spaces and overcome the psoriatic skin barrier. Herein, we applied a combination of tight junction-opening peptide AT1002 with IP, as synergistic effects of weak electricity-mediated intercellular junction cleavage and the tight junction-opening ability of AT1002 may help overcome thickened psoriatic skin and facilitate macromolecule delivery. Pretreatment with IP of an AT1002 analog exhibiting positively-charged moieties before fluorescence-labeled oligodeoxynucleotide IP resulted in the oligodeoxynucleotide permeation into psoriatic skin, whereas IP of the oligodeoxynucleotide alone did not. Moreover, psoriasis-induced upregulation of inflammatory cytokine mRNA levels was significantly suppressed by NF-κB decoy oligodeoxynucleotide IP combined with the AT1002 analog, resulting in amelioration of epidermis hyperplasia. These results suggest that synergistic effects of IP and an AT1002 analog can overcome thickened psoriatic skin and enable intradermal delivery of NF-κB decoy oligodeoxynucleotide for psoriasis treatment.
Collapse
Affiliation(s)
- Tatsuya Fukuta
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Daichi Tanaka
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Shinya Inoue
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kohki Michiue
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan
| | - Kentaro Kogure
- Department of Pharmaceutical Health Chemistry, Graduate School of Biomedical Sciences, Tokushima University, Shomachi 1, Tokushima 770-8505, Japan.
| |
Collapse
|
4
|
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK. Nuclear factor-kappa β as a therapeutic target for Alzheimer's disease. J Neurochem 2019; 150:113-137. [PMID: 30802950 DOI: 10.1111/jnc.14687] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a typical progressive, chronic neurodegenerative disorder with worldwide prevalence. Its clinical manifestation involves the presence of extracellular plaques and intracellular neurofibrillary tangles (NFTs). NFTs occur in brain tissues as a result of both Aβ agglomeration and Tau phosphorylation. Although there is no known cure for AD, research into possible cures and treatment options continues using cell-cultures and model animals/organisms. The nuclear factor-kappa β (NF-κβ) plays an active role in the progression of AD. Impairment to this signaling module triggers undesirable phenotypic changes such as neuroinflammation, activation of microglia, oxidative stress related complications, and apoptotic cell death. These imbalances further lead to homeostatic abnormalities in the brain or in initial stages of AD essentially pushing normal neurons toward the degeneration process. Interestingly, the role of NF-κβ signaling associated receptor-interacting protein kinase is currently observed in apoptotic and necrotic cell death, and has been reported in brains. Conversely, the NF-κβ signaling pathway has also been reported to be involved in normal brain functioning. This pathway plays a crucial role in maintaining synaptic plasticity and balancing between learning and memory. Since any impairment in the pathways associated with NF-κβ signaling causes altered neuronal dynamics, neurotherapeutics using compounds including, antioxidants, bioflavonoids, and non-steroidal anti-inflammatory drugs against such abnormalities offer possibilities to rectify aberrant excitatory neuronal activity in AD. In this review, we have provided an extensive overview of the crucial role of NF-κβ signaling in normal brain homeostasis. We have also thoroughly outlined several established pathomechanisms associated with NF-κβ pathways in AD, along with their respective therapeutic approaches.
Collapse
Affiliation(s)
- Niraj Kumar Jha
- Department of Biotechnology, Noida Institute of Engineering & Technology (NIET), Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Rohan Kar
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| | - Parma Nand
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Kumari Swati
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Vineet Kumar Goswami
- Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi, India
| |
Collapse
|
5
|
Puar YR, Shanmugam MK, Fan L, Arfuso F, Sethi G, Tergaonkar V. Evidence for the Involvement of the Master Transcription Factor NF-κB in Cancer Initiation and Progression. Biomedicines 2018; 6:biomedicines6030082. [PMID: 30060453 PMCID: PMC6163404 DOI: 10.3390/biomedicines6030082] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. At the same time, this transcription factor can control the expression of a plethora of genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. The aberrant activation of this transcription factor has been observed in several types of cancer and is known to contribute to aggressive tumor growth and resistance to therapeutic treatment. Although NF-κB has been identified to be a major contributor to cancer initiation and development, there is evidence revealing its role in tumor suppression. This review briefly highlights the major mechanisms of NF-κB activation, the role of NF-κB in tumor promotion and suppression, as well as a few important pharmacological strategies that have been developed to modulate NF-κB function.
Collapse
Affiliation(s)
- Yu Rou Puar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6009, Australia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Vinay Tergaonkar
- Institute of Molecular and Cellular Biology (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
- Centre for Cancer Biology (University of South Australia and SA Pathology), Adelaide, SA 5000, Australia.
| |
Collapse
|
6
|
Weyel XMM, Fichte MAH, Heckel A. A Two-Photon-Photocleavable Linker for Triggering Light-Induced Strand Breaks in Oligonucleotides. ACS Chem Biol 2017; 12:2183-2190. [PMID: 28678467 DOI: 10.1021/acschembio.7b00367] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized a two-photon-sensitive photocleavable linker based on the 7-diethylaminocoumarin structure and introduced it successfully into DNA strands. First, we demonstrated the inducibility of strand scissions upon irradiation at 365 nm. To verify and visualize the two-photon activity, we used a fluorescence assay based on a DNA strand displacement immobilized in a hydrogel. Additionally, we investigated its use in a new class of DNA decoys that are able to catch and release nuclear factor κB (NF-κB) by using light as an external trigger signal. In cell culture we were able to show the regulation of NF-κB-controlled transcription of green fluorescent protein.
Collapse
Affiliation(s)
- Xenia M M Weyel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Manuela A H Fichte
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling. Arch Oral Biol 2016; 71:155-161. [PMID: 27517515 DOI: 10.1016/j.archoralbio.2016.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 07/27/2016] [Accepted: 08/03/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. DESIGN The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. RESULTS We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. CONCLUSIONS Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis.
Collapse
|
8
|
Drappatz J, Norden AD, Wen PY. Therapeutic strategies for inhibiting invasion in glioblastoma. Expert Rev Neurother 2014; 9:519-34. [DOI: 10.1586/ern.09.10] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
De Stefano D, Coletta C, Bianca RDDV, Falcone L, d'Angelo I, Ungaro F, Quaglia F, Carnuccio R, Sorrentino R. A decoy oligonucleotide to NF-κB delivered through inhalable particles prevents LPS-induced rat airway inflammation. Am J Respir Cell Mol Biol 2013; 49:288-95. [PMID: 23590300 DOI: 10.1165/rcmb.2012-0473oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The inflammatory process plays a crucial role in the onset and progression of several lung pathologies, including cystic fibrosis (CF), and the involvement of NF-κB is widely recognized. The specific inhibition of NF-κB by decoy oligonucleotides delivered within the lung may be beneficial, although rationally designed systems are needed to optimize their pharmacological response. Prompted by this need, we have developed and tested in vivo an inhalable dry powder for the prolonged delivery of a decoy oligodeoxynucleotide to NF-κB (dec-ODN), consisting of large porous particles (LPPs) based on poly(lactic-co-glycolic) acid. First, LPPs containing dec-ODN (dec-ODN LPPs) were engineered to meet the aerodynamic criteria crucial for pulmonary delivery, to gain an effective loading of dec-ODN, to sustain its release, and to preserve its structural integrity in lung lining fluids. We then investigated the effects of dec-ODN LPPs in a rat model of lung inflammation induced by the intratracheal aerosolization of LPS from Pseudomonas aeruginosa. The results show that a single intratracheal insufflation of dec-ODN LPPs reduced the bronchoalveolar neutrophil infiltration induced by LPS for up to 72 hours, whereas naked dec-ODN was able to inhibit it only at 6 hours. The persistent inhibition of neutrophil infiltrate was associated with reduced NF-κB/DNA binding activity, as well as reduced IL-6, IL-8, and mucin-2 mRNA expression in lung homogenates. We consider it noteworthy that the developed LPPs, preventing the accumulation of neutrophils and NF-κB-related gene expression, may provide a new therapeutic option for the local treatment of inflammation associated with lung disease.
Collapse
Affiliation(s)
- Daniela De Stefano
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
You WC, Wang CX, Pan YX, Zhang X, Zhou XM, Zhang XS, Shi JX, Zhou ML. Activation of nuclear factor-κB in the brain after experimental subarachnoid hemorrhage and its potential role in delayed brain injury. PLoS One 2013; 8:e60290. [PMID: 23536907 PMCID: PMC3607578 DOI: 10.1371/journal.pone.0060290] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 02/25/2013] [Indexed: 01/20/2023] Open
Abstract
It has been reported that inflammation is involved in brain injury after subarachnoid hemorrhage (SAH). Nuclear factor-κB (NF-κB) is a key transcriptional regulator of inflammatory genes. Here, we used pyrrolidine dithiocarbamate(PDTC), an inhibitor of NF-κB, through intracisternal injection to study the role of NF-κB in delayed brain injury after SAH. A total of 55 rabbits were randomly divided into five groups: the control group; the SAH groups including Day-3, 5, and 7 SAH groups (the rabbits in these groups were sacrificed at 3, 5, 7 days after SAH, respectively); and the PDTC group (n = 11 for each group). Electrophoretic mobility shift assay (EMSA) was performed to detect NF-κB DNA-binding activity. The mRNA levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and intercellular adhesion molecule (ICAM)-1 were evaluated by RT-PCR analysis. Deoxyribonucleic acid fragmentation was detected by TUNEL and p65 immunoactivity was assessed by immunohistochemistry. Our results showed the activation of NF-κB after SAH, especially at day 3 and 5. The activated p65 was detected in neurons. NF-κB DNA-binding activity was suppressed by intracisternal administration of PDTC. Increased levels of the TNF-α, IL-1β, and ICAM-1 mRNA were found in the brain at day 5 after SAH, and which were suppressed in the PDTC group. The number of TUNEL-positive cells also decreased significantly in the PDTC group compared with that in the Day-5 SAH group. These results demonstrated that the activated NF-κB in neurons after SAH plays an important role in regulating the expressions of inflammatory genes in the brain, and ultimately contributes to delayed brain injury.
Collapse
Affiliation(s)
- Wan-Chun You
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-xi Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yun-xi Pan
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-ming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ji-xin Shi
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Meng-liang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
11
|
Regulation of Proinflammatory Mediators via NF-κB and p38 MAPK-Dependent Mechanisms in RAW 264.7 Macrophages by Polyphenol Components Isolated from Korea Lonicera japonica THUNB. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:828521. [PMID: 22611435 PMCID: PMC3352662 DOI: 10.1155/2012/828521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/10/2012] [Accepted: 02/15/2012] [Indexed: 01/04/2023]
Abstract
Lonicera japonica THUNB., which abundantly contains polyphenols, has been used as a traditional medicine for thousands of years in East Asian countries because of the anti-inflammation properties. This study aimed to investigate the anti-inflammatory mechanism of polyphenol components isolated from Korea L. japonica T. by nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) pathway. Polyphenols significantly decreased lipopolysaccharide- (LPS-) induced mRNA and protein expression of inducible nitric oxide synthase and cyclooxygenase-2, as well as mRNA expression of tumor necrosis factor-alpha, interleukin- (IL-) 1β, and IL-6. Moreover, polyphenols inhibited nuclear translocation of NF-κB p65, phosphorylation/degradation of the inhibitor of κB, and phosphorylation of p38 MAPK, whereas the extracellular signal-regulated kinase and Janus N-terminal kinase were not affected. These results indicate that polyphenol components isolated from Korea L. japonica T. should have anti-inflammatory effect on LPS-stimulated RAW 264.7 cells through the decrease of proinflammatory mediators expression by suppressing NF-κB and p38 MAPK activity.
Collapse
|
12
|
Gambari R. Recent patents on therapeutic applications of the transcription factor decoy approach. Expert Opin Ther Pat 2012; 21:1755-71. [PMID: 22017413 DOI: 10.1517/13543776.2011.629605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Transcription is considered as an important target of drugs employed in biomedicine. Therefore, novel strategies to inhibit the biological effects of transcription factors (TFs) are of interest, such as targeting promoters with triple-helix-forming oligonucleotides and antisense targeting of mRNAs coding for TFs. AREAS COVERED The objective of this review is to describe studies considering inhibition of TF functions with molecules mimicking TF binding sites (transcription factor decoy approach, TFD) and to summarize the patents on possible clinical applications of this approach. EXPERT OPINION Treatment of cells with TFD molecules leads to inhibition (or activation) of genes regulated by the target transcription factors. The studies and patents on this specific issue have taken in great consideration the delivery strategy, which is a very important parameter. The TFD strategy has been proven effective in vivo. The stability of the TFD molecules in vivo should be carefully considered, as well as the possible toxicity and/or possible effects on innate and adaptive immune response. In order to improve clinical parameters, many patents suggest the use of the TFD molecules in combination with drugs already employed in therapy. We are expecting in the near future relevant clinical trials based on the TFD strategy.
Collapse
Affiliation(s)
- Roberto Gambari
- University of Ferrara, Interdisciplinary Center for the Study of Inflammation, ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara, Italy.
| |
Collapse
|
13
|
Batra S, Balamayooran G, Sahoo MK. Nuclear factor-κB: a key regulator in health and disease of lungs. Arch Immunol Ther Exp (Warsz) 2011; 59:335-51. [PMID: 21786215 PMCID: PMC7079756 DOI: 10.1007/s00005-011-0136-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/02/2011] [Indexed: 12/27/2022]
Abstract
Rel/NF-κB transcription factors play a key role in modulating the response of immunoregulatory genes including cytokines and chemokines, cell adhesion molecules, acute phase proteins, and anti-microbial peptides. Furthermore, an array of genes important for angiogenesis, tumor invasion and metastasis is also regulated by nuclear factor-κB (NF-κB). Close association of NF-κB with inflammation and tumorigenesis makes it an attractive target for basic research as well as for pharmaceutical industries. Studies involving various animal and cellular models have revealed the importance of NF-κB in pathobiology of lung diseases. This review (a) describes structures, activities, and regulation of NF-κB family members; (b) provides information which implicates NF-κB in pathogenesis of pulmonary inflammation and cancer; and (c) discusses information about available synthetic and natural compounds which target NF-κB or specific components of NF-κB signal transduction pathway and which may provide the foundation for development of effective therapy for lung inflammation and bronchogenic carcinomas.
Collapse
Affiliation(s)
- Sanjay Batra
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | | | | |
Collapse
|
14
|
Govan JM, Lively MO, Deiters A. Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. J Am Chem Soc 2011; 133:13176-82. [PMID: 21761875 PMCID: PMC3157586 DOI: 10.1021/ja204980v] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA decoys have been developed for the inhibition of transcriptional regulation of gene expression. However, the present methodology lacks the spatial and temporal control of gene expression that is commonly found in nature. Here, we report the application of photoremovable protecting groups on nucleobases of nuclear factor κB (NF-κB) DNA decoys to regulate NF-κB-driven transcription of secreted alkaline phosphatase using light as an external control element. The NF-κB family of proteins is comprised of important eukaryotic transcription factors that regulate a wide range of cellular processes and are involved in immune response, development, cellular growth, and cell death. Several diseases, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease, have been linked to constitutively active NF-κB. Through the direct incorporation of caging groups into an NF-κB decoy, we were able to disrupt DNA:DNA hybridization and inhibit the binding of the transcription factor to the DNA decoy until UV irradiation removed the caging groups and restored the activity of the oligonucleotide. Excellent light-switching behavior of transcriptional regulation was observed. This is the first example of a caged DNA decoy for the photochemical regulation of gene expression in mammalian cells and represents an important addition to the toolbox of light-controlled gene regulatory agents.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem, NC 27157
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| |
Collapse
|
15
|
Suppressive Effect on Lipopolysaccharide-Induced Proinflammatory Mediators by Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-κB Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011. [PMID: 20953420 PMCID: PMC2952293 DOI: 10.1155/2011/248592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/19/2010] [Accepted: 07/20/2010] [Indexed: 11/23/2022]
Abstract
Citrus fruits have been used as an edible fruit and a traditional medicine since ancient times. In particular, the peels of immature citrus fruits are used widely in traditional herbal medicine in Korea, as they are believed to contain bioactive components exerting anti-inflammatory activity. This study examined whether the crude methanol extract of Citrus aurantium L. (CME) has a suppressive effect on inducible enzymes and proinflammatory cytokines by inhibiting the NF-κB pathway in LPS-stimulated macrophage RAW 264.7 cells. The cells were pretreated with the indicated concentrations of CME (5, 10, 20, and 50 μg/mL) and then treated with LPS (1 μg/mL). The results showed that CME (10, 20, and 50 μg/mL) inhibited the LPS- (1 μg/mL) induced mRNA and protein expression of iNOS in macrophage Raw 264.7 cells. In addition, the expression of COX-2 was inhibited at the mRNA and protein levels by CME in a dose-dependent manner. The mRNA expression of proinflammatory cytokines, such as TNF-α and IL-6, were markedly reduced by CME (10, 20, and 50 μg/mL). Moreover, CME clearly suppressed the nuclear translocation of the NF-κB p65 subunits, which was correlated with its inhibitory effect on I-κB phosphorylation. These results suggest that CME has anti-inflammatory properties by modulating the expression of COX-2, iNOS, and proinflammatory cytokines, such as TNF-α and IL-6, in macrophage RAW 264.7 cells via the NF-κB pathway.
Collapse
|
16
|
Sugioka K, Nakagawa K, Murata R, Ochiai N, Sasho T, Arai M, Tsuruoka H, Ohtori S, Saisu T, Gemba T, Takahashi K. Radial shock waves effectively introduced NF-kappa B decoy into rat achilles tendon cells in vitro. J Orthop Res 2010; 28:1078-83. [PMID: 20135689 DOI: 10.1002/jor.21081] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to test if radial shock waves could enhance the introduction of nuclear factor-kappa B (NF-kappaB) decoy oligodeoxynucleotides, which is reported to markedly inhibit NF-kappaB activation and suppress pro-inflammatory cytokine gene expression, using rat Achilles tendon cells. In the presence of NF-kappaB decoy labeled with or without fluorescein isothiocyanate (FITC) in culture media, radial shock waves were applied to the tendon cells in variable conditions and cultivated for 24 h. The transfection rate was assessed by counting FITC-positive cells, and IL-1-induced NF-kappaB activation in the cells was assessed. Radial shock waves significantly enhanced introduction of NF-kappaB decoy-FITC into the tendon cells. IL-1-induced NF-kappaB activation was significantly inhibited by pretreatment of the cells with NF-kappaB decoy combined with radial shock wave exposure. The present study demonstrated the effectiveness of radial shock waves on introduction of NF-kappaB decoy into tendon cells. Radial shock wave treatment combined with local NF-kappaB decoy administration could be a novel therapeutic strategy for chronic tendinopathy.
Collapse
Affiliation(s)
- Kaori Sugioka
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gambari R, Borgatti M, Bezzerri V, Nicolis E, Lampronti I, Dechecchi MC, Mancini I, Tamanini A, Cabrini G. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa. Biochem Pharmacol 2010; 80:1887-94. [PMID: 20615393 DOI: 10.1016/j.bcp.2010.06.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 12/25/2022]
Abstract
Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance.
Collapse
Affiliation(s)
- Roberto Gambari
- ER-GenTech and BioPharmaNet, Department of Biochemistry and Molecular Biology, University of Ferrara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Crinelli R, Carloni E, Menotta M, Giacomini E, Bianchi M, Ambrosi G, Giorgi L, Magnani M. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules. ACS NANO 2010; 4:2791-2803. [PMID: 20411956 DOI: 10.1021/nn100057c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Oligonucleotide (ODN) decoys are synthetic ODNs containing the DNA binding sequence of a transcription factor. When delivered to cells, these molecules can compete with endogenous sequences for binding the transcription factor, thus inhibiting its ability to activate the expression of target genes. Modulation of gene expression by decoy ODNs against nuclear factor-kappaB (NF-kappaB), a transcription factor regulating many genes involved in immunity, has been achieved in a variety of immune/inflammatory disorders. However, the successful use of transcription factor decoys depends on an efficient means to bring the synthetic DNA to target cells. It is known that single-walled carbon nanotubes (SWCNTs), under certain conditions, are able to cross the cell membrane. Thus, we have evaluated the possibility to functionalize SWCNTs with decoy ODNs against NF-kappaB in order to improve their intracellular delivery. To couple ODNs to CNTs, we have exploited the carbodiimide chemistry which allows covalent binding of amino-modified ODNs to carboxyl groups introduced onto SWCNTs through oxidation. The effective binding of ODNs to nanotubes has been demonstrated by a combination of microscopic, spectroscopic, and electrophoretic techniques. The uptake and subcellular distribution of ODN decoys bound to SWCNTs was analyzed by fluorescence microscopy. ODNs were internalized into macrophages and accumulated in the cytosol. Moreover, no cytotoxicity associated with SWCNT administration was observed. Finally, NF-kappaB-dependent gene expression was significantly reduced in cells receiving nanomolar concentrations of SWCNT-NF-kappaB decoys compared to cells receiving SWCNTs or SWCNTs functionalized with a nonspecific ODN sequence, demonstrating both efficacy and specificity of the approach.
Collapse
Affiliation(s)
- Rita Crinelli
- Department of Biomolecular Sciences, Biochemistry and Molecular Biology Section, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-κB activation by small molecules as a therapeutic strategy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:775-87. [PMID: 20493977 DOI: 10.1016/j.bbagrm.2010.05.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/08/2010] [Indexed: 12/21/2022]
Abstract
Because nuclear factor-κB (NF-κB) is a ubiquitously expressed proinflammatory transcription factor that regulates the expression of over 500 genes involved in cellular transformation, survival, proliferation, invasion, angiogenesis, metastasis, and inflammation, the NF-κB signaling pathway has become a potential target for pharmacological intervention. A wide variety of agents can activate NF-κB through canonical and noncanonical pathways. Canonical pathway involves various steps including the phosphorylation, ubiquitination, and degradation of the inhibitor of NF-κB (IκBα), which leads to the nuclear translocation of the p50-p65 subunits of NF-κB followed by p65 phosphorylation, acetylation and methylation, DNA binding, and gene transcription. Thus, agents that can inhibit protein kinases, protein phosphatases, proteasomes, ubiquitination, acetylation, methylation, and DNA binding steps have been identified as NF-κB inhibitors. Because of the critical role of NF-κB in cancer and various chronic diseases, numerous inhibitors of NF-κB have been identified. In this review, however, we describe only small molecules that suppress NF-κB activation, and the mechanism by which they block this pathway.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
20
|
Hashim IIA, Motoyama K, Abd-Elgawad AEH, El-Shabouri MH, Borg TM, Arima H. Potential use of iontophoresis for transdermal delivery of NF-kappaB decoy oligonucleotides. Int J Pharm 2010; 393:127-34. [PMID: 20417264 DOI: 10.1016/j.ijpharm.2010.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/31/2010] [Accepted: 04/16/2010] [Indexed: 01/08/2023]
Abstract
Topical application of nuclear factor-kappaB (NF-kappaB) decoy appears to provide a novel therapeutic potency in the treatment of inflammation and atopic dermatitis. However, it is difficult to deliver NF-kappaB decoy oligonucleotides (ODN) into the skin by conventional methods based on passive diffusion because of its hydrophilicity and high molecular weight. In this study, we evaluated the in vitro transdermal delivery of fluorescein isothiocyanate (FITC)-NF-kappaB decoy ODN using a pulse depolarization (PDP) iontophoresis. In vitro iontophoretic experiments were performed on isolated C57BL/6 mice skin using a horizontal diffusion cell. The apparent flux values of FITC-NF-kappaB decoy ODN were enhanced with increasing the current density and NF-kappaB decoy ODN concentration by iontophoresis. Accumulation of FITC-NF-kappaB decoy ODN was observed at the epidermis and upper dermis by iontophoresis. In mouse model of skin inflammation, iontophoretic delivery of NF-kappaB decoy ODN significantly reduced the increase in ear thickness caused by phorbol ester as well as the protein and mRNA expression levels of tumor necrosis factor-alpha (TNF-alpha) in the mice ears. These results suggest that iontophoresis is a useful and promising enhancement technique for transdermal delivery of NF-kappaB decoy ODN.
Collapse
Affiliation(s)
- Irhan Ibrahim Abu Hashim
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862-0973, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Wong JHT, Lui VWY, Umezawa K, Ho Y, Wong EYL, Ng MHL, Cheng SH, Tsang CM, Tsao SW, Chan ATC. A small molecule inhibitor of NF-κB, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses growth and invasion of nasopharyngeal carcinoma (NPC) cells. Cancer Lett 2010; 287:23-32. [DOI: 10.1016/j.canlet.2009.05.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 04/29/2009] [Accepted: 05/15/2009] [Indexed: 11/26/2022]
|
22
|
Bortezomib Can Suppress Activation of Rapamycin-Resistant Memory T Cells Without Affecting Regulatory T-Cell Viability in Non-Human Primates. Transplantation 2009; 88:1349-59. [DOI: 10.1097/tp.0b013e3181bd7b3a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Tas SW, Vervoordeldonk MJBM, Tak PP. Gene therapy targeting nuclear factor-kappaB: towards clinical application in inflammatory diseases and cancer. Curr Gene Ther 2009; 9:160-70. [PMID: 19519361 PMCID: PMC2864453 DOI: 10.2174/156652309788488569] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nuclear factor (NF)-κB is regarded as one of the most important transcription factors and plays an essential role in the transcriptional activation of pro-inflammatory cytokines, cell proliferation and survival. NF-κB can be activated via two distinct NF-κB signal transduction pathways, the so-called canonical and non-canonical pathways, and has been demonstrated to play a key role in a wide range of inflammatory diseases and various types of cancer. Much effort has been put in strategies to inhibit NF-κB activation, for example by the development of pharmacological compounds that selectively inhibit NF-κB activity and therefore would be beneficial for immunotherapy of transplantation, autoimmune and allergic diseases, as well as an adjuvant approach in patients treated with chemotherapy for cancer. Gene therapy targeting NF-κB is a promising new strategy with the potential of long-term effects and has been explored in a wide variety of diseases, ranging from cancer to transplantation medicine and autoimmune diseases. In this review we discuss recent progress made in the development of NF-κB targeted gene therapy and the evolution towards clinical application.
Collapse
Affiliation(s)
- Sander W Tas
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
24
|
Kobayashi T, Yoshimori A, Kino K, Komori R, Miyazawa H, Tanuma SI. A new small molecule that directly inhibits the DNA binding of NF-kappaB. Bioorg Med Chem 2009; 17:5293-7. [PMID: 19539480 DOI: 10.1016/j.bmc.2009.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/11/2009] [Accepted: 05/12/2009] [Indexed: 12/21/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) has been considered as a good target for the treatment of many diseases. Although a lot of NF-kappaB inhibitors have already been reported, many of them have several common problems. Thus, we attempted to identify novel NF-kappaB inhibitors to be unique lead compounds for creating new pharmaceuticals. In the present study, we screened our chemical library for compounds that directly inhibit the DNA binding of NF-kappaB by using fluorescence correlation spectroscopy (FCS). Consequently, we identified a promising compound, 4,6-dichloro-N-phenyl-1,3,5-triazin-2-amine, referred to as NI241. It mediated a dose-dependent inhibition of the DNA binding of NF-kappaB p50. Its analogues also showed dose-dependent inhibition and their inhibitory effects were altered by the substituents on the N-phenyl group. Furthermore, we predicted the binding mode of NI241 with p50 in silico. In this model, NI241 forms three hydrogen bonds with Tyr60, His144, and Asp242 on p50, which are important amino acid residues for the interaction with DNA. These results suggest that NI241 with structural novelty may serve as a useful scaffold for the creation of new NF-kappaB inhibitors by rational optimization.
Collapse
Affiliation(s)
- Takanobu Kobayashi
- Laboratory of Molecular Biology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Kim YH, Kim DH, Lim H, Baek DY, Shin HK, Kim JK. The anti-inflammatory effects of methylsulfonylmethane on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biol Pharm Bull 2009; 32:651-6. [PMID: 19336900 DOI: 10.1248/bpb.32.651] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Methylsulfonylmethane (MSM), also known as dimethyl sulfone and methyl sulfone, is an organic sulfur-containing compound that occurs naturally in a variety of fruits, vegetables, grains, and animals, including humans. In the present study, we demonstrated the anti-inflammatory effects of MSM in lipopolysaccharide (LPS)-stimulated murine macrophages, RAW264.7 cells. MSM significantly inhibited the release of nitric oxide and prostaglandin E(2) by alleviating the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-stimulated RAW264.7 cells. Furthermore, the levels of interleukin-6 and tumor necrosis factor-alpha were decreased by MSM treatment in cell culture supernatants. Further study indicated that the translocation of the p65 subunit of nuclear factor (NF)-kappaB to the nucleus was inhibited by MSM treatment in LPS-stimulated RAW264.7 cells, in which it helped block degradation of inhibitor of NF-kappaB. In addition, in vivo studies demonstrated that topical administration of MSM at 500-1250 microg/ear resulted in similar inhibitory activities in 12-O-tetradecanoylphorbol 13-acetate-induced mouse ear edema. Collectively, theses results indicate that MSM inhibits LPS-induced release of pro-inflammatory mediators in murine macrophages through downregulation of NF-kappaB signaling.
Collapse
Affiliation(s)
- Yoon Hee Kim
- Center for Efficacy Assessment and Development of Functional Foods and Drugs, Hallym University, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Gonçalves C, Ardourel MY, Decoville M, Breuzard G, Midoux P, Hartmann B, Pichon C. An optimized extended DNA kappa B site that enhances plasmid DNA nuclear import and gene expression. J Gene Med 2009; 11:401-11. [DOI: 10.1002/jgm.1312] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Xu XS, Hong X, Wang G. Induction of endogenous gamma-globin gene expression with decoy oligonucleotide targeting Oct-1 transcription factor consensus sequence. J Hematol Oncol 2009; 2:15. [PMID: 19327156 PMCID: PMC2669152 DOI: 10.1186/1756-8722-2-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 03/27/2009] [Indexed: 12/22/2022] Open
Abstract
Human β-globin disorders are relatively common genetic diseases cause by mutations in the β-globin gene. Increasing the expression of the γ-globin gene has great benefits in reducing complications associated with these diseases. The Oct-1 transcription factor is involved in the transcriptional regulation of the γ-globin gene. The human γ-globin genes (both Aγ and Gγ-globin genes) carry three Oct-1 transcription factor consensus sequences within their promoter regions. We have studied the possibility of inducing γ-globin gene expression using decoy oligonucleotides that target the Oct-1 transcription factor consensus sequence. A double-stranded 22 bp decoy oligonucleotide containing the Oct-1 consensus sequence was synthesized. The results obtained from our in vitro binding assay revealed a strong competitive binding of the decoy oligonucleotide for the Oct-1 transcription factor. When K562 human erythroleukemia cells were treated with the Oct-1 decoy oligonucleotide, significant increases in the level of the γ-globin mRNA were observed. The results of our western blots further demonstrated significant increases of the fetal hemoglobin (HbF, α2γ2) in the Oct-1 decoy oligonucleotide-treated K562 cells. The results of our immunoprecipitation (IP) studies revealed that the treatment of K562 cells with the Oct-1 decoy oligonucleotide significantly reduced the level of the endogenous γ-globin gene promoter region DNA co-precipitated with the Oct-1 transcription factor. These results suggest that the decoy oligonucleotide designed for the Oct-1 transcription factor consensus sequence could induce expression of the endogenous γ-globin gene through competitive binding of the Oct-1 transcription factor, resulting in activation of the γ-globin genes. Therefore, disrupting the bindings of the Oct-1 transcriptional factors with the decoy oligonucleotide provides a novel approach for inducing expression of the γ-globin genes. It also provides an innovative strategy for the treatment of many disease conditions, including sickle cell anemia and β-thalassemia.
Collapse
Affiliation(s)
- Xiaoxin S Xu
- Institute of Environmental Health Sciences, Wayne State University, 2727 Second Avenue, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
28
|
Decoy oligodeoxynucleotide targeting activator protein-1 (AP-1) attenuates intestinal inflammation in murine experimental colitis. J Transl Med 2008; 88:652-63. [PMID: 18458670 DOI: 10.1038/labinvest.2008.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Various therapies are used for inflammatory bowel diseases (IBD), though none seem to be extremely effective. AP-1 is a major transcription factor that upregulates genes involved in immune and proinflammatory responses. We investigated decoy oligodeoxynucleotide (ODN) targeting AP-1 to prevent dextran sulfate sodium (DSS)-induced colitis in mice. Functional efficacies of synthetic decoy and scrambled ODNs were evaluated in vitro by a reporter gene luciferase assay and measuring flagellin-induced IL-8 expression by HCT-15 cells transfected with ODNs. Experimental colitis was induced in mice with a 2.5% DSS solution in drinking water for 7 days, and decoy or scrambled ODNs were intraperitoneally injected from days 2 to 5. Colitis was assessed by weight loss, colon length, histopathology, and detection of myeloperoxidase (MPO), IL-1beta, and TNF-alpha in colon tissue. Therapeutic effects of AP-1 and NF-kappaB decoy ODNs were compared. Transfection of AP-1 decoy ODN inhibited AP-1 transcriptional activity in reporter assays and flagellin-induced IL-8 production in vitro. In mice, AP-1 decoy ODN, but not scrambled ODN, significantly inhibited weight loss, colon shortening, and histological inflammation induced by DSS. Further, AP-1 decoy ODN decreased MPO, IL-1beta, and TNF-alpha in colonic tissue of mice with DSS-induced colitis. The AP-1 decoy therapeutic effect was comparable to that of NF-kappaB decoy ODN, which also significantly decreased intestinal inflammation. Double-strand decoy ODN targeting AP-1 effectively attenuated intestinal inflammation associated with experimental colitis in mice, indicating the potential of targeting proinflammatory transcription factors in new therapies for IBD.
Collapse
|
29
|
Qin ZH, Tao LY, Chen X. Dual roles of NF-kappaB in cell survival and implications of NF-kappaB inhibitors in neuroprotective therapy. Acta Pharmacol Sin 2007; 28:1859-72. [PMID: 18031598 DOI: 10.1111/j.1745-7254.2007.00741.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NF-kappaB is a well-characterized transcription factor with multiple physiological and pathological functions. NF-kappaB plays important roles in the development and maturation of lymphoids, regulation of immune and inflammatory response, and cell death and survival. The influence of NF-kappaB on cell survival could be protective or destructive, depending on types, developmental stages of cells, and pathological conditions. The complexity of NF-kappaB in cell death and survival derives from its multiple roles in regulating the expression of a broad array of genes involved in promoting cell death and survival. The activation of NF-kappaB has been found in many neurological disorders, but its actual roles in pathogenesis are still being debated. Many compounds with neuroprotective actions are strongly associated with the inhibition of NF-kappaB, leading to speculation that blocking the pathological activation of NF-kappaB could offer neuroprotective effects in certain neurodegenerative conditions. This paper reviews the recent developments in understanding the dual roles of NF-kappaB in cell death and survival and explores its possible usefulness in treating neurological diseases. This paper will summarize the genes regulated by NF-kappaB that are involved in cell death and survival to elucidate why NF-kappaB promotes cell survival in some conditions while facilitating cell death in other conditions. This paper will also focus on the effects of various NF-kappaB inhibitors on neuroprotection in certain pathological conditions to speculate if NF-kappaB is a potential target for neuroprotective therapy.
Collapse
Affiliation(s)
- Zheng-hong Qin
- Department of Pharmacology, Soochow University School of Medicine, Suzhou 215123, China.
| | | | | |
Collapse
|
30
|
Uwe S. Anti-inflammatory interventions of NF-kappaB signaling: potential applications and risks. Biochem Pharmacol 2007; 75:1567-79. [PMID: 18070616 DOI: 10.1016/j.bcp.2007.10.027] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 02/06/2023]
Abstract
Signaling via NF-kappaB is a key process during inflammation and thus constitutes an attractive target for anti-inflammatory therapeutic interventions. Especially during initial hyperinflammatory states of an acute illness such as sepsis or in the course of chronic inflammation and autoimmune diseases inhibition of IKK-driven NF-kappaB activation provides a promising treatment strategy. Given its critical role in innate and adaptive immune responses, however, there is a certain amount of risk due to induced immunodeficiency that may follow inhibitory treatment. Moreover, its primary anti-apoptotic function suggests that blockade of NF-kappaB activation has dramatic effects on cell functions and survival and eventually worsens the course of an inflammatory disease. An overview of canonical and alternative NF-kappaB activation and its critical role in immune responses will be provided. A main topic focuses on recent animal studies and data derived from genetic studies in humans that provide an insight into potential effects of different therapeutic modulations of NF-kappaB inflammatory signaling. The pros and cons of NF-kappaB inhibition and treatment strategies will be critically reviewed.
Collapse
Affiliation(s)
- Senftleben Uwe
- Department of Anesthesiology and Intensive Care, University of Ulm, Steinhövelstr. 9, D-89075 Ulm, Germany.
| |
Collapse
|
31
|
Mescalchin A, Detzer A, Wecke M, Overhoff M, Wünsche W, Sczakiel G. Cellular uptake and intracellular release are major obstacles to the therapeutic application of siRNA: novel options by phosphorothioate-stimulated delivery. Expert Opin Biol Ther 2007; 7:1531-8. [PMID: 17916045 DOI: 10.1517/14712598.7.10.1531] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular uptake of oligomeric nucleic acid-based tools and drugs including small-interfering RNA (siRNA) represents a major technical hurdle for the biologic effectiveness and therapeutic success in vivo. Subsequent to cellular delivery it is crucial to direct siRNA to the cellular location where it enters the RNA interference pathway. Here the authors summarise evidence that functionally active siRNA represents a minor fraction in the order of 1% of total siRNA inside a given target cell. Exploiting possibilities of steering intracellular release or trafficking of siRNA bears the potential of substantially increasing the biological activity of siRNA. The recently described phosphorothioate stimulated cellular delivery of siRNA makes use of the caveolar system ending in the Golgi apparatus, which contrasts all other known delivery systems. Therefore, it represents an attractive alternative to study whether promoted intracellular release is related to increased target suppression and, thus, increased phenotypic biologic effectiveness.
Collapse
Affiliation(s)
- Alessandra Mescalchin
- Universität zu Lübeck, Universitätsklinikum Schleswig-Holstein and Zentrum für medizinische Strukturbiologie ZMSB, Institut für Molekulare Medizin, Ratzeburger Allee 160, D-23538 Lübeck, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Haddad JJ. On the enigma of pain and hyperalgesia: A molecular perspective. Biochem Biophys Res Commun 2006; 353:217-24. [PMID: 17184730 DOI: 10.1016/j.bbrc.2006.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 12/05/2006] [Indexed: 01/03/2023]
Abstract
Pain is a common symptom of injuries and inflammatory-related conditions. The perception of pain, commonly known as nociception, depends on integrated receptors and molecular pathways. Inflammatory mediators are involved in the genesis, persistence, and severity of pain. Noxious stimuli can trigger a cascade of inflammatory loops that feedback onto sensory modalities and domains of the CNS, in an attempt to alert the brain of deregulated homeostasis. Understanding the mechanisms of pain continue to make nociception and hyperalgesia a burgeoning field of research.
Collapse
Affiliation(s)
- John J Haddad
- Molecular Signaling Research Group, Division of Biological Sciences, Department of Biology and Biomedical Sciences, Faculty of Arts and Sciences, Lebanese International University, Beirut, Lebanon.
| |
Collapse
|
33
|
Abstract
This article serves as an introduction to the collection of reviews on nuclear factor-kappaB (NF-kappaB). It provides an overview of the discovery and current status of NF-kappaB as a research topic. Described are the structures, activities and regulation of the proteins in the NF-kappaB family of transcription factors. NF-kappaB signaling is primarily regulated by inhibitor kappaB (IkappaB) proteins and the IkappaB kinase complex through two major pathways: the canonical and non-canonical NF-kappaB pathways. The organization and focus of articles included in the following reviews are described, as well as likely future areas of research interest on NF-kappaB.
Collapse
Affiliation(s)
- T D Gilmore
- Biology Department, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|